
Published in Image Processing On Line on 2024–10–00.
Submitted on 2024–02–06, accepted on 2024–09–26.
ISSN 2105–1232 © 2024 IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
https://doi.org/10.5201/ipol.2024.528

2
0
2
1
/
1
1
/
2
1

v
0
.6

IP
O
L

a
rt
ic
le

c
la
ss

A Review of t-SNE

Sangwon Jung1, Tristan Dagobert1, Jean-Michel Morel2, Gabriele Facciolo1

1 Université Paris-Saclay, ENS Paris-Saclay, Centre Borelli, Gif-sur-Yvette, France
{mrswjung}@gmail.com, {tristan.dagobert, gabriele.facciolo}@ens-paris-saclay.fr

2City University of Hong Kong, Department of Mathematics, Hong Kong
{jeamorel}@city.edu.hk

Communicated by Gregory Randall Demo edited by Gabriele Facciolo and Tristan Dagobert

Abstract

High dimensional data is difficult to visualize. T-Distributed Stochastic Neighbor Embedding
(t-SNE) is a popular technique for dimensionality reduction enabling a planar visualization
of a dataset preserving as much as possible its metric. This paper explores the theoretical
background of t-SNE and its accelerated version. A comparison of the performance of t-SNE
on various datasets with different dimensions is also performed.

Source Code

The source code and documentation associated to this article are available from the web page
of this article1. The code uses functions from the scikit-learn Python library2, which have not
been reviewed. Usage instructions are included in the README.md file of the archive.

Keywords: dimensionality reduction; manifold learning; SNE; t-SNE; Barnes-Hut

1 Introduction

Visualization of high-dimensional data is an increasingly important problem in many domains, be-
cause understanding data global and local structure by using a visualization tool may lead to con-
ceive efficient data processes adapted to these data. Dimensional reduction techniques transform a
high-dimensional dataset X = {x1, . . . ,xN} of dimension d into a two or three dimensional dataset
Y = {y1, . . . ,yN} that can be displayed on a scatter-plot. The goal of such dimensional reduction
is to maintain as much metric information as possible from the high-dimensional data in the low-
dimensional map, while enabling direct visualization of the transformed dataset. Dimension reduction
techniques can be classical methods such as principal component analysis [28], [17], multi-dimensional
scaling [4], or more modern methods such as Sammon mapping [20], curvilinear component anal-
ysis [5], stochastic neighbor embedding [7], Isomap [22], locally linear embedding (LLE) [18] and

1https://doi.org/10.5201/ipol.2024.528
2https://scikit-learn.org/stable/

Sangwon Jung, Tristan Dagobert, Jean-Michel Morel, Gabriele Facciolo , A Review of t-SNE, Image Processing On Line, 14 (2024),
pp. 1–21. https://doi.org/10.5201/ipol.2024.528

https://doi.org/10.5201/ipol
https://doi.org/10.5201/ipol
http://creativecommons.org/licenses/by-nc-sa/3.0/
https://doi.org/10.5201/ipol.2024.528
https://doi.org/10.5201/ipol.2024.528
https://doi.org/10.5201/ipol.2024.528
https://doi.org/10.5201/ipol.2024.528

Sangwon Jung, Tristan Dagobert, Jean-Michel Morel, Gabriele Facciolo

Laplacian eigenmaps [2]. Nevertheless the above mentioned methods are not guided by the goal of a
direct two dimensional data visualization.

The t-distributed stochastic neighbor embedding (t-SNE) algorithm proposed by Van der Maaten
et al. [25] fills nicely in that gap. It is based on the Stochastic Neighbor Embedding (SNE) algorithm
proposed by Roweis & Hinton [7]. This dimensionality reduction technique embeds high-dimensional
data for visualization in a low-dimensional space of two or three dimensions. Specifically, it models
each high-dimensional object by a two- or three-dimensional point in such a way that similar ob-
jects are modeled by nearby points and dissimilar objects are modeled by distant points with high
probability.

Like SNE, t-SNE proceeds in two steps. First, the algorithm constructs a probability distribution
over pairs of high-dimensional objects where similar objects are assigned a higher probability than
dissimilar ones. Then, t-SNE obtains a similar probability distribution over the points in the low-
dimensional map by moving them so as to minimize the Kullback-Leibler divergence DKL between
both distributions.

While t-SNE plots often seem to display clusters, these visual clusters can be strongly influenced
by the chosen parameterization. Ghost “clusters” can be shown to form in non-clustered data [12].
To prevent this phenomenon, the parameters may have to be tuned as proposed in [16] and [26].
It is shown in [12] that t-SNE is often able to preserve initially well-separated clusters. For some
parameter choices it approximates a simple form of spectral clustering.

In this paper, we describe the background and details of the t-SNE algorithm and an accelerated
version [24]. The outline of the paper is as follows. In Section 2 and 3, we describe and analyze SNE
and t-SNE. Section 4 presents the accelerated t-SNE [24] using a vantage point tree structure [27]
and the Barnes-Hut algorithm [1]. Experimental results are shown in Section 5. Section 6 is a
conclusion.

The code associated with the present paper is not a specific implementation of these methods.
We take advantage of the fact that several effective numerical versions exist to date and are very
popular in the scientific community3. They contain structures, functions or variables that have been
accelerated and are, due to their intensive use, not or very little buggy. The versions used in the
IPOL demonstrator correspond to those programmed in the scikit-learn 1.2.1 library [15] by
A. Fabisch, C. Moody and N. Travers. In the rest of the paper, we will specify when necessary the
differences between the implementation and the general pseudo-code describing these methods in the
present paper.

2 The Original t-SNE Algorithm

2.1 Basis of the t-SNE

The Stochastic Neighbor Embedding algorithm forms the basis of t-SNE. The SNE algorithm con-
verts the high-dimensional Euclidean distances between data points of X into conditional probabil-
ities that represent similarities. To this end, the similarity between two data points xi and xj is
represented by the relation

pj|i =

exp(− ||xj − xi||2 /(2σ2

i))∑N
k ̸=i
k=1

exp(− ||xk − xi||2 /(2σ2
i))

if i ̸= j,

0 otherwise.

, (1)

3See https://lvdmaaten.github.io/tsne/

2

https://lvdmaaten.github.io/tsne/

A Review of t-SNE

where σi is the variance of a Gaussian centered at xi, to be specified. The pairwise distance of the
low-dimensional points of Y is also converted into a conditional probability by

qj|i =

exp(− ||yj − yi||2)∑N
k ̸=i
k=1

exp(− ||yk − yi||2)
if i ̸= j,

0 otherwise.

. (2)

The goal of the SNE algorithm is to find the low-dimensional representation that minimizes
the Kullback-Leibler divergence between the distribution P SNE, which is the conditional probability
distribution over all the data points of X , and the distribution QSNE which represents the conditional
probability distribution over all the map points of Y . The divergence to minimize is then expressed
by

DSNE
KL

(
P SNE∥QSNE

)
=

N∑
i=1

N∑
j=1

pj|i log
pj|i
qj|i

. (3)

The t-SNE algorithm builds upon a symmetrized version of SNE, which also minimizes the
Kullback-Leibler divergence between the joint probability distributions P and Q defined in the high-
and low-dimensional spaces respectively.

