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Abstract

In this article, we give a thorough description of the algorithm proposed in [H. Carrillo, M.
Clément and A. Bugeau, Non-local matching of superpixel-based deep features for color transfer,
VISAPP, 2022] for color transfer by relying on a robust non-local correspondence between low-
level features at high resolution. An adaptation of this method for colorization is also described.
We highlight the overall relevant results obtained with this technique for both applications and
also show its limitations.

Source Code

The source code and documentation for this algorithm are available from the web page of this
article1. Compilation and usage instruction are included in the README.txt file of the archive.

Keywords: superpixels; non-local matching; attention mechanism; color transfer; colorization

1 Introduction

This article deals with both color transfer, the process of changing the color distribution of a target
image based on a reference image, and colorization, the process of digitally applying color to grayscale
images. One practical application of these techniques is, for example, to provide filmmakers with a
quasi-automatic tool that makes their tasks less time-consuming and tedious than today’s professional
software. While both color transfer and colorization can sometimes suffer from poor spatial and color
consistency, the method described in the studied paper [3] addresses these issues by relying on robust
non-local matching between low-level features at high resolution. The non-local concept has already
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been used extensively in computer vision, notably by [2] to improve the performance of digital image
denoising methods.

The general idea behind the method proposed by [3] is the following. A superpixel segmentation
of the target and reference images is first realized using the SLIC algorithm [1, 5]. Next, deep feature
maps, which are abstract and semantic representations of an image obtained using a pre-trained deep
neural network, are extracted at a superpixel level. Subsequently, a non-local correspondence between
superpixels of both images is established using an attention mechanism on the deep features. Global
relationships between superpixels are taken into account thanks to this non-local correspondence step,
that does not include any additional training. Once the non-local correspondence is established, the
pixel-level colors are transferred using a weighted average that takes into account the previously
computed attention map between superpixels. All in all, the unsupervised method of [3] is able to
transfer the color of the reference image to the target image, while respecting the structure of the
target and maintaining a limited computation time for efficient image or video processing.

In this paper, we propose an online implementation of this color transfer method and an extension
to the colorization problem. While converting a color image to a grayscale image is a standard task,
the reverse operation is a complex problem since no information about the colors to be added is known
a priori. This task is classically performed by users, based on their expertise or artistic experience
to add hues to monochromatic images. We show that it is possible to automate this colorization
process thanks to recent advances in machine learning and neural networks.

The organization of the paper is as follows. Section 2 gives a detailed explanation of the non-local
matching technique proposed in [3]. We then study the application of the method to color transfer
in Section 3. The proposed extension to colorization is finally explored in Section 4.

2 Non-local Matching Method

In this section, we present the method proposed in [3] for non-local matching of superpixel-based
deep features between two RGB images IT and IR. In what follows, we will keep the notations
of the reference article: IT will be the target image and IR the reference one. We first describe
in Section 2.1 the extraction of superpixels features, called super-features. The matching process
between super-features is then detailed in Section 2.2.

2.1 Super-features Encoding (SFE)

The encoding of the super-features F of an image I takes place in three stages: 1) superpixel decom-
position, 2) extraction of deep features using convolutional neural networks, 3) channel averaging
process to obtain super-features (see Algorithm 1).

2.1.1 Superpixel Segmentation

Firstly, two superpixel maps are generated using a superpixel decomposition algorithm on the target
and reference images. A superpixel is a group of connected pixels that share common characteristics
such as similarity of color or intensity and spatial proximity. Superpixels are commonly used to speed
up the execution of image processing algorithms and, in some cases, to improve results.

We use the SLIC algorithm [1, 5] which is an adaptation of the k-means clustering algorithm for
the image segmentation purpose. SLIC segments an image into superpixels using both color and
spatial position information. It associates neighboring pixels based on their similarity and updates
the superpixel centers until convergence is reached. Rather than simply decimating the image to
reduce the amount of information, segmenting into superpixels provides a set of regions of interest
to process, without reducing the amount of raw information in the image. Figure 1 illustrates this
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Algorithm 1: Super-Features Encoding (SFE)

Input: f : Features maps H ×W × C
S : Superpixel map H ×W
N : Number of segments in the superpixel map

Result: F : Super-Features
for i from 0 to N − 1 do

FT (i)← average pooling(f(S(i)));
F (i)← Stack(FT (i)) ; // piling up superpixel i in matrix F of size N × C

process. This step produces two superpixels maps ST and SR that respectively contain NT and NR

superpixels. We also denote as P T
i (resp. PR

i ) the number of pixels contained in the i-th superpixel
ST (i) (resp. SR(i)).

Figure 1: Visualization of a superpixel segmentation S obtained with the SLIC algorithm [1, 5].

2.1.2 Deep Features

Deep learning features are obtained from a pre-trained convolutional network applied on the reference
and target images IR and IT . We use here the first three layers — Conv1 2, Conv2 2 and Conv3 4
— of a modified VGG-19 architecture [7] as a feature extractor. These first three layers provide a
long range of low-level features that suit diverse types of images.

In each case, after the convolution step and the application of a ReLU function, activations are
then batch-normalized before moving on to the next layer. This stabilizes activation values, reduces
covariation effects between different activations and improves learning convergence. As mentioned
above, the VGG architecture we used is a modified one. Indeed, we decided to replace the max-
pooling layers from the baseline VGG-19 architecture by an average pooling (see Section 2.1.3).

This step thus produces l = 3 (one for each layer) feature maps fT l and fRl, composed of C =
64, 128 then 256 channels. The spatial dimension of the feature maps fT l (resp. fRl) corresponds to
the one of the target image IT (resp. reference image IR).

Remark. This approach takes into account features derived from VGG-19, a pre-trained deep convo-
lutional network particularly effective for processing high-dimensional data such as images or videos.
The method can nevertheless handle any other handcrafted or learned features.

2.1.3 Average Pooling

Finally, we apply average pooling to the deep features using superpixel maps ST and SR. The features
fT and fR of the pixels inside each superpixel are averaged per channel and then stacked in the form
of matrices known as super-features. We therefore obtain three super-feature maps FTl

∈ R
NT×C ,
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for the target image, with l index ranging from 1 to 3 corresponding to the information from the
first three layers of the VGG-19 convolutional neural network and NT the number of superpixels
of the target image. In the same way, for the reference image, we obtain three super-feature maps
FRl
∈ R

NR×C , l = 1 · · · 3. The overall super-features encoding is illustrated in Figure 2.

Pooling

1 X C

C

N

1 X C

Super-
features

Features Map

H x W x C

 Pi X C

Pj X C

Super-features encoding 
(SFE)

Pooling

Figure 2: Super-features encoding of [3]. Let H and W be the image size in number of pixels, C the number of channels
of the different VGG-19 layers used, NR (resp. NT ) the total number of reference (resp. target) superpixels, and Pi the
number of pixels in the i-th superpixel SR(i) (resp. ST (i)). The process takes as input a feature map of size H ×W ×C,
in which each superpixel is extracted and encoded in vectors of size Pi×C. Afterward, the vectors are pooled channel-wise
and, finally, stacked in the respective super-features matrices FRl

(resp. FTl
) of size NR × C (resp. NT × C).

2.2 Super-features Matching (SFM)

As stated above, super-features provide a compact encoding for calculating the correlation between
deep features. In order to achieve a robust correspondence between the super-features of the target
named FTl

and the super-features of the reference named FRl
, the authors were inspired by the

attention mechanism described in [9].
Attention mechanisms [8] were popularized with the rise of transformers, a type of neural network

architecture that has revolutionized the field of natural language processing and other sequence
processing tasks. The attention mechanism allows the model to focus on specific parts of the input
when generating the output. Rather than processing the whole sequence at once, transformers use
attention to give variable importance to each element of the sequence depending on its context.

The idea of the Super-Features Matching (SFM) process is to exploit the non-local similarities
between the super-features of the images by calculating the attention map at layer l as follows

Al(i, .) = softmax

(
MTlRl

(i, .)

τ

)
, i = 1 · · ·NT , (1)

where, for each superpixel i of the target and j of the reference, we define

MTlRl
(i, j) =

(FTl
(i)− µTl

)T (FRl
(j)− µRl

)

∥FTl
(i)− µTl

∥2 ∥FRl
(j)− µRl

∥2
. (2)

In this equation, MTlRl
corresponds to the correlation matrix between the super-features of the target

FTl
(i) and the reference FRl

(j), computed using the mean values µ ∈ R
C over the NT (resp. NR)

super-feature values. The choice of the normalization through correlation is motivated by the use
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of a global temperature parameter τ > 0 to process all components MTlRl
in the same way. The

softmax operation in expression (2) is realized with respect to the second dimension of the matrix,
so that

∑
j Al(i, j) = 1 for all superpixels i = 1 · · ·NT of the target image; while Al(i, j) ≥ 0 for all

i = 1 · · ·NT and j = 1 · · ·NR.
The final attention map A is the weighted sum of the attention maps for each layer, divided by

the sum of the weights:

A(i, j) =

∑3
l=1 wlAl(i, j)∑3

l=1 wl

, (3)

where all weights wl are set to 1 in our experiments. The value of the attention map A(i, j) can
be understood as a measure of the influence of the superpixel SR(j) of the reference image IR for
the processing of the superpixel ST (i) of the target image IT . For further details, please refer to
Algorithm 2.

Algorithm 2: Super-Features Matching (SFM)

Input: FT : Target image Super-features maps HT ×WT × C
FR : Reference image Super-features maps HR ×WR × C
NT : Number of segments in the Superpixel map from target
NR : Number of segments in the Superpixel map from reference

Result: MTR : Correlation matrix NT ×NR

for i from 0 to NT − 1 do
for j from 0 to NR − 1 do

MTR(i, j)← (FT (i)−µT )T (FR(j)−µR)
∥FT (i)−µT ∥2∥FR(j)−µR∥2

;

2.3 Complexity Analysis

Let n = H×W be the number of pixels in an image. Then, the number of features in a deep learning
feature map is D = n×C which translates into a computational complexity of O(D2) = O(n2C2) for
computing the correlation matrix. In contrast, with our novel super-features encoding, if we set the
number of superpixels in the order of

√
n, then instead we rewrite with Ds =

√
n × C, resulting in

O(D2
s) = O(n×C2) for the correlation operation. As C ≪ n can be ignored, we go from a quadratic

to a linear complexity operation O(n).

3 Color Transfer

In this section, we focus on transferring the color of a reference image IR to a target image IT . To
that end, we follow the color fusion framework initially proposed in [6] which uses the attention maps
to obtain the new color for each pixel of the target image.

3.1 Method

Color transfer aims at changing the colors of pixels in the target image IT using the color palette of the
reference image IR. To that end, the method [3] extends the color fusion framework initially proposed
in [6]. The process leverages the attention map A provided by SFE-encoding and SFM-matching,
which encodes semantic correspondences between both images. For all pixels inside a superpixel
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ST (i), i = 1 · · ·NT , the attention map A(i, j) is used as a weight to balance the importance of the
color to transfer from the reference superpixel SR(j). For more details please refer to Algorithm 3.

Denoting as IR(j) the mean color value of the pixels belonging to superpixel j of the reference
image IR, the output of the color transfer process on the target image IT at pixel p is obtained as

ÎT (p) =

∑NR

j=1 W (p, j)IR(j)∑NR

j=1 W (p, j)
, (4)

where W (p, j) =
∑NT

i=1 d(p, i)A(i, j) and d(p, i) depends on the distance between the pixel p and the
center p̄i = (

∑
p∈ST (i) p)/Pi of the i-th superpixel of the target image. This weight is calculated using

a Mahalanobis-type formula

d(p, i) = e
− (VT (p)−V T (i))TΣ−1

i
(VT (p)−V T (i))

σg (5)

with VT (p) = [p, IT (p)] being the vector describing the position and the color of pixel p, and V T (i) =
[p̄i, IT (i)] being the average vector describing the position and color centroids of superpixel ST (i).
The spatial and colorimetric covariances of pixels belonging to the superpixel ST (i) are computed as

Σi =

(
δ2s [Cov(p)]p∈ST (i) 0

0 δ2c [Cov(IT (p)]p∈ST (i)

)
, (6)

where the parameters δ2s and δ2c respectively weight the influence of spatial and color information.
The standard deviation σg is used to modulate the sensitivity of the d(p, i) distance to the differences
between the vectors VT (p) and V T (i).

In order to optimize computational performance, an initial resizing (down-sizing) was applied
to the IR and IT input images. To guarantee optimum visual quality at the end of the algorithm,
we introduce a conversion to the CIELAB color space. We start by converting ÎT from RGB to
CIELAB color space. We thus obtain the 3 channels Lab representation (L̂, â, b̂) for the colorized
image ÎT . We then isolate its chrominance channels â and b̂ and use them for the resizing operation
(up-sizing). Next, we concatenate the luminance channel of the original IT image (also converted
into CIELAB space to retrieve the luminance channel) with the resized chrominance channels â and

b̂ of ÎT . This process replaces the luminance channel of the resulting image ÎT with the original gray
level of IT . This is an essential step to maintain the structural information present in IT . Finally,
we convert back the resulting image from CIELAB color space to the RGB color space, giving us the
final synthesized image. As illustrated in Figure 3, this post-processing makes the colorized images
more realistic.

(a) (b) (c) (d)

Figure 3: (a) Target; (b) Reference; (c) Resizing without any prior CIELAB conversion; (d) Resizing combined with CIELAB
conversion.

In this setting, we achieve a good trade-off between preserving important image information and
achieving a compact representation of the image, while having a fast enough process.
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Algorithm 3: Color transfer

Input: I0T : Target image 2HT × 2WT × 3
I0R : Reference image 2HR × 2WR × 3

Result: ÎT : Color transferred image 2HT × 2WT × 3
L← 3 ;
IT ← Resize(I0T , 0.5) ; // Downsize target image with scale factor 0.5. New size: HT ×WT

IR ← Resize(I0R, 0.5) ; // Downsize reference image with scale factor 0.5. New size: HT ×WT

ST ← Slic(IT );
SR ← Slic(IR);
NT , NR ← Number of superpixels from ST and SR;
for l from 0 to L− 1 do

fT l ← Convl(IT );
fRl ← Convl(IR);
FT l ← SFE(fT l, ST , NT , NR);
FRl ← SFE (fRl, SR, NT , NR);
MTRl ← SFM(FT l, FRl, NT , NR);
for i from 0 to NT − 1 do

Al(i, :)← softmax
(

MTRl(i,:)
τ

)
;

A←
∑L

l=1 wlAl
∑L

l=1 wl

;

HT ← Height of the target image;
WT ← Width of the target image;
for h from 0 to HT − 1 do

for w from 0 to WT − 1 do
p← (h, w);
VT (p) = [p, IT (p)] ; // Position and color of pixel p

for i from 0 to NT − 1 do
V T (i) = [p̄i, IT (i)] ; // Average of the position and color centroids of ST (i).

dist(p, i)← −(VT (p)− V T (i))
TΣi(VT (p)− V T (i)) ; // Σi is calculated using Eq. (6)

d(p, i)← e
− dist(p,i)

σg ;

for j from 0 to NR − 1 do

W (p, j)←∑NT

i=1 d(p, i)A(i, j);

ĪR(j)← (1/PR
j )
∑PR

j

k=1 SR(j)[k] ; // Mean color of the j-th super pixel of IR

ÎT (p)←
∑NR

j=1 W (p,j)IR(j)
∑NR

j=1 W (p,j)
;

ÎTab
(p)← RGB2Lab(ÎT (p)) ; // Passing from RGB to Lab color space to get ab chrominance

ÎTab
(p)← Resize(ÎTab

(p), 2) ; // Upsize ab chrominance with scale factor 2. New size:

2HT × 2WT

ITgray
← RGB2Gray(I0T );

ÎT (p)← Lab2RGB(concat[ITgray
, ÎTab

(p)] ; // Concatenation of original luminance and predicted

chrominance.
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3.2 Experimental Study

Using the online demonstration, the color transfer method [3] can be applied on any pairs of target
and reference images. In this section we carry out a series of experiments to describe the influence
of the different parameters.

We first run the companion demonstration code on four pairs of real images2 to illustrate the pros
and cons of this technique applied to color transfer. For this demonstration, and based on empirical
testing (see Figure 4), we have set the number of superpixels equal to 3 × ⌊

√
H ×W ⌋. Choosing

⌊
√
H ×W ⌋ superpixels provides a number of segments proportional to the square root of the total

image size. This approach balances detail fidelity (preventing over-segmentation that produces too
many superpixels) and computational efficiency (avoiding under-segmentation that loses important
details). Figure 4 demonstrates the impact of this hyperparameter on color transfer. In Figures 4(a)
and 4(b) the sun’s reflection on the palm tree appears inadequate, whereas this issue is resolved in
Figure 4(c). Additionally, the color of the bushes in Figure 4(c) appears more perceptually natural.
Multiplying this number by 3 produces the right amount of superpixels that are more accurate at
capturing local detail while remaining manageable for subsequent processing algorithms. For more
details on the influence of superpixels and an illustration of matched superpixels, we refer the reader
to [4].

We now analyze the influence of the different τ , δs, and δc parameters of the method. As illustrated
in Figure 5, the color transfer method can provide plