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Abstract

The estimation of the lifetime of an industrial equipment or a patient is often based on censored
data, because the event of interest is observed only for a subsample of observations. The use
of the Random Forest algorithm applied to industrial data is relevant because the algorithm
presents robust performances in many applications. Coupled with survival approaches, it can
produce time trajectories for each subset of the feature space and thus differentiate observed
objects with respect to their lifetimes. Our work aims to generalize the existing tree-based
approach CART applied to left-truncated right-censored data to obtain a Random Forest algo-
rithm. We provide a simple API to use such algorithm as well as tools to validate a temporal
score against censored data.

Source Code

The reviewed source code and documentation for this algorithm are available from the web page
of this article1. Usage instructions are included in the README.md file of the archive.

Keywords: survival analysis; truncated and censored data; time-dependent ROC curve; Ran-
dom Forest

1 Introduction

In industrial or medical applications, the feared event T (death, failure, fault occurrence, rupture
or cracking) is not necessarily observed, and evaluating the time to event can be complex especially
when numerous non linear factors are involved. In such context, survival analysis can be used to
estimate the survival function S(t) = P(T > t) in the presence of censored data. In the literature,
the estimation of S is often carried out assuming proportional hazard or linearity as it is done in
many Cox or Accelerated Failure Time (AFT) models, and these assumption can be restrictive in
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many applications. The Random Forest algorithm [2] is known to perform well on high dimension,
noisy and non linear tabular data, but is also popular for its good performance on small or medium
datasets, which makes it a good candidate to tackle real life problems. Many algorithms have been
developed to adapt Random Forest [9] or boosting to survival problems (see [20] for a survey on
survival machine learning methods) and focus mainly on right-censored data. Yet, left truncation
is another common constraint in applications which occur especially when observations cannot be
diagnosed before a certain time L. In our experience, this is often the case because the data is not
immediately available or up-to-date in the information systems, and particularly for industrial asset
management, where some equipment predates digitization. This implies that observations are made
at a starting (random) point L and all events that come before are not in the sample. In this paper,
an extension of decision trees for Left-Truncated Right-Censored (LTRC) data developed in [7] is
made to obtain LTRC Forest. Our developments are similar to the recent approach presented in [21],
in which the authors propose several implementations of ensemble methods applied to LTRC data.
To facilitate the use of the algorithm, we have chosen to take inspiration of the Lifelines package [5],
which is itself compliant with the Scikit-Learn’s API [17]. Finally, we provide a simple method to
assess performance based on Receiver Operating Characteristic (ROC) analysis [10].

2 Survival Analysis

Notations. The purpose of the algorithm is to estimate T , the time to event that needs to be
estimated in the presence of LTRC data. Knowing the distribution of T , with f its density function
and F its cumulative distribution function, is equivalent to having the survival function S(t) =
P(T > t) = 1 − F (t), the hazard function λ(t) = f(t)/S(t) or the cumulative hazard function
Λ(t) =

∫ t
0
λ(τ)dτ = − logS(t). In the following, we can reason indifferently with one or the other of

these three functions. The learning data is represented by a random descriptor X in the measurable
space X .

Censoring and truncation. Let R,L, T, C be four positive random variables. T is right censored
by C if, instead of T , the couple (R, δ) is observed with R = min(T,C) and δ = I{T 6 C}. For
an observation (Ri, δi), δi = 1 when the complete duration is observed (the event occurred) while
when δi = 0 the observation is censored (not observed yet). Truncation works differently for it
concerns sampling itself and the duration T is truncated by a subset A of R+ if T is only observed
when T ∈ A. Alternatively, T is left-truncated by a positive random variable L if T > L. Putting
altogether, dealing with LTRC data requires observing the triplet (L, δ,R) as target variable.

Neslon-Aalen estimator. An important component of the algorithm is the estimation of the
survival function at each node of the tree, for a sample of observations. The Nelson-Aalen estimator
computes the cumulative number of events and is a non-parametric estimator of the cumulative
hazard function

Λ̂(t) =
∑
ti<t

di/ni, (1)

where di is the number of events at ti and ni the total number of individuals at risk at ti.