2.2 High-dimensional Data Representation

At first glance, a reasonable way to define the joint probability pij in a symmetric SNE, would be to
set

pij =
exp(− ||xj − xi||2 /(2σ2

i))∑N
k=1

∑N
l ̸=k
l=1

exp(− ||xk − xl||2 /(2σ2
i))

.

However, if all the pairwise distances between a point xi and the other data points are large, the
value of pij will be extremely small for all j (we denote by Dij the squared pairwise distances matrix
whose elements are dij = ∥xj − xi∥2). In that case, the drawback is that the low dimensional point
yj will have little effect on the cost function (3). Thus, the high dimensional relationship will not
be well represented. To overcome this difficulty, Van der Maaten & Hinton [25] impose to the joint
probability to be a symmetrized conditional probability defined by

pij =
pi|j + pj|i

2N
, (4)

where N is the number of data samples and pj|i follows (1) so that
∑

j pj|i = 1 for all i.
The formulation (4) has two advantages. First, the joint probability distribution is well balanced,

each data point xi having a similar influence in the DKL minimization whose formulation is now

DKL(P ||Q) =
N∑
i=1

N∑
j=1

pij log
pij
qij

. (5)

As Van der Maaten & Hinton [25] explain: “The similarity of datapoint xj to datapoint xi is
the conditional probability, pj|i, that xi would pick xj as its neighbor if neighbors were picked in
proportion to their probability density under a Gaussian centered at xi”. Second, from (4) one
obtains that pij = pji, pii = 0 and

∑
i,j pij = 1, which ensures that

∑
j pij >

1
2N

for all data points
xi. As a result each xi has a significant effect on DKL.

However, since the Gaussian kernel uses the Euclidean distance ∥xi − xj∥, it is affected by the
curse of dimensionality: in high dimensional data when distances lose the ability to discriminate, the

3

Sangwon Jung, Tristan Dagobert, Jean-Michel Morel, Gabriele Facciolo

pij may become too similar (asymptotically, they would converge to a constant). To alleviate this
phenomenon, it has been proposed in [21] to adjust the distances with a power transform, based on
the intrinsic dimension of each data point.

2.3 Model Perplexity

In the original SNE [7], Hinton & Roweis observe that for proper modeling, the value of σi should be
chosen according to the density of each data point xi. Indeed in denser regions, a smaller value of σi

is more appropriate than in sparser regions. The authors propose to adjust the standard deviation
σi so that the number of effective local neighbors of xi, i.e. those which have a significant weight in
the Kullback-Leibler divergence, be nearly the same for all i. The authors appeal to the concept of
perplexity from information theory, which can be interpreted as an approximation of such an effective
number of neighbors. Denoting by Pi = {pj|i}1≤j≤N the vector of all pj|i for a given i, the perplexity
is defined by

Perp(Pi) = 2H(Pi), (6)

where H(Pi) = −
∑

j pj|i log pj|i is the Shannon entropy of Pi. From definition (1), one can deduce
that

H(Pi) =
N∑
j=1

 exp(− ||xj − xi||2 /(2σ2
i))∑N

k ̸=i
k=1

exp(− ||xk − xi||2 /(2σ2
i))

 ||xj − xi||2

2σ2
i

+ log
N∑
k ̸=i
k=1

exp

(
− ||xk − xi||2

2σ2
i

)
 .

(7)
The bandwidth σi is found by a binary search method to reach a prescribed perplexity Perp∗ for

each i in the course of the computation of the matrix Pj|i = {pj|i}1≤i≤N
1≤j≤N of all conditional probabilities.

Concerning the value of Perp∗, experiments conducted in [25] and [26], show that it depends mainly
of the data quantity and can lead to divergence if it is inappropriate at-all. As a trade-off [26] and [9]
suggest to apply the rule Perp∗ ∼ N

100
.

The pseudo-code is shown in Algorithm 1 and is implemented this way in the scikit-learn

library (module manifold/_utils.pyx).

2.4 Low-dimensional Data Representation

The t-SNE algorithm aims at learning a low-dimensional map Y (typically chosen as 2 or 3) that
reflects the similarities pij as well as possible. To this end, it measures similarities qij between two
map points yi and yj, using an approach similar to SNE. The expression of qij could use a Gaussian
formulation like that of (2). However, according to Van der Maaten & Hinton [25], the use of
Gaussians in the low-dimensional space makes it difficult to optimize the cost function (5), because
the so-called “crowding problem” occurs: clusters of points tend to form in the low dimensional space
due to the excessively fast decay of long-range repulsive forces. To overcome this problem, t-SNE
uses a heavy-tailed Student t-distribution with one degree of freedom to compute the similarities
of the low-dimensional map points. This enables dissimilar objects to keep interacting. The joint
probability therefore is defined by

qij =

(1 + ||yi − yj||2)−1∑N

k=1

∑N
l ̸=k
l=1

(1 + ||yk − yl||2)−1
if i ̸= j,

0 otherwise.

. (8)

In the following we denote by Qij the matrix whose elements are qij for 1 ≤ i ≤ N and 1 ≤ j ≤ N .

4

A Review of t-SNE

Algorithm 1: Conditional probabilities computation with a given model perplexity.

Input Dij: Pairwise distances matrix between the datapoints of X .
Input K: Maximal number of iterations.
Input Perp∗: Optimal perplexity to reach.
Output Pj|i: Matrix of the conditional probabilities i.e. {pj|i}1≤i≤N

1≤j≤N .

1 H∗ ← log Perp∗

2 for i = 1, . . . , N do
3 βmin ← −∞
4 βmax ← +∞
5 β ← 1
6 ∆H ← +∞
7 k ← 1
8 while ∆H ≥ ϵ and k ≤ K do
9 σi ←

√
2β

// Computation of the conditional probabilities

10 for j = 1, . . . , N do
11 pj|i ← according to (1) [Dij, σi]

// Computation of the entropy

12 H(Pi)← according to (7) [Pi, Dij, σi]
13 ∆ H ← H(Pi)−H∗

// Adaptation of β
14 if ∆ H > 0 then
15 βmin ← β
16 β ← 2β if βmax = +∞ else (β + βmax)/2

17 else
18 βmax ← β
19 β ← β/2 if βmin = −∞ else β ← (β + βmin)/2

20 return Pj|i

2.5 Minimization of the Kullback-Leibler Divergence

The locations of the points yi in the map are determined by minimizing the Kullback-Leibler diver-
gence (5) between the distributions P and Q with respect to the points yi. This minimization is
performed by the descent of the gradient whose formulation, proved in the paper [25, Appendix A],
is

∂DKL

∂yi

= 4
N∑
j=1

(pij − qij)(yi − yj)(1 + ||yi − yj||2)−1. (9)

The gradient descent with time step t follows a two-step scheme involving y
(t)
i and y

(t−1)
i and is

composed of an adaptive learning rate ηi(t) > 0 and an adaptive momentum α(t) ∈ [0; 1] based on
the Jacobs strategy [8] to increase the convergence rate. Its formulation for all i is

y
(t+1)
i = y

(t)
i − ηi(t)

∂DKL

∂yi

(t) + α(t− 1)(y
(t)
i − y

(t−1)
i). (10)

5

Sangwon Jung, Tristan Dagobert, Jean-Michel Morel, Gabriele Facciolo

Adaptive term ηi(t). The learning rate ηi(t) is adapted according to the so-called “delta-bar-
delta” Jacobs method [8, eq. (4)],

ηi(t+ 1) =

η(t) + κ if δ̄(t− 1)δ(t) > 0,

η(t)(1− ϕ) if δ̄(t− 1)δ(t) < 0,

0 otherwise.

, (11)

where δ(t) = ∂DKL

∂yi
(t), δ̄(t) = (1 − θ)δ(t) + θδ̄(t − 1) with parameters κ ∈ R, ϕ ∈ [0; 1] and θ ∈ [0; 1]

arbitrary fixed. The implementation in scikit-learn differs from (11) with the formulation

ηi(t+ 1) =

{
η(t) + 0.2 if (ηi(t)− ηi(t− 1))δ(t) < 0,

η(t)× 0.8 otherwise.
(12)

These differences are not explained. Our interpretation is that if θ is set to 0 and if the gradient
descent scheme is virtually simplified as y

(t+1)
i = y

(t)
i − ηi(t)

∂DKL

∂yi
(t) then sign(ηi(t) − ηi(t − 1)) =

−sign(δ(t− 1)) so that the inequality tests in (11) and (12) are equivalent.

Adaptive term α(t). The momentum term α(t) was first introduced by Jacobs in order to accel-
erate the convergence of the gradient from the formulation [8, eq. (2)]

y
(t+1)
i = y

(t)
i − (1− α(t))η

∂DKL

∂yi

(t) + α(t− 1)(y
(t)
i − y

(t−1)
i). (13)

According to Jacobs [8] “When consecutive derivatives of a weight (i.e. yi
t) possess the same sign, the

exponentially weighted sum grows large in magnitude and the weight is adjusted by a large amount.
Similarly, when consecutive derivatives of a weight possess opposite signs, this sum becomes small
in magnitude and the weight is adjusted by a small amount”. Both Van der Maaten [25] and the

scikit-learn implementation keep only the right term α(t− 1)(y
(t)
i − y

(t−1)
i) of (13) into (10). In

the scikit-learn library (module manifold/_t_sne.py), α(t) = 0.5 for 0 ≤ t ≤ 250 and α(t) = 0.8
for t > 250.

The overall pseudo-code of the t-SNE algorithm is given in Algorithm 2. It follows the imple-
mentation of scikit-learn.

3 The Accelerated Tree-based t-SNE Algorithm

The pristine t-SNE algorithm is computationally expensive. Indeed, to compute the high-dimensional
data representation, we need to compute the pairwise distance between all of the high-dimensional
data points. For N points in k dimensions the cost of this step is O(N2k). In addition to that, to
compute the gradient of t-SNE, we have to perform additional O(N2) operations.

Several techniques have been presented to reduce this computational complexity. In [23] Van der
Maaten proposes to accelerate the gradient computation using the graph Laplacian of the matrices Pij

and Qij. In [24] the same author proposes a more sophisticated approach using tree-based algorithms
for approximating the t-SNE steps. First the input similarities are approximated by a vantage-point
tree [27] built on the input data X . Second the t-SNE gradient is approximated by the Barnes-Hut
algorithm [1]. This last modification allows one to approximate the component of the gradient due
to distant data points, which is the sum of the repulsive forces.

6

A Review of t-SNE

Algorithm 2: The original t-SNE method as implemented in scikit-learn.

Input X = {x1, . . . ,xN}: High-dimensional data set.
Input Perp∗: Optimal perplexity to reach.
Input K: Maximal number of iterations in perplexity.
Input T : Number of iterations.
Input ηi(0): Initial learning rate.
Input α(0): Initial momentum.
Input κ, ϕ, θ: Parameters for the adaptive term.
Output Y = {y1, . . . ,yN}: Low-dimensional data representation
// Computation of the high-dimensional data representation

1 for i = 1, . . . , N ; j = 1, . . . , N do
2 Dij ← ∥xj − xi∥2

3 Pj|i ← according to Algorithm 1[Dij, K,Perp∗]
4 Pij = (Pj|i + P⊤

j|i)/(2N)

// Sample initial solution with a Gaussian noise

5 Y(0) ← N (0, 10−4I)
// Gradient descent over T iterations

6 for t = 1, . . . , T do
// Computation of the low-dimensional data representation

7 Qij ← according to (8)[Y(t)]
// An iteration of the gradient descent

8 for i = 1, . . . , N do
9

∂DKL

∂yi
(t)← according to (9)[Pij, Qij,Y(t)]

10 ηi(t)← according to (12)[κ, ϕ, θ]

11 y
(t+1)
i ← according to (10)[∂DKL

∂yi
(t), ηi(t),Y(t)]

12 return Y(T+1)

3.1 Input Similarity Approximation Restriction to the Neighborhood

In the original approach [25], the joint probability (1) is calculated from a normalized Gaussian
distribution so that one has to sum over all the datapoints to form the denominator term. Van der
Maaten [24] argues that thanks to the Gaussian formulation, the probability vanishes for dissimilar
input data xi and xj. Consequently it is possible to approximate (1) by limiting the number of
components of the denominator to the closest neighbors of xi as

pj|i =

exp(−||xj−xi||2/2σ2

i)∑
k∈Ni

exp(−||xk−xi||2/2σ2
i)

if j ∈ Ni,

0 otherwise.
, (14)

where Ni represents the set of the ⌊3Perp(Pi)⌋ nearest neighbors of xi and while the symmetrized
conditional probability (4) stays unchanged.

The so-called “all nearest neighbors” problem of high-dimensional data is a well studied subject
and is efficiently solved thanks to appropriate data structures (see e.g. [19]) which are in particular
the binary trees. In [23], the nearest neighbors are found in time O(Perp(Pi)N logN) by building a
vantage-point tree on the input data and performing an exact nearest-neighbor search with the help
of the resulting tree. The scikit-learn implementation differs, replacing the vantage-point tree by
a ball tree structure. Both of these binary tree structures keep the same search time complexity.

7

Sangwon Jung, Tristan Dagobert, Jean-Michel Morel, Gabriele Facciolo

A ball tree is a graph T (V,E) where V and E are respectively the set of nodes and edges, and
each node v ∈ V stores the centroid xc, the radius r of the d-dimension ball of smallest radius which
contains a subset Xv of the datapoints X . In addition, each node v partitions Xv into two disjoint
sets X left

v and X right
v associated respectively to two children nodes vleft and vright. We denote by TXv

the tree whose root node is v. The building of the ball tree in the scikit-learn implementation
follows the recursive top-down method of Omohundro [13, p. 9] where the partition in two subsets
is made in three steps. First, among the d dimensions, the one along which the datapoints of Xv

are the most spread out is selected. Second, the median value of the coordinates of these datapoints
along this dimension is computed. Third, the datapoints are dispatched in X left

v and X right
v according

to this pivot value. The pseudo-code of the ball tree building is presented in Algorithm 3 (function
binary tree.pxi/ recursive build() in the scikit-learn implementation).

Algorithm 3: Ball tree structure building as implemented in scikit-learn.

Input X = {x1, . . . ,xN}: High-dimensional data set with xi = (xi1, . . . , xid).
Output TX : Ball tree structure.

1 TX ← Ball tree(X)
2 return TX
3 function Ball tree(Xv)
4 while Xv ̸= ∅ do

// Computation of the d-ball properties

5 xc ← 1
|Xv |
∑

xi∈Xv
xi

6 r ← max
xi∈Xv

∥xi − xc∥

// Computation of the dimension where x is the most spread

7 s← argmax
j∈[d]

(max
i∈[|Xv |]

xij − min
i∈[|Xv |]

xij)

// Computation of the pivot value

8 λ← median{xis|xi ∈ Xv}
// Partition of the datapoints

9 X left
v ← {xi ∈ Xv|xis < λ}

10 X right
v ← {xi ∈ Xv|xis ≥ λ}

// Building of the children trees

11 TX left
v
← Ball tree(X left

v)
12 TX right

v
← Ball tree(X right

v)

13 TXv ← (Xv,xc, r, TX left
v

, TX right
v

)

14 return TXv

For each data point xi of X , the K = ⌊3Perp(Pi)⌋ nearest-neighbor search is performed on the
ball tree TX thanks to a depth-first traversal search strategy (see e.g. [19, §4.2]). The algorithm
visits recursively all the sub-trees TXv except those for which it can be determined that it is im-
possible that they contain any of the K nearest neighbors of xi. Thus, as soon as the distance
between the centroid node xc (stored in v and associated to TXv) and xi is larger than the distance
between xi and the farthest neighbor among the already found K neighbors, then the sub-tree TXv

is not crossed. The pseudo-code of the K nearest-neighbor search is given in Algorithm 4 (function
binary tree.pxi/query() in the scikit-learn implementation).

8

A Review of t-SNE

Algorithm 4: Search for the K nearest neighbors sets (Ni)1≤i≤N in the ball tree as imple-
mented in scikit-learn.
Input X = {x1, . . . ,xN}: High-dimensional data set.
Input TX : Ball tree associated to X .
Input K: The number of nearest neighbors to retrieve.
Output (Ni)1≤i≤N : The K nearest neighbors sets.

1 for i = 1, . . . , N do
2 Ni ← ∅
3 Ni ← KNearestNeighbors(K,xi,Ni, TX)
4 return (Ni)1≤i≤N

5 function KNearestNeighbors(K,x,N , TX)
// Properties of the farthest neighbor of x

6 rfarthest ← max
z∈N
||z− x||2

7 xfarthest ← argmax
z∈N
||z− x||2

// Get the current node properties

8 (X ,xc, r, TX left , TX right)← TX
9 if ||x− xc||2 ≤ rfarthest then

// Case where TX is a leaf node, i.e. X is a singleton

10 if |X | = 1 then
11 if |N | = K ∧ rfarthest > ||z∈X − x||2 then

// We replace the farthest neighbor by a closer if needed

12 N ← N \ xfarthest ∪ X
13 else
14 N ← N ∪ X

15 else
// General case where we are in an internal node

16 (X left, cleft, . . .)← TX left

17 (X right, cright, . . .)← TX right

18 if ||x− cleft||2 ≤ ||x− cright||2 then
19 N ← KNearestNeighbors(K,x,N , TX left) ∪N
20 N ← KNearestNeighbors(K,x,N , Txright) ∪N
21 else
22 N ← KNearestNeighbors(K,x,N , Txright) ∪N
23 N ← KNearestNeighbors(K,x,N , Txleft) ∪N

24 return N

9

Sangwon Jung, Tristan Dagobert, Jean-Michel Morel, Gabriele Facciolo

3.2 The Barnes-Hut Approximation of the Gradient

In [24], Van der Maaten reformulates the gradient (8) so as to present it in the form of a particle
attractive-repulsive dynamical system (see e.g. [3]). Setting Z =

∑N
k=1

∑N
l ̸=k
l=1

(1 + ∥yk − yl∥2)−1, it

follows from (8) and (9) that

∂DKL

∂yi

= 4
N∑
j=1

(pij − qij)qijZ(yi − yj), (15)

= 4

∑
j ̸=i

pijqijZ(yi − yj)︸ ︷︷ ︸
Fattr

−
∑
j ̸=i

q2ijZ(yi − yj)︸ ︷︷ ︸
Frep

 , (16)

where Fattr (resp. Frep) represents the sum of all attractive (resp. repulsive) forces and the terms yi

identify the particle positions. Van der Maaten shows [24, §4.1] that thanks to the approximation
of the matrix Pj|i made by its sparse representation (14), the computation of Fattr can be done
efficiently with a complexity of order O(⌊3Perp(Pi)⌋N). However computing Frep is of order O(N2)
which stays computationally expensive [1]. The Barnes-Hut algorithm [1] overcomes this drawback
by approximating Frep in O(N logN) thanks to a quad-tree representation followed by a depth-first
search [24].

A quad-tree is a class of graph that we denote by Q(V , E), where V and E are respectively the set
of nodes and edges. In our case, in a quad-tree each node v ∈ V corresponds to a square cell in the
two-dimensional space, which contains a subset Yv of the map points set Y and stores their center
of mass yc. In addition, each node v partitions Yv into four disjoint subsets Ynw

v , Yne
v , Ysw

v and Yse
v

associated respectively to four children nodes vnw, vne, vsw and vse which divide the two-dimensional
space into four quadrants, northwest, northeast, southwest and southeast respectively, meeting at the
center of the parent node cell. We denote by QYv the quadtree whose root node is v. The idea of the
approximation is that if the cell v is small and far enough from the target point yi, the contribution
of the map points repulsion force inside the cell v can be similar to the one exerted by the center of
mass yc of the cell, weighted by the number of map points inside v∑

yj∈Yv

−q2ijZ(yi − yj) ≈ −|Yv|q2i,cZ(yi − yc). (17)

The condition proposed by Barnes-Hut algorithm decides whether the cell can be used as a summary
of all the map points inside it. This condition compares the distance between yi and yc and the size
of the cell by checking if

dv
||yi − yc||2

< θ, (18)

where dv represents the diagonal of the cell and θ is a fixed threshold. If θ = 0, all the pairwise
interactions are computed independently, which boils down to the naive t-SNE. If θ > 0 and the
condition (18) is satisfied, then the cell can be used as a summary of the map points it contains.
The implementation of the Barnes-Hut gradient term varies in the scikit-learn library (module
manifold/ barnes hut tsne.pyx) because the computation of the attractive term Fattr is restricted
to the nearest neighborsNi of each xi. The overall pseudo-code for approximating the t-SNE gradient
is given in Algorithm 5.

The overall pseudo-code of the accelerated t-SNE algorithm is given in Algorithm 6. It follows
the implementation of scikit-learn.

10

A Review of t-SNE

Algorithm 5: Pseudo-code for approximating the t-SNE gradient using Barnes-Hut algo-
rithm as implemented in scikit-learn.

Input θ: Threshold of cell acceptance.
Input Y: Map point dataset.
Input QY : Quadtree representation of Y .
Input P : Conditional probability distribution over all the data points of X .
Input Q: Conditional probability distribution over all the map points of Y .
Output ∂DKL

∂Y : approximated gradient of t-SNE

1 function BarnesHutGradient(θ,Y ,QY , P,Q)
2 for i from 1 to N do

// Computation of the attractive force Fattr

3 Fattr ← 0
4 for j ∈ Ni do
5 Fattr ← Fattr + pijqijZ(yi − yj)

// Computation of the repulsive force Frep

6 Frep ← 0
7 for QYv ∈ QY do
8 if dv/||yi − yc||2 < θ then
9 Frep ← Frep − |Yv|q2i,cZ(yi − yc)

10 else
11 Frep ← Frep −

∑
yj∈Yv

q2ijZ(yi − yj)

12 return 4(Fattr + Frep)

4 Experiments

In this section, after introducing the data sets we employ, we evaluate the t-SNE algorithm per-
formance when varying its main parameters on well-known datasets. The default values for these
parameters in the t-SNE version of scikit-learn are the following: Perp∗ = 30, T = 1000 and
ηi(t = 0) = max(N/48, 50). The values of Perp∗ and T follow those applied in [24].

Although the t-SNE method is originally dedicated to data visualization, we evaluate it on its
ability to cluster the map points of same class. Many clustering quality measures exist (see e.g. [6])
that can be roughly divided into two categories: external comparison indices and internal comparison
indices. The first category requires having two partitions because it measures their similarity. The
second category only uses the partition obtained and distances between its points. Since the t-SNE
does not directly provide clusters but we know the labels used in the datasets, we employ an index
from the second category. In the following, we apply the silhouette index which is a widely used
quality metric to estimate the embedding quality.

The silhouette index. We use the formula applied in the scikit-learn library. Given a partition
on Y = {y1, . . . ,yN}, the silhouette index is defined for each point yi of Y by

si =
b− a

max(a, b)
, (19)

where a is the average distance between yi and all other points in the same class, and b is the average
distance between yi and all other points in the next nearest cluster. The silhouette index for Y ,

11

Sangwon Jung, Tristan Dagobert, Jean-Michel Morel, Gabriele Facciolo

Algorithm 6: The accelerated t-SNE method as implemented in scikit-learn.

Input X = {x1, . . . ,xN}: High-dimensional data set.
Input Perp∗: Optimal perplexity to reach.
Input T : Number of iterations.
Input ηi(0): Initial learning rate.
Input α(0): Initial momentum.
Input κ, ϕ, θ: Parameters for the adaptive term.
Output Y = {y1, . . . ,yN}: Low-dimensional data representation
// Computation of the high-dimensional data representation

// Ball tree structure building

1 TX ← Ball Tree(X)
// Search for the k nearest neighbors sets

2 (Ni)1≤i≤N ← according to algorithm 4[TX ,Perp∗]
3 Pj|i ← according to (14)
4 Pij = (Pj|i + P⊤

j|i)/(2N)

// Sample initial solution with a Gaussian noise

5 Y(0) ← N (0, 10−4I)
// Gradient descent over T iterations

6 for t = 1, . . . , T do
// Computation of the low-dimensional data representation

7 Qij ← according to (8)
// Quadtree structure building

8 QY(t)← construction according to Y(t).
// Barnes-Hut gradient approximation

9
∂DKL

∂Y (t)← BarnesHutGradient(θ,Y ,QY , Pij, Qij)

// An iteration of the gradient descent

10 for i = 1, . . . , N do
11

∂DKL

∂yi
(t)← according to (9)[Pij, Qij,Y(t)]

12 ηi(t)← according to (12)[κ, ϕ, θ]

13 y
(t+1)
i ← according to (10) [∂DKL

∂yi
(t), ηi(t),Y(t)]

14 return Y

denoted as sY , is the average of the coefficients si. Possible values of sY are in [−1; 1] where the best
value is 1 and the worst -1.

4.1 Data Sets

MNIST. The MNIST dataset [11] is a well known computer vision dataset consisting of gray scale
images representing the ten handwritten digits. In the version recovered by scikit-learn, this
dataset is composed of 70 000 images of size 28× 28 = 784 pixels.

CIFAR-10. In the version recovered by scikit-learn, the CIFAR-10 dataset [10] consists in
60 000 images of size 3 × 32 × 32 split into 10 classes with 6000 images each. The 60 000 images
are divided into 50 000 train images and 10 000 test images. We shall apply t-SNE on the train
dataset itself and on the embedded vectors of these data. To compute the embedded vectors, we
trained a small convolutional network on the 50 000 train images using PyTorch [14]. This network

12

A Review of t-SNE

is mainly composed by two convolutional layers followed by three dense layers and produces 10-
dimensional embedded vectors. Table 1 shows the architecture of the network. The network was
trained to minimize the cross-entropy loss using mini-batches of size 4, learning rate of 0.001, a
momentum term of 0.9 after 10 epochs. The network obtained an accuracy of 84% on the CIFAR-10
test dataset.

Layer Output shape Number of parameters

Input image [3, 32, 32] 0
Convolutional 2D with 32 filters of size 5× 5 [32, 28, 28] 2432
ReLU activation [32, 28, 28] 0
Maxpooling over 2× 2 patches [32, 14, 14] 0
Convolutional 2D with 32 filters of size 5× 5 [32, 10, 10] 25 632
ReLU activation [32, 10, 10] 0
Maxpooling over 2× 2 patches [32, 5, 5] 0
Flatten [800] 0
Dense layer 800× 120 [120] 96 120
ReLU activation [120] 0
Dense layer 120× 64 [64] 7744
ReLU activation [64] 0
Dense layer 64× 10 [10] 650
Output embedded vector [10] 0
Total parameters 132 578

Table 1: Successive layers constituting the neural network.

4.2 Results

4.2.1 MNIST

Figure 1 compares the naive t-SNE and the Barnes-Hut t-SNE algorithm on the MNIST dataset.
The color of the points indicates the classes of the corresponding objects. We used 10 000 randomly
sampled data points from the MNIST dataset (the same randomly selected data points for both
t-SNE versions). Both embedding results are made through 1000 iterations with a perplexity of 40.
The results show the strong performance of Barnes-Hut t-SNE compared to the naive version. In
particular, the quality of separation of classes of both algorithms are very similar: sY(naive) = 0.311,
while sY(Barnes) = 0.327. However, the naive t-SNE is 186 times slower than the Barnes-Hut t-SNE.

Figure 2 shows the results after applying the Barnes-Hut t-SNE algorithm on 17 500, 35 000, 52 500
and 70 000 MNIST data points. The embedding result on 17 500 points forms the right clusters, but
all classes are not clearly separated, sY = 0.345. In particular, classes such as 4 and 9 are interlaced.
When it comes to 70 000 data points, the Barnes-Hut t-SNE can efficiently construct high-quality
embeddings of the handwritten digit images, sY = 0.389. Although no supervised information was
used, all ten digit classes are clearly separated in an embedding. Figure 3 shows the results of
processing the Barnes-Hut t-SNE algorithm on 10 000 data points with 250, 500, 1000 and 2000
iterations. The clusters with 2000 iterations are clearer than with 250 iterations: sY(250) = 0.250
and sY(2000) = 0.336. From 1000 iterations on, the embedding results are visually stationary while
the spread of the embedding point clouds increases before becoming itself stationary.

Figure 4 shows the final embedding on the randomly sampled 10 000 data points of the MNIST
data set for different perplexities. We can see that for perplexity 2 the local clusters dominate the
scene, but that the global cluster is not well-formed at all, value of sY is only 0.171. When we move
to perplexity 5, we can see the formation of local clusters, yet these are still not separated enough.
Using perplexity 40, we recognize the distinct classes of the MNIST dataset t-SNE embedding. The

13

Sangwon Jung, Tristan Dagobert, Jean-Michel Morel, Gabriele Facciolo

Naive method Barnes-Hut method

Figure 1: Naive (left column) and Barnes-Hut (right column) t-SNE visualizations obtained from 10 000 randomly picked
images from the MNIST dataset. The color of the points indicates the class of the corresponding objects. Both results
show similar embedding qualities, but the naive t-SNE is 186 times slower than the Barnes-Hut t-SNE.

17 500 points, sY = 0.345 35 000 points, sY = 0.380

75 50 25 0 25 50 75
tsne-2d-x

75

50

25

0

25

50

75

ts
ne

-2
d-

y

Barnes-Hut t-SNE over 17500 data (115 sec)
y

0
1
2
3
4
5
6
7
8
9

100 75 50 25 0 25 50 75 100
tsne-2d-x

100

75

50

25

0

25

50

75

100
ts

ne
-2

d-
y

Barnes-Hut t-SNE over 35000 data (169 sec)
y

0
1
2
3
4
5
6
7
8
9

52 500 points, sY = 0.394 70 000 points, sY = 0.389

100 50 0 50 100
tsne-2d-x

100

75

50

25

0

25

50

75

100

ts
ne

-2
d-

y

Barnes-Hut t-SNE over 52500 data (215 sec)
y

0
1
2
3
4
5
6
7
8
9

Figure 2: Results of the Barnes-Hut t-SNE algorithm on 17 500, 35 000, 52 500 and 70 000 MNIST data points. Some of
the classes, such as 4 and 9, are mixed in the embedding results on 17 500 points. However, all classes are clearly separated
in the embedding on 70 000 data points.

embedding result with perplexity 100, however, doesn’t show much difference from the previous
result.

Figure 5 shows the results of processing the Barnes-Hut t-SNE algorithm with different PCA

14

A Review of t-SNE

Iteration= 250, sY = 0.250 Iteration= 500, sY = 0.311

1.0 0.5 0.0 0.5 1.0 1.5
tsne-2d-x

1.0

0.5

0.0

0.5

1.0

ts
ne

-2
d-

y

Barnes-Hut t-SNE over 10000 data (32 sec)

y
0
1
2
3
4
5
6
7
8
9

40 30 20 10 0 10 20 30 40
tsne-2d-x

30

20

10

0

10

20

30

40

ts
ne

-2
d-

y

Barnes-Hut t-SNE over 10000 data (53 sec)
y

0
1
2
3
4
5
6
7
8
9

Iteration= 1000, sY = 0.327 Iteration= 2000, sY = 0.336

80 60 40 20 0 20 40 60 80
tsne-2d-x

60

40

20

0

20

40

60

80

ts
ne

-2
d-

y

Barnes-Hut t-SNE over 10000 data (82 sec)
y

0
1
2
3
4
5
6
7
8
9

100 50 0 50 100
tsne-2d-x

75

50

25

0

25

50

75

100

ts
ne

-2
d-

y

Barnes-Hut t-SNE over 10000 data (103 sec)
y

0
1
2
3
4
5
6
7
8
9

Iteration= 5000, sY = 0.344 Iteration= 10 000, sY = 0.350

100 50 0 50 100 150
tsne-2d-x

100

50

0

50

100

ts
ne

-2
d-

y

Barnes-Hut t-SNE over 10000 data (291 sec)
y

0
1
2
3
4
5
6
7
8
9

100 50 0 50 100 150
tsne-2d-x

100

50

0

50

100

ts
ne

-2
d-

y

Barnes-Hut t-SNE over 10000 data (582 sec)
y

0
1
2
3
4
5
6
7
8
9

Figure 3: Results of the Barnes-Hut t-SNE algorithm on 10 000 data points from the MNIST dataset with respectively 250,
500, 1000,2000,5000 and 10 000 iterations. While 250 iterations are clearly insufficient to cluster correctly the classes, the
results over 1000 iterations are similar.

dimensional reductions (the initial dimension of the data points is 784). Using PCA with only 2
dimensions takes very little time and the points with the same classes are gathering. However, the
clusters are not formed at all. When using a PCA with 10 dimensions we can see that the clusters
are formed, but points from different classes are mixed. Using PCA with 50 dimensions gives results
similar to an application of t-SNE without dimensionality reduction.

15

Sangwon Jung, Tristan Dagobert, Jean-Michel Morel, Gabriele Facciolo

Perplexity= 2, sY = 0.171 Perplexity= 5, sY = 0.245

100 50 0 50 100
tsne-2d-x

100

50

0

50

100

ts
ne

-2
d-

y

Barnes-Hut t-SNE over 10000 data (102 sec)
y

0
1
2
3
4
5
6
7
8
9

100 50 0 50 100
tsne-2d-x

100

50

0

50

100

ts
ne

-2
d-

y

Barnes-Hut t-SNE over 10000 data (101 sec)
y

0
1
2
3
4
5
6
7
8
9

Perplexity= 40, sY = 0.327 Perplexity= 100, sY = 0.307

80 60 40 20 0 20 40 60 80
tsne-2d-x

60

40

20

0

20

40

60

80

ts
ne

-2
d-

y

Barnes-Hut t-SNE over 10000 data (109 sec)
y

0
1
2
3
4
5
6
7
8
9

40 20 0 20 40 60
tsne-2d-x

40

20

0

20

40

ts
ne

-2
d-

y

Barnes-Hut t-SNE over 10000 data (111 sec)
y

0
1
2
3
4
5
6
7
8
9

Figure 4: Results of the Barnes-Hut t-SNE algorithm on 10 000 data points from the MNIST dataset with different perplexity
values. The shown plots are the embedding results with perplexities 2, 5, 40 and 100 respectively. When the perplexity is
2, the local clusters are well formed but the global cluster is not. As the perplexities increase, the class clusters get better
separated.

4.2.2 CIFAR-10

Figure 6 shows the results of the Barnes-Hut t-SNE algorithm applied on the train images of the
CIFAR-10 dataset and applied on their embedded vectors computed by our CNN. The color of the
points indicates the classes of the corresponding images. The t-SNE algorithm used perplexity value
of 40 and 1000 iterations. Unlike with the MNIST dataset, the results of t-SNE applied on the raw
data show no significant cluster formation. On the contrary, the embedded vectors used as input for
the t-SNE give distinct clusters.

16

A Review of t-SNE

PCA=2, sY = 0.017 PCA=10, sY = 0.264

75 50 25 0 25 50 75 100
tsne-2d-x

80

60

40

20

0

20

40

60

ts
ne

-2
d-

y

Barnes-Hut t-SNE over 10000 data (71 sec)
y

0
1
2
3
4
5
6
7
8
9

80 60 40 20 0 20 40 60 80
tsne-2d-x

60

40

20

0

20

40

60

80

ts
ne

-2
d-

y

Barnes-Hut t-SNE over 10000 data (78 sec)
y

0
1
2
3
4
5
6
7
8
9

PCA=50, sY = 0.348 No PCA (dim=784), sY = 0.327

80 60 40 20 0 20 40 60 80
tsne-2d-x

60

40

20

0

20

40

60

ts
ne

-2
d-

y

Barnes-Hut t-SNE over 10000 data (77 sec)
y

0
1
2
3
4
5
6
7
8
9

80 60 40 20 0 20 40 60 80
tsne-2d-x

60

40

20

0

20

40

60

80

ts
ne

-2
d-

y

Barnes-Hut t-SNE over 10000 data (82 sec)
y

0
1
2
3
4
5
6
7
8
9

Figure 5: Results of the Barnes-Hut t-SNE algorithm on 10 000 data points from the MNIST dataset with different initial
dimensional reductions using PCA. While PCA=2 shows inconsistent results, using PCA with 50 dimensions gives results
thar are similar to those without dimensionality reduction.

17

Sangwon Jung, Tristan Dagobert, Jean-Michel Morel, Gabriele Facciolo

t-SNE applied on the CIFAR-10 raw data, sY = −0.123

80 60 40 20 0 20 40 60
x_rawim

60

40

20

0

20

40

y_
ra

wi
m

classes
horse
frog
automobile
ship
cat
truck
dog
deer
airplane
bird

t-SNE applied on the CIFAR-10 embedded data, sY = 0.207

100 75 50 25 0 25 50 75 100
x_embbed

75

50

25

0

25

50

75

100

y_
em

bb
ed

classes
horse
frog
automobile
ship
cat
truck
dog
deer
airplane
bird

Figure 6: Results of the Barnes-Hut t-SNE on the CIFAR-10 data points. At the top, we applied the t-SNE on the CIFAR-10
data itself: no local and global structure is found. This means that t-SNE cannot capture the relations between the CIFAR-
10 images by just using raw pixel values. At the bottom, the result of t-SNE applied on the output of our convolutional
neural network.

18

A Review of t-SNE

5 Conclusion

In this paper, we investigated t-SNE, a dimensional reduction algorithm for data visualization, both
in its naive version and in its accelerated version by the Barnes-Hut approach. We first theoretically
described the algorithms by equations and pseudo-code. One can summarize t-SNE by saying that
it works by minimizing the Kullback-Leibler divergence between the distributions of the high dimen-
sional data points and of the low dimensional map points. We also investigated how the t-SNE was
accelerated. The method mainly relies on the reduction to a neighborhood of the calculus of the
elementary probabilities, as well as the use of a search tree structure.

We then empirically evaluated and compared the performance of the t-SNE algorithms on different
datasets. We showed that both versions of t-SNE obtain similar results but the accelerated version
was clearly faster. We also studied the influence of the main parameters of the method, such as the
number of iterations, the perplexity value, as well as the number of input data and the dimensional
reduction. Finally we verified how the t-SNE can be used to evaluate the performance of a neural
network model by visualizing its outputs.

References

[1] J. Barnes and P. Hut, A Hierarchical O (N Log N) Force-Calculation Algorithm, Nature,
324 (1986), pp. 446–449, https://doi.org/10.1038/324446a0.

[2] M. Belkin and P. Niyogi, Laplacian Eigenmaps and Spectral Techniques for Embedding and
Clustering, Advances in Neural Information Processing Systems, 14 (2001), https://doi.org/
10.7551/mitpress/1120.003.0080.

[3] J. A. Carrillo, Y.-P. Choi, and S. P. Perez, A Review on Attractive-Repulsive Hy-
drodynamics for Consensus in Collective Behavior, Springer International Publishing, 2017,
pp. 259–298, https://doi.org/10.1007/978-3-319-49996-3_7.

[4] M. A. Cox and T. F. Cox, Multidimensional Scaling, in Handbook of Data Visualization,
Springer, 2008, pp. 315–347, https://doi.org/10.1007/978-3-540-33037-0_14.

[5] P. Demartines and J. Hérault, Curvilinear Component Analysis: A Self-Organizing Neural
Network for Nonlinear Mapping of Data Sets, IEEE Transactions on Neural Networks, 8 (1997),
pp. 148–154, https://doi.org/10.1109/72.554199.

[6] B. Desgraupes, Clustering Indices, 2016. https://api.semanticscholar.org/CorpusID:

33243618.

[7] G. E. Hinton and S. Roweis, Stochastic Neighbor Embedding, in Advances in Neural In-
formation Processing Systems, vol. 15, MIT Press, 2002. https://proceedings.neurips.cc/
paper_files/paper/2002/file/6150ccc6069bea6b5716254057a194ef-Paper.pdf.

[8] R. A. Jacobs, Increased Rates of Convergence Through Learning Rate Adaptation, Neural
Networks, 1 (1988), pp. 295–307, https://doi.org/10.1016/0893-6080(88)90003-2.

[9] D. Kobak and P. Berens, The Art of Using t-SNE for Single-Cell Transcriptomics, Nature
Communications, 10 (2019), https://doi.org/10.1038/s41467-019-13056-x.

[10] A. Krizhevsky, Learning Multiple Layers of Features from Tiny Images, 2009. https://api.
semanticscholar.org/CorpusID:18268744.

19

https://doi.org/10.1038/324446a0
https://doi.org/10.7551/mitpress/1120.003.0080
https://doi.org/10.7551/mitpress/1120.003.0080
https://doi.org/10.1007/978-3-319-49996-3_7
https://doi.org/10.1007/978-3-540-33037-0_14
https://doi.org/10.1109/72.554199
https://api.semanticscholar.org/CorpusID:33243618
https://api.semanticscholar.org/CorpusID:33243618
https://proceedings.neurips.cc/paper_files/paper/2002/file/6150ccc6069bea6b5716254057a194ef-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2002/file/6150ccc6069bea6b5716254057a194ef-Paper.pdf
https://doi.org/10.1016/0893-6080(88)90003-2
https://doi.org/10.1038/s41467-019-13056-x
https://api.semanticscholar.org/CorpusID:18268744
https://api.semanticscholar.org/CorpusID:18268744

Sangwon Jung, Tristan Dagobert, Jean-Michel Morel, Gabriele Facciolo

[11] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-Based Learning Applied to
Document Recognition, Proceedings of the IEEE, 86 (1998), pp. 2278–2324, https://doi.org/
10.1109/5.726791.

[12] G. C. Linderman and S. Steinerberger, Clustering with t-SNE, Provably, SIAM Jour-
nal on Mathematics of Data Science, 1 (2019), pp. 313–332, https://doi.org/10.1137/

18M1216134.

[13] S. M. Omohundro, Five Balltree Construction Algorithms, 1989. https:

//steveomohundro.com/wp-content/uploads/2009/03/omohundro89_five_balltree_

construction_algorithms.pdf.

[14] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito,
M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chin-
tala, Pytorch: An Imperative Style, High-Performance Deep Learning Library, Advances in
Neural Information Processing Systems, 32 (2019), https://doi.org/10.48550/arXiv.1912.
01703.

[15] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, Scikit-Learn: Machine
Learning in Python, Journal of Machine Learning Research, 12 (2011), pp. 2825–2830.

[16] N. Pezzotti, B. P. Lelieveldt, L. Van Der Maaten, T. Höllt, E. Eisemann, and
A. Vilanova, Approximated and User Steerable t-SNE for Progressive Visual Analytics, IEEE
Transactions on Visualization and Computer Graphics, 23 (2016), pp. 1739–1752, https://
doi.org/10.1109/TVCG.2016.2570755.

[17] V. Rokhlin, A. Szlam, and M. Tygert, A Randomized Algorithm for Principal Component
Analysis, SIAM Journal on Matrix Analysis and Applications, 31 (2010), pp. 1100–1124, https:
//doi.org/10.1137/080736417.

[18] S. T. Roweis and L. K. Saul, Nonlinear Dimensionality Reduction by Locally Linear Em-
bedding, Science, 290 (2000), pp. 2323–2326, https://doi.org/10.1126/science.290.5500.
2323.

[19] H. Samet, Foundations of Multidimensional and Metric Data Structures (The Morgan Kauf-
mann Series in Computer Graphics and Geometric Modeling), Morgan Kaufmann Publishers
Inc., 2005. ISBN 0123694469.

[20] J. W. Sammon, A Nonlinear Mapping for Data Structure Analysis, IEEE Transactions on
Computers, 100 (1969), pp. 401–409, https://doi.org/10.1109/T-C.1969.222678.

[21] E. Schubert and M. Gertz, Intrinsic t-Stochastic Neighbor Embedding for Visualization and
Outlier Detection, in International Conference on Similarity Search and Applications, Springer,
2017, pp. 188–203, https://doi.org/10.1007/978-3-319-68474-1_13.

[22] J. B. Tenenbaum, V. d. Silva, and J. C. Langford, A Global Geometric Framework for
Nonlinear Dimensionality Reduction, Science, 290 (2000), pp. 2319–2323, https://doi.org/
10.1126/science.290.5500.2319.

20

https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1137/18M1216134
https://doi.org/10.1137/18M1216134
https://steveomohundro.com/wp-content/uploads/2009/03/omohundro89_five_balltree_construction_algorithms.pdf
https://steveomohundro.com/wp-content/uploads/2009/03/omohundro89_five_balltree_construction_algorithms.pdf
https://steveomohundro.com/wp-content/uploads/2009/03/omohundro89_five_balltree_construction_algorithms.pdf
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.1109/TVCG.2016.2570755
https://doi.org/10.1109/TVCG.2016.2570755
https://doi.org/10.1137/080736417
https://doi.org/10.1137/080736417
https://doi.org/10.1126/science.290.5500.2323
https://doi.org/10.1126/science.290.5500.2323
https://doi.org/10.1109/T-C.1969.222678
https://doi.org/10.1007/978-3-319-68474-1_13
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1126/science.290.5500.2319

A Review of t-SNE

[23] L. Van Der Maaten, Fast Optimization for t-SNE, in Neural Information Processing Systems
(NIPS) Workshop on Challenges in Data Visualization, vol. 100, Citeseer, 2010. https://

cseweb.ucsd.edu/~lvdmaaten/workshops/nips2010/papers/vandermaaten.pdf.

[24] , Accelerating t-SNE Using Tree-Based Algorithms, The Journal of Machine Learning Re-
search, 15 (2014), pp. 3221–3245. https://jmlr.org/papers/volume15/vandermaaten14a/

vandermaaten14a.pdf.

[25] L. Van der Maaten and G. Hinton, Visualizing Data Using t-SNE, Journal of Machine
Learning Research, 9 (2008). https://www.jmlr.org/papers/volume9/vandermaaten08a/

vandermaaten08a.pdf.

[26] M. Wattenberg, F. Viégas, and I. Johnson, How to Use t-SNE Effectively, Distill, 1
(2016), p. e2, https://doi.org/10.23915/distill.00002.

[27] P. N. Yianilos, Data Structures and Algorithms for Nearest Neighbor Search in General Metric
Spaces, in ACM-SIAM Symposium on Discrete Algorithms, vol. 66, SIAM, 1993, p. 311. https:
//dl.acm.org/doi/10.5555/313559.313789.

[28] H. Zou, T. Hastie, and R. Tibshirani, Sparse Principal Component Analysis, Journal of
Computational and Graphical Statistics, 15 (2006), pp. 265–286, https://doi.org/10.1198/
106186006X113430.

21

https://cseweb.ucsd.edu/~lvdmaaten/workshops/nips2010/papers/vandermaaten.pdf
https://cseweb.ucsd.edu/~lvdmaaten/workshops/nips2010/papers/vandermaaten.pdf
https://jmlr.org/papers/volume15/vandermaaten14a/vandermaaten14a.pdf
https://jmlr.org/papers/volume15/vandermaaten14a/vandermaaten14a.pdf
https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
https://doi.org/10.23915/distill.00002
https://dl.acm.org/doi/10.5555/313559.313789
https://dl.acm.org/doi/10.5555/313559.313789
https://doi.org/10.1198/106186006X113430
https://doi.org/10.1198/106186006X113430

	Introduction
	The Original t-SNE Algorithm
	Basis of the t-SNE
	High-dimensional Data Representation
	Model Perplexity
	Low-dimensional Data Representation
	Minimization of the Kullback-Leibler Divergence

	The Accelerated Tree-based t-SNE Algorithm
	Input Similarity Approximation Restriction to the Neighborhood
	The Barnes-Hut Approximation of the Gradient

	Experiments
	Data Sets
	Results
	MNIST
	CIFAR-10

	Conclusion

