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Abstract

Neural rendering methods for learning the appearance and geometry of 3D scenes have gained
tremendous popularity since 2020. In this field, NeRF or Neural Radiance Fields is the best-
known methodology. Given a collection of multi-view images and their camera models, NeRF
optimizes a neural network to learn the color and scene geometry that render the input im-
ages according to classical volumetric rendering techniques. NeRF operates in a self-supervised
manner and provides a remarkable level of detail, but the time-consuming optimization process
remains a major limitation. This paper reviews the Voxel-Accelerated NeRF (VaxNeRF), a
simple acceleration strategy for NeRF proposed in 2021. VaxNeRF reduces the number of point
queries required in training and inference time by considering only the region of space corre-
sponding to the visual hull, i.e., the maximum volume compatible with the object silhouettes
given by the multi-view collection. VaxNeRF requires only coarse foreground-background seg-
mentation masks and minimal changes to the original NeRF code to improve speed by a factor
of 2-8, without any performance degradation.

Source Code

The source code and documentation for this algorithm are available from the web page of this
article1. Usage instructions are included in the README file of the archive. The authors’ original
method implementation is available here2.
This is an MLBriefs article, the source code has not been reviewed!
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1 Introduction

The modeling of 3D scenes from image collections is a long standing problem in computer vision.
Photogrammetric 3D models obtained from classic structure from motion or dense matching tools
(e.g., COLMAP [39], Bundler [40], OpenMVG [31], PMVS [10]) are usually represented as colored
point clouds or textured meshes. These well-known formats are easy to manipulate, but provide a
discretized 3D representation limited to a given resolution.

Neural rendering is a new and rapidly evolving field in 3D modeling from multiple views that
combines machine learning methods with physical knowledge from computer graphics [46]. In 2020,
Mildenhall et al. [30] introduced the neural rendering approach known as NeRF (or Neural Radiance
Field) to simultaneously address novel view synthesis and 3D reconstruction in controlled multi-
view acquisitions. This led to a growing number of variants for all kinds of applications. For
instance, NeRF has been extended for in-the-wild photo collections [26, 4], high dynamic range
rendering [29], controllable relighting [41, 25], data compression [1, 43], super-resolution [48], camera
calibration [22, 50], street view navigation [44, 38], digital elevation modeling [7, 24, 25], animatable
avatars [11], style transfer [5, 16] or text-to-3D diffusion models [34].

NeRF achieves a finer representation of 3D objects with respect to classical methods by learning
them as a continuous function or field F . The radiance field F is parameterized using a neural
network of fully-connected layers, also known as a multi-layer perceptron (MLP). F is learned in
a self-supervised and multi-view manner, by training the MLP to produce realistic renderings from
different viewpoints. In practice, this is done by casting rays of 3D points from the available images
and using them as input to the MLP. The MLP outputs are then processed using differentiable
volume rendering techniques to render the color of each ray. At each training iteration, the network
parameters are optimized so that the rendered colors according to F are consistent with the actual
colors observed in the images.

One of the main limitations of NeRF is the slow training and inference speed of its original and
simplest form [30]. In 2021, Kondo et al. [18] proposed the Voxel-Accelerated NeRF (VaxNeRF)
to address this problem in multi-view image collections of 3D objects. This variant is striking
for its simplicity and efficiency: it only requires coarse foreground-background segmentation masks
and minimal changes to the original NeRF code to improve speed by a factor of 2-8, without any
performance degradation. Foreground-background masks delimit the silhouette of the object and are
used to construct a visual hull, a classic concept of multi-view 3D reconstruction, which restricts the
search space and thus the number of entry points. Figure 1 illustrates this idea. Nowadays image
segmentation algorithms enable fast and cheap automatic foreground-background annotation, making
VaxNeRF potentially interesting for applications that work with 3D objects of complex shapes, such
as toys, industrial components or video game items.