Likelihood function. Approaches in [7, 14] are based on proportional hazard assumption. They
aim to establish a link between the maximum log-likelihood and the deviance that will ultimately
provide material for splitting rules. In such context, assuming proportional hazard implies that
the cumulative hazard function can be written as Λ(t|X) = θ(X)Λ0(t) and the proportional hazard
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function as λ(t|X) = θ(X)λ0(t). For right-censored data problem, the log-likelihood can be expressed
as follows

L(θ) =
∏
i

P(T = Ri|θ)δiP(T > Ri|θ)1−δi =
∏
i

f(Ri|θ)δiS(Ri|θ)1−δi =
∏
i

λ(Ri|θ)δiS(Ri|θ) ,

where f(Ri|θ) stands for the probability of an observed event and S(Ri|θ) the probability of a
censored event at time Ri. Using the proportional hazard assumption, the likelihood becomes

L(θ) =
∏
i

(θλ0(Ri))
δiS(Ri|θ) =

∏
i

(θλ0(Ri))
δi exp(−θΛ0(Ri))

and the log-likelihood

logL(θ) =
∑
i

δi log(θλ0(Ri))− θΛ0(Ri) .

In such context, the parameter θ maximizing logL is
∑
δi/
∑

Λ0(Ri). Let the deviance be
D(θ) = 2 [logLsat − logL(θ)] with Lsat the log-likelihood of the saturated model, which is the model
with the maximum achievable likelihood by allowing one parameter θi to each observation namely
δiΛ0(Ri). The full log-likelihood deviance measures the adequacy of the model to the data. Define
di as the unit contribution of observation i to the deviance ratio, D(θ) =

∑
i di(θ). Thus one obtains

the following contribution i to full likelihood deviance ratio

di(θ) = 2

[
δi log

(
δi

Λ0(Ri)θ

)
− (δi − Λ0(Ri)θ)

]
.

The authors of [14] noted that this corresponds to the unit deviance ratio of the Poisson regression of
time exposure Λ0(Ri) with δi the count of observed event. Building on that statement, the authors
of [7] provide an extension of the method by interpreting Λ0(Ri) − Λ0(Li) as a “time exposure” of
observation i, they obtain

di(θ) = 2

[
δi log

(
δi

(Λ0(Ri)− Λ0(Li))θ

)
− (δi − (Λ0(Ri)− Λ0(Li))θ)

]
.

In the previous formula, Λ0 is not known in practice but can be obtained in a recursive fashion using
the Breslow estimator as described in [14] or estimated with Neslon-Aalen formula based on all the
data available [7]. This yields,

d̂i(θ) = 2

[
δi log

(
δi

(Λ̂0(Ri)− Λ̂0(Li))θ̂

)
−
(
δi − (Λ̂0(Ri)− Λ̂0(Li))θ̂

)]

where θ̂ =
∑
δi/
∑

(Λ̂0(Ri) − Λ̂0(Li)) is the parameter that maximizes the log-likelihood. For any
subspace C of the feature space X , the deviance estimated using observations {Xi ∈ C} is noted DC.

3 LTRC-Forest

LTRCART. The algorithm developed by [14] and adapted in [7] mainly derived from CART
algorithm [3]. The original idea is based on recursive partitioning of the feature space X : each
split cuts the features space along the ith feature at threshold c. The choice of c and i is originally
performed using a criterion such as entropy or Gini index, the global idea being to find the split that
maximizes a measure of improvement. This improvement is typically assessed using the variation of
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the measure between a node and its children. A natural adaptation is to use the deviation as splitting
criterion, and find among all possible splits (c, i) the couple maximizing the deviance reduction

Dparent − [Dleft child +Dright child] . (2)

This splitting criterion is chosen by [14] for its analogy with the mean residual sum of squares in the
original CART algorithm. In addition to the splitting strategy, the algorithm LTRCART [7] requires a
stopping rule that terminates recursive partitioning prematurely to prevent overfitting, and a terminal
node estimation. Details on the stopping rule can be found in [7, 14]. Note that because Forest
algorithms aim to average several uncorrelated high-variance estimators, the question of pruning the
tree will be less decisive regarding overfitting problems. Nonetheless, in the implementation details,
parameters controlling the depth of trees are provided. For the estimation of the terminal node
in each leaf of the tree, the Nelson-Aalen estimator (Equation (1)) is computed on the basis of all
observations (Li, δi, Ri) such that (Xi) are contained in the leaf. On the contrary to [9] where a leaf
node must contain at least one non censored observation, LTRCART algorithm replaces zero observed
events at leaf nodes by 0.5, yielding for this specific case the estimate θ̂ = 1/

∑
2(Λ̂0(Ri)− Λ̂0(Li)).

Survival Forest. The extension of the approach [7] to Survival Forest for LTRC data is based on:

• Bagging (bootstrap aggregating) predictors developed by [1], whose principle is to average trained
estimators on bootstrap samples of the initial dataset. This step aims to reduce the variance
of the estimator. In this context, the trees are not pruned and can be grown deep.

• Random Forest [2] offers an improvement over bagging predictors by constructing uncorrelated
trees constraining each tree to use onlym predictors. Typically, m = d/3 is chosen for regression
task and m =

√
d for classification.

The final step for Algorithm 1 is the aggregation rule that performs a combination of all the
predictors. Let ŝj be the survival estimate derived from Neslon-Aalen formula for one LTRC-tree.

Then ŝj(x, t) =
∑

l∈Lj I{x ∈ l} exp(−Λ̂j
l (t)), where Lj is a partition of the features space X describing

the leaves of the jth LTRC tree and Λ̂j
l (t) is the Nelson-Aalen estimator using training data in the jth

bootstrap sample that falls in leave l. A natural aggregation rule is the averaged estimator

ŝ(x, t) =
1

ntree

ntree∑
j=1

ŝj(x, t).

Algorithm 1: LTRC-Forest

Input tabular data: observations (Li, δi, Ri)i6n covariates Xi = (X1
i , · · · , Xd

i )
Param: ntree, m, α

1 for j from 1 to ntree do
2 Bj sample of length bαnc from {1, · · · , n} with replacement (sample observations);
3 Fj sample of length m from {1, · · · , d} (sample features);

4 X
(j)
i := (Xk

i )i∈Bj ,k∈Fj
and Y

(j)
i := (Li, δi, Ri)i∈Bj

;

5 ŝj(t, x) = LTRCART(X
(j)
i , Y

(j)
i )

Output function: 1/ntree

∑
j ŝj(t, x)
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Implementation details. The algorithm was implemented in Python ; the objective is to be
compliant with state-of-the-art API of Scikit-Learn [17] and Lifelines package [5], the later providing
various tools for survival analysis. The implementation uses the Rpart library2 based on the R
language. The Rpart implements the CART algorithm and proceeds to the recursive segmentation
of the feature space using the deviance criterion. Regarding regularization, parameters are needed
to control the growth of each tree. Indeed, compared to the common regression task where having a
single element per leaf can make sense, the estimation of the cumulated hazard function Λ requires
more information: the estimation is degenerated when only one point is provided in Equation (1).
The second reason for regularizing is the complexity: the Random Forest algorithm assumes that a
large enough number of trees3 is used to take into account the fact that trees tend to overfit data.
The output here is more complex because it is a function of time; thus the prediction step is a lot
more memory consuming when a large number of trees is used. Let Mŝ be the output matrix, the
representation of ŝ(x, t) where each row corresponds to the estimation of the hazard function for
the observation i, and columns to the time sampling. If N is the number of training observation
and {Ri}i6N the observed time to event, Mŝ has at most N ×#{Ri}i6N elements, in the worst case
N2 when all Ri are distinct.

(i) Regularization and pruning: three parameters are given for this aspect; they will prevent
trees to grow deep and have a single value in leaf nodes. These parameters only intervene in
the LTRCART algorithm:

1. min samples leaf specifies the minimum number of sample in terminal node.

2. min impurity decrease specifies the minimum impurity decrease, in the sense of Equa-
tion (2), for a split to be attempted.

3. max depthprovides the maximum depth of trees.

(ii) Bootstrap and feature selection: three parameters are provided; they control the way the
ensemble of estimators is built.

1. max samples controls the percentage α of the dataset be to re-sampled

2. max features is the maximum number m 6 d of features to use when building trees
independently

3. n estimators the number of trees ntree to be used in training.

4 Validation Methods and Datasets

The package provides material to validate the results using the review [10]. This paper presents
extension of ROC analysis to temporal score validation. In this context, let (Xi, Ti) and (Xj, Tj)
be a pair of two independent random variables of the same law, and s : X × R → R be any time
dependent scoring function, then the AUC(t) of the function s can be formulated as

AUC(t) = P(S(Xi, t) > S(Xj, t)|Ti 6 t, Tj > t).

A simple way to estimate AUC is

2T. Therneau, B. Atkinson, B. Ripley. Package rpart (accessed on April 20, 2016), https://cran.r-project.
org/web/packages/rpart/

3Scikit-Learn’s implementation uses 100 trees as default value
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ÂUC(t) =

∑
i,j δiI{Ti 6 t, Tj > t}I{S(Xi, t) > S(Xj, t)}∑

i δiI{Ti 6 t}
∑

j I{Tj > t}
.

The work [10] emphasizes the redundancy of information contained in the previous formula and
provides many alternatives. This formulation of the AUC is qualified as cumulative sensitivity and
dynamic specificity. This concept introduced by [8] is relevant from a clinical perspective, and is used
in many applications. This formula is used here for its simplicity and the fact that it does not depend
on survival estimators, as opposed to the 10 alternatives presented in [10]. A simple illustration of
the estimator of the AUC is provided in Figure 2 for one of the datasets presented below, as well as
in the demo.4 This formulation of AUC is an intuitive extension of the common definition where the
scoring function is st(x) : x 7→ S(x, t) and the outcome is the binary random variable Y = I{T 6 t}.

Datasets. In order to test the algorithm, several toy datasets are provided extracted from the
python library Lifelines [5] and R library survival5. An extensive benchmark of performance is
not intended here: the aim is to provide various datasets in size and properties to test where the
algorithm is expected to perform. Note that if left truncation occurs often in practice, data are not
often provided with such information. However, in [12] authors noted that many medical applications
treat the age of patient as features instead of entry point in the study. Indeed the only fact that
the age is known at the beginning of the medical follow-up, implies that observation of death is left-
truncated by age. The first four datasets in Table 1 follow this case. Two other datasets related to
societal matters are proposed as illustrative example of the variety of problems that can be addressed.
For these two datasets, no truncation is provided and L is set to 0. Finally, a simulated dataset is
introduced in the following paragraph, to have high dimensional data (many features) and as many
samples as wanted.

Synthetic data. Following the main ideas of [16] to generate synthetic LTRC data, we start by
sampling πk ∼ U(0.2, 0.8) and µk = Φ−1(πk), where Φ is the cumulative density function of the
normal distribution. Let M be a d × d matrix filled with elements sampled from N(0, 1), then the
matrix S = MTM is positive semi-definite. A correlation matrix Σ can be deduced by scaling S,
Σ = S/DTD with D a vector containing the diagonal element of S. The distribution of X is a
multidimensional Gaussian distribution X ∼ N(µ,Σ). To simulate target data, namely the triplet
(L, T,R), Weibull distributions W (α, s) are used, where α and s denote respectively the scale and
shape parameters. The α parameter is fixed for L, T and R. For each observation Xi, the shape
parameter is
• si = eα+g(Xi).β for the time-to-event variable Ti ∼ W (α, si),
• s̃ the median of si for right-censoring time Ri ∼ W (α, s̃),
• s̃p where p < 1 the left-truncation time Li ∼ W (α, s̃p).

The idea of this setting is to make T dependent of each observation via the function g, while R and
T remain independent from X. Here we use g : xi ∈ Rd 7→ (j/d×x2i,j)j∈[1,d] where xi,j denotes the jth

coordinates of xi. This intends to test the ability of the algorithm to carry out feature selection by
introducing features with lesser impact on time-to-event. Finally we update Lj := min(Rj − ε, Lj)
with ε > 0 to account for the fact that left truncation comes first.

Real case study: rolling contact fatigue data. Finally, results from the dataset presented
in the study [13] are provided. The data collected by the French railway operator tackles rolling

4https://doi.org/10.5201/ipol.2024.466
5T. M. Therneau. A Package for Survival Analysis in R. R package version 3.3-1, 2022, https://CRAN.R-project.

org/package=survival
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contact fatigue issues due to the repeated passage of trains on the rail. Input data X stands for the
description of the rail – mainly geometric and operational data – and T is the date of the first rail
defect due to fatigue on the rail segment. After this date, the crack is followed until the ensuing
propagation requires an eventual removal of the defective segment. Preliminary data analysis shows
that very few defects appeared before a certain time that advocates the use of truncated data.

Dataset name Description Shape Source Ref.
Larynx cancer Four stages of cancer are given as predictors for the age of

death.
89× 4 Lifelines [11]

Lung cancer Patients with advanced lung cancer (North Central Cancer
Treatment Group).

228× 8 Lifelines [15]

Breast cancer German Breast Cancer Study Group (1984) the objective
is to test performance of various treatment on remission.

686× 3 Lifelines [19]

FLC chain Study the impact of serum free light chain (FLC) as a pos-
sible marker for immune disregulation.

7874× 5 Survival [6]

Democracy - Dictator-
ship

Classification of political regimes (democracy or dictator-
ship). Knowing the features of each political regime, the
time of its ending is provided (if not censored).

1808× 3 Lifelines [4]

Convicts The dataset describes convicts released from Maryland
state prisons in the 1970s. The duration of interest is the
duration until their re-arrest.

432× 7 Lifelines [18]

Synthetic data X is sampled using multidimensional Gaussian distribution,
T, L,R using Weibull distributions

400× 30 – [16]

Table 1: Dataset available in the demo and used to benchmark the algorithm.

5 Experimental Results

Qualitative results. Figure 1 presents results in terms of AUC for all datasets. We compare
four algorithms that can tackle LTRC data, namely LTRC-Forest (Algorithm 1), LTRCART [7],
a semi-parametric Cox model and AFT model from Lifelines package [5]. The experiments are
repeated 20 times on benchmark data, and results are averaged over all experiments. We note that
LTRC-Forest presents a certain interest compared to the LTRCART algorithm whatever the dataset
considered. As expected, it seems that tree-based algorithms perform better on larger datasets like
the Democracy & Dictatorship data or synthetic data. For smaller datasets, the performance of trees
seems to undermine other methods. This can be due to the piecewise constant approximation that
can be less effective in these particular cases. As for the application to rolling contact fatigue, results
obtained are quite convincing compared to other studies of the kind (see [13] for discussion).

Figure 1: AUC averaged over time for different toy datasets.
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Figure 2: Survival curves and temporal AUC. On the top are represented the survival curves estimated using LTRC Forest
algorithm for a testing set of data. The survival functions turn to red as soon as the T event is observed. The temporal
AUC of the ROC curve on the bottom represents the AUC at time t.

Figure 3: Temporal ROC curve. These curves are estimated on the basis of the survival function represented in Figure 2.
Each curve corresponds to a time stamp; the estimated survival curve at time t can be considered as a scoring function for
which all possible thresholds for the decision rule are represented here.
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Temporal ROC analysis. In the demo, the results of a model are evaluated through several
methods on test data, the latter being randomly sampled from the global dataset. We choose to
use 60% of the data for training and 40% for testing; no cross validation is operated. Visually, the
estimated survival functions for each Xi can be evaluated as shown in Figure 2. On this figure,
the red curves represent the time at which the event T is observed while the blue curves are the
individuals censored at time t. Thus, the lower the red curves are, the better the model. The AUC
gives an objective measure of the model performance at time t, i.e. for all events Ti prior to t. At
each time step, an AUC point is associated with a ROC curve in Figure 3, which allows to plot the
performance according to each classification threshold. It is important to note that by this way of
representing the performance of the model, a sample intervenes several times in the evaluation of the
performance, which constitutes a limitation as noted by the authors of [10]. The results in Figures 2
and 1 represent an analysis of the outputs as presented in the demo for the dataset “Democracy -
Dictatorship”.

6 Conclusion

In this article, we provide a simple implementation that makes approaches proposed by [7, 14] more
robust by averaging the response of several independent LTRC trees. Our goal is to provide a ready-
to-use API inspired by Scikit-Learn implementations. The approach presented in this article, mostly
used in the medical field, can be useful for other application domains. For example, these methods
could be used to plan maintenance operations for the management of industrial assets. This requires
the use of machine learning methods when the observed volumes are large and the interactions are
complex.
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