This paper reviews the VaxNeRF methodology. First, Section 2 reviews the fundamentals of
neural radiance fields and the state of the art of NeRF accelerations. Section 3 delves into the
theoretical and implementation details of VaxNeRF. Section 4 presents an experimental evaluation
of NeRF and VaxNeRF. Conclusions and ideas for future work are drawn in Section 5.

2 Related Work

The advantages of NeRF for multi-view 3D modeling are manifold. NeRF is capable of capturing
fine small-scale details using a simple and fully multi-view logic, which is founded on the physical
model of light transport described in Section 2.1. The NeRF solution is unique and optimal for each
specific scene and does not require any supervision-oriented labeling.

Despite its appealing advantages, NeRF also has a number of weaknesses. It usually requires
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(a) Input (b) Visual hull V construction (c) Output

Figure 1: Illustration of the VaxNeRF methodology. Given a collection of input views of an object, as in (a), the visual
hull V is constructed using the object silhouette masks. V corresponds to the black area of the 3D space in (b) and is
used to reduce the volume that is visited to learn a NeRF representation of the scene. NeRF models the 3D geometry and
appearance of the scene, as in (c). In contrast to VaxNeRF, the original NeRF approach aims to directly derive (c) from
(a).

at least a few tens of input views and cannot generalize across different scenes [52, 3]. The input
images must be geometrically calibrated [22, 28] and radiometrically consistent [26]. The illumination
conditions must also be invariant between different views [41, 7], as well as the scene geometry [35,
33]. On top of that, the original NeRF [30] optimization time usually takes several hours to reach
convergence, potentially days. VaxNeRF primarily addresses the latter limitation. Other concurrent
work that also aims to accelerate NeRF is reviewed in Section 2.2.

2.1 NeRF in a Nutshell

A NeRF [30] is an MLP that learns a continuous function F that models the geometry and appearance
of a 3D scene. Given a 3D point x ∈ R3 of the scene and a viewing direction d ∈ R2, F predicts the
emitted RGB color c ∈ [0, 1]3 and a scalar volume density σ ∈ [0,∞), i.e.,

F : (x,d) 7→ (c, σ). (1)

The volume density σ defines the geometry of the scene and depends only on the spatial coordinates
x, while the color c also depends on the viewing direction d to recreate non-Lambertian reflectance.

The MLP is trained to render the pixel colors observed in a set of input images. For this purpose,
each 2D pixel location is back-projected into 3D space by casting the corresponding camera ray r.
The network is optimized by minimizing the mean squared error (MSE) between the rendered color
predicted for each ray r, denoted by c(r), and the real color of the pixel, denoted by cGT(r):∑

r∈R

∥c(r)− cGT(r)∥22, (2)

where R is the set of rays selected at each optimization step.
Each ray r originates at the camera center o and intersects the associated pixel following a

direction vector d. In practice, r is discretized into N 3D points {xi}Ni=1, where xi = o + tid and ti
is a scalar within the depth limits of the scene. The rendered color c(r) is obtained using a simple
differentiable volume rendering operation [27], i.e.,

c(r) =
N∑
i=1

Tiαici. (3)

In (3), the physical contribution of the color ci predicted by F at the i-th point of r is consistent with
the geometry of the scene thanks to the transmittance and opacity coefficients, Ti and αi respectively,
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which are defined by the volume density σj, j = 1, . . . , i.

αi = 1− exp(−σi(ti+1 − ti)), Ti =
i−1∏
j=1

(1− αj) . (4)

According to (4), higher σi implies higher opacity αi, meaning that xi is a solid and non-transparent
point. Occlusions are handled by the transmittance Ti, that only lets xi contribute to the rendered
color (3) if it is not preceded by previous non-transparent points along the ray r.

Similarly to (3), the observed depth d(r) in the direction of a ray r can be rendered as

d(r) =
N∑
i=1

Tiαiti. (5)

2.2 NeRF Accelerations

The acceleration of NeRF is a hot research topic. The first acceleration methods proposed in this
field (e.g., FastNeRF [12], SNeRG [14], NSVF [23] or PlenOctrees [51]) pre-computed NeRF-like MLP
models without major changes or gains in the time-consuming training strategy, but showed that it
was possible to deploy the result in different data structures to support real-time inference. E.g.,
using a sparse voxel octree structure, the rendering of novel views can be accelerated by skipping
voxels containing no relevant scene content [23, 51].

To reduce training time, other methods have explored subdividing the scene into multiple smaller
MLPs. KiloNeRF [37] and Recursive-NeRF [49] introduce regular uniform and hierarchical subdi-
visions, respectively, and reduce training time by a few hours. Similarly, DeRF [36] subdivides the
scene using a non-regular Voronoi learnable decomposition and assigns an independent MLP to each
region of the space. EfficientNeRF [15] does not use multiple MLPs, but incorporates a regular grid
of voxels that is updated during training to progressively reduce the number of input points in areas
with low volume density σ.

The latest works for accelerating NeRF propose to reduce the size of the MLP or even discard it
in favor of voxel grids that cache complex scene information (not only σ) and can be interpolated for
a continuous representation. This is the case of DVGO [42] or Plenoxels [8], which optimize vectors
of neural features or spherical harmonics, respectively, associated with each voxel. These methods
can achieve a visual quality similar to that of a conventional NeRF while reducing the training time
to the order of minutes, at the cost of higher memory requirements. Instant-NGP [32] follows a
similar philosophy but a multi-resolution hash table of trainable feature vectors is used instead of a
voxel grid, for efficient encoding and high compactness. TenorRF [2] is one of the latest works in the
literature and explores tensor decomposition techniques to retain the best of both worlds, allowing
fast processing and strong compression.

In addition to these new methodologies, the emergence of improved implementations and libraries
that provide greater efficiency for neural rendering is also making a critical impact on the acceleration
of NeRF (e.g., JaxNeRF [6], NerfAcc [21], Nerfstudio [45]).

3 VaxNeRF Methodology

One of the main reasons that slows down the NeRF optimization process is the need to sample
points over the entire space containing the 3D scene. The original NeRF methodology addresses this
problem using two different models, one coarse-scale MLP and one fine-scale MLP. For each input
ray, Ncoarse uniformly distributed points are initially sampled and processed by the coarse MLP.
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The output of the coarse MLP is then used to sample Nfine points per ray using inverse transform
sampling based on the distribution of weights {wi}i=1,...,N of the Ncoarse samples. The weight of the
i-th point of a ray is defined as wi = Tiαi according to (3).

VaxNeRF [18] proposes to improve this sampling strategy by evaluating only points inside the
visual hull, denoted by V . The color rendering operation (3) is modified as

c(r) =
N∑

i :xi∈V

Tiαici. (6)

where xi is the i-th point of a ray r.
The computation of the visual hull is a classic technique of multi-view 3D reconstruction that

requires foreground-background segmentation masks and the camera models associated with the
input views [20]. The visual hull is obtained from the intersection of the set of foreground silhouettes
back-projected into the 3D space [9], as illustrated in Figure 2. The corresponding pseudocode is
given in Algorithm 1. The interest of the visual hull is that it can be seen as the least compromised
3D reconstruction of an object (in the foreground) observed by multiple cameras: it extracts a volume
containing 100% of the object and can be used as a starting point for further refinement based on
shape or color assumptions [19].

Visual hull

Camera frustum 
intersections

Initial volume

Silhouette
back-projection

foreground

background

Figure 2: The visual hull is obtained from the intersection of the set of foreground silhouettes back-projected into the 3D
space. Toy example using 3 input cameras, reproduced from [47].

Advantages of VaxNeRF. The authors of VaxNeRF list the following advantages with respect
to the original NeRF approach:

• Integration into NeRF implementations is simple and requires minimal code modifications.

• Training is 2-8x faster with respect to the original NeRF.

• There is no loss of quality in the resulting scene representation.

• Only one MLP is needed to match or surpass the performance achieved by the original NeRF
with two different MLPs dedicated to the coarse and fine stages.

221



Roger Maŕı

Implementation details. VaxNeRF uses a regular grid of voxels to represent the visual hull V .
Specifically, a grid of D × D × D voxels is built between the scene boundaries, using D = 400 by
default. Algorithm 1 details the visual hull construction step, which is extremely fast and uses two
auxiliary grids: G1 to handle the back-projection of foreground silhouettes and G2 to delimit the
camera frustum intersections.

In the open-source implementation [17], the authors of VaxNeRF apply a moderate dilation to the
foreground-background segmentation mask Mi of each view Ii to ensure that no part of the object
is outside the silhouette boundary. It is also possible to directly apply the dilation to the voxel grid
of the visual hull, as it can be seen as a 3D binary mask.

Lastly, VaxNeRF uses a single MLP with uniform point sampling along the input rays. It is
suggested to use N = 600 or N = 800 point samples to discretize each ray. Although this number
may seem large, it should be noted that most of these points fall outside the visual hull in practice.
The rest of the method is the same as the original NeRF: the same MLP architecture, loss function
and training parameters are adopted with a batch size of 1024 rays.

Algorithm 1: Visual hull construction

input : N input views {Ii}i=1,...,N with their camera models and foreground-background masks.

output : voxel grid representation of the visual hull V.
Build a grid of voxels G1 with size D ×D ×D. The initial value of each voxel is 0.

Build a second grid of voxels G2 with size D ×D ×D. The initial value of each voxel is 0.

for each input view Ii do
Load the camera model Pi and the foreground-background mask Mi associated with Ii.

Update G1 as follows:

Use Pi to cast a set of rays R(Mi) from the foreground pixels in Mi.

Add 1 to all voxels of G1 intersected by R(Mi). // See Comment 1

Update G2 as follows:

Use Pi to cast a set of rays R(Ii) from all pixels in Ii.

Add 1 to all voxels of G2 intersected by R(Ii).

The visual hull V corresponds to all voxel positions where G1 ≥ G2 and G1 > 0.

Comment 1: The set of voxels intersected by a set of rays R is obtained by discretizing R into
D points per ray within the depth limits and marking each voxel containing at least one of the points.

4 Experiments

The authors of VaxNeRF evaluate their method using the Synthetic-NeRF [30] and Synthetic-
NSVF [23] datasets. Their results are compared with the original NeRF [30] and the concurrent
acceleration techniques NSVF [23] and PlenOctrees [51] mentioned in Section 2.2. Quantitative re-
sults indicate that VaxNeRF consistently achieves the highest mean PSNR for the rendered views.
It also offers the fastest training time among the considered variants.

This section reproduces from scratch some of the experiments proposed in VaxNeRF, discusses
the results, and details step by step how to perform novel view synthesis of a learned scene from any
input viewpoint. Each input viewpoint is parameterized using a 3-valued vector v with the azimuth
θ and elevation ϕ angles and a radial distance r to the scene. The resulting vector v = (θ, ϕ, r)
indicates the camera position, in spherical coordinates, with respect to the target object located at
the origin o = (0, 0, 0).
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4.1 Data Description and Results

Each scene in the Synthetic-NeRF and Synthetic-NSVF contains 100 RGB views of 800×800 pixels,
offering a 360 degrees coverage of a target object. Synthetic-NSVF objects have more complex ge-
ometry and lighting effects [23]. Foreground-background segmentation masks are obtained instantly,
either because the alpha channel is available or because the background is homogeneous (white).

We used the JAX implementation of VaxNeRF [17] to train some scenes from scratch for 512000
steps. We chose the lego and ship scenes from Synthetic-NeRF, and palace and steamtrain from
Synthetic-NSVF [23]. For comparison, the original JAX implementation of NeRF was also trained
from scratch [6]. As shown in Figure 3, VaxNeRF trains 2-8x faster and achieves small improvements
in terms of PSNR, confirming the authors’ claims. The speed gain factor depends on the size of the
visual hull with respect to the total volume of the scene (e.g., 4 or less for larger objects such as
palace or ship, in contrast to almost 8 for finer objects such as steamtrain). Only in the steamtrain
scene VaxNeRF appears to show slightly lower PSNR with respect to NeRF after 512000 training
steps, but convergence had not yet been reached. For a qualitative inspection of the results, Figure 4
shows the same rendered view after 2000 and 512000 training steps for both VaxNeRF and NeRF.
Note that the construction of the visual hull in VaxNeRF (Algorithm 1) takes around 10 seconds or
less for this kind of input photo collections. However, storing the visual hull in a 400 × 400 × 400
voxel grid requires ∼ 70 MB, while a basic NeRF MLP requires ∼ 7 MB.

VaxNeRF

NeRF

PSNR PSNR PSNR PSNR

Figure 3: Upper row: PSNR evolution of VaxNeRF and NeRF for the first 512000 training steps, where the x-axis represents
the number of training hours (on a 12 GB GPU). The sampling configuration was N = 600 points per ray for VaxNeRF
and Ncoarse = 64, Nfine = 128 for NeRF, as in [30]. The rest of parameters were set to the default values. Bottom row:
colored visualization of the visual hull employed in VaxNeRF. Left to right: lego, ship, palace, steamtrain.

4.2 Breaking Down Ray Sampling for Novel View Synthesis

The online demo3 associated with this article can be used to run VaxNeRF or NeRF to render new
views from any viewpoint, as shown in Figure 5. This section details how to render novel views,
which were not seen at training time, using a pre-trained NeRF variant. To do this, it is necessary
to build the pinhole camera model associated with the novel view.

3https://doi.org/10.5201/ipol.2024.553
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NeRF 2k (∼90 s) VaxNeRF 2k (∼20 s) NeRF 512k (∼16 h) VaxNeRF 512k (∼2-6 h)

Figure 4: Examples of the same view rendered at different training steps. VaxNeRF requires significantly less time to obtain
similar or better results than NeRF. In these examples the input viewpoint is defined by an azimuth of 30 degrees, an
elevation of 30 degrees and a radial distance of 1.
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(θ, ϕ, r) = (30, 30, 1) (θ, ϕ, r) = (10, 30, 1) (θ, ϕ, r) = (30, 10, 1) (θ, ϕ, r) = (30, 30, 1.5)

Figure 5: Novel view synthesis with VaxNeRF using different azimuth θ and elevation ϕ angles, in degrees, and radial
distance r to the scene. See Section 4.2 for a detailed explanation of the method.

The first step is defining the 4 × 4 matrix of external parameters, denoted by Mpose, that char-
acterizes the position and orientation of the camera in the 3D space. Mpose is obtained from 3-input
values: θ, ϕ, r. The azimuth angle θ and elevation angle ϕ define the camera orientation, while the
radius r indicates the distance to the observed scene

Mpose = RθRϕTr =


cos θ 0 − sin θ 0
0 1 0 0

sin θ 0 cos θ 0
0 0 0 1



1 0 0 0
0 cosϕ sinϕ 0
0 − sinϕ cosϕ 0
0 0 0 1



1 0 0 0
0 1 0 0
0 0 1 r
0 0 0 1

 , (7)

where Rθ defines a rotation around the y-axis according to the azimuth angle θ, Rϕ defines a rotation
around the x-axis according to the elevation angle ϕ, and Tr is a translation given by the radius r.

The second step is defining the 3× 3 matrix of internal parameters, denoted by K, that charac-
terizes the internal configuration of the camera

K =

f 0 w/2
0 f h/2
0 0 1

 , (8)

where w and h are the width and height of the novel view and f is the focal length. For simplicity,
we assume that f is the same for both axis and the principal point is at the center of the image
(w/2, h/2). Based on K, the pinhole camera model states that a 2D pixel x = (x, y)⊤ of the image
plane corresponds to a 3D point Xcam = (X, Y, Z)⊤ such that

x = fX/Z + w/2, y = fY/Z + h/2, (9)

as illustrated in Figure 6.
To render the view corresponding to the pinhole camera resulting from Mpose (7) and K (8),

NeRF needs to cast the ray r = o+ td that originates at the center of projection of the camera and
intersects each pixel. Solving for X/Z and Y/Z in (9) yields the direction vector of the ray r,

dcam = ( (x− w/2)/f, (y − h/2)/f, −1)⊤ . (10)

The subscript cam of dcam denotes that vector (10) works with 3D point coordinates expressed
in the local camera coordinate frame, where the center of projection of the pinhole camera is at the
origin [13]. The direction vector d can be expressed in the global world coordinate frame using the
matrix of external parameters Mpose,

d = Mpose3×3dcam, (11)
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Figure 6: Pinhole camera geometry, reproduced from [13]. C is the camera center of projection, f is the focal length and
p is the principal point. X is a 3D point that projects to a pixel x in the image plane.

where Mpose3×3 denotes the upper-left 3× 3 subset of Mpose.

The origin o of the ray r is the center of projection of the camera expressed in the world coordinate
frame, which corresponds to the first 3 values of the last column of Mpose.

In practice, for simplicity, the online demo does not use the absolute radial distance r, but treats
r as a relative factor that multiplies the average radial distance of the input images of each scene.

5 Conclusion

This paper reviewed the VaxNeRF [18] method for accelerating the optimization of neural radiance
fields (NeRFs), which are one of the most popular state-of-the-art methods for modeling the appear-
ance and geometry of 3D scenes from multi-view image collections. VaxNeRF reduces the number of
input points required by a conventional NeRF by considering only the region of the space correspond-
ing to the visual hull, i.e., the maximum volume compatible with the object silhouettes observed in
the input views.

This review reproduced from scratch some of the experiments proposed in VaxNeRF and con-
firmed the advantages listed by the original authors. Most notably, VaxNeRF reduces the optimiza-
tion time by a factor of 2-8 (depending on the size of the visual hull) without loss of quality. However,
the method is also subject to limitations. VaxNeRF can be extremely useful in large collections of
synthetic 360-degree photos, but the benefits for real forward-facing scenes can be expected to be
more modest. This will depend on the number of available views and the quality of the segmentation
masks, which are key elements to obtain a well-fitted visual hull. Another non-negligible weakness is
that VaxNeRF requires additional memory cost to store the voxel grid that encodes the visual hull.

We can conclude with a remark on the terminology: why call this method Voxel-Accelerated
NeRF? The authors of VaxNeRF used a mask of voxels to encode the visual hull, but the visual hull
could be represented in a different format and the idea would be of equal interest. For this reason,
another title such as Visual Hull-Accelerated NeRF might have been more descriptive of the true
nature of the method.
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[1] T. Bird, J. Ballé, S. Singh, and P. A. Chou, 3D Scene Compression Through Entropy
Penalized Neural Representation Functions, in Picture Coding Symposium (PCS), 2021, pp. 1–5.
https://doi.org/10.1109/PCS50896.2021.9477505.

226

https://doi.org/10.1109/PCS50896.2021.9477505


Accelerating NeRF with the Visual Hull

[2] A. Chen, Z. Xu, A. Geiger, J. Yu, and H. Su, TensoRF: Tensorial Radiance Fields, in
European Conference on Computer Vision (ECCV), 2022, pp. 333–350. https://doi.org/10.
1007/978-3-031-19824-3_20.

[3] A. Chen, Z. Xu, F. Zhao, X. Zhang, F. Xiang, J. Yu, and H. Su, MVSNeRF: Fast
Generalizable Radiance Field Reconstruction from Multi-View Stereo, in IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), 2021, pp. 14104–14113. https://doi.org/10.
1109/ICCV48922.2021.01386.

[4] X. Chen, Q. Zhang, X. Li, Y. Chen, Y. Feng, X. Wang, and J. Wang, Hallucinated
Neural Radiance Fields in the Wild, in IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2022, pp. 12933–12942. https://doi.org/10.1109/CVPR52688.2022.

01260.

[5] P.-Z. Chiang, M.-S. Tsai, H.-Y. Tseng, W.-S. Lai, and W.-C. Chiu, Stylizing 3D
Scene Via Implicit Representation and HyperNetwork, in IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV), 2022, pp. 215–224. https://doi.org/10.1109/

WACV51458.2022.00029.

[6] B. Deng, J. T. Barron, and P. P. Srinivasan, JaxNeRF: An Efficient JAX Imple-
mentation of NeRF, 2020. https://github.com/google-research/google-research/tree/

master/jaxnerf.

[7] D. Derksen and D. Izzo, Shadow Neural Radiance Fields for Multi-View Satellite Pho-
togrammetry, in IEEE/CVF Conference on Computer Vision and Pattern Recognition Work-
shops (CVPRW), 2021, pp. 1152–1161. https://doi.org/10.1109/CVPRW53098.2021.00126.

[8] S. Fridovich-Keil, A. Yu, M. Tancik, Q. Chen, B. Recht, and A. Kanazawa,
Plenoxels: Radiance Fields Without Neural Networks, in IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2022, pp. 5491–5500. https://doi.org/10.1109/

CVPR52688.2022.00542.

[9] Y. Furukawa and J. Ponce, Carved Visual Hulls for Image-Based Modeling, in European
Conference on Computer Vision (ECCV), 2006, pp. 564–577. https://doi.org/10.1007/

11744023_44.

[10] , Accurate, Dense, and Robust Multiview Stereopsis, IEEE Transactions on Pattern Analysis
and Machine Intelligence, 32 (2010), pp. 1362–1376. https://doi.org/10.1109/TPAMI.2009.
161.

[11] G. Gafni, J. Thies, M. Zollhofer, and M. Nießner, Dynamic Neural Radiance Fields
for Monocular 4D Facial Avatar Reconstruction, in IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2021, pp. 8645–8654. https://doi.org/10.1109/

CVPR46437.2021.00854.

[12] S. J. Garbin, M. Kowalski, M. Johnson, J. Shotton, and J. Valentin, FastNeRF:
High-Fidelity Neural Rendering at 200FPS, in IEEE/CVF International Conference on Com-
puter Vision (ICCV), 2021, pp. 14326–14335. https://doi.org/10.1109/ICCV48922.2021.

01408.

[13] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge
University Press, Second Ed., 2004. https://doi.org/10.1017/CBO9780511811685.

227

https://doi.org/10.1007/978-3-031-19824-3_20
https://doi.org/10.1007/978-3-031-19824-3_20
https://doi.org/10.1109/ICCV48922.2021.01386
https://doi.org/10.1109/ICCV48922.2021.01386
https://doi.org/10.1109/CVPR52688.2022.01260
https://doi.org/10.1109/CVPR52688.2022.01260
https://doi.org/10.1109/WACV51458.2022.00029
https://doi.org/10.1109/WACV51458.2022.00029
https://github.com/google-research/google-research/tree/master/jaxnerf
https://github.com/google-research/google-research/tree/master/jaxnerf
https://doi.org/10.1109/CVPRW53098.2021.00126
https://doi.org/10.1109/CVPR52688.2022.00542
https://doi.org/10.1109/CVPR52688.2022.00542
https://doi.org/10.1007/11744023_44
https://doi.org/10.1007/11744023_44
https://doi.org/10.1109/TPAMI.2009.161
https://doi.org/10.1109/TPAMI.2009.161
https://doi.org/10.1109/CVPR46437.2021.00854
https://doi.org/10.1109/CVPR46437.2021.00854
https://doi.org/10.1109/ICCV48922.2021.01408
https://doi.org/10.1109/ICCV48922.2021.01408
https://doi.org/10.1017/CBO9780511811685


Roger Maŕı
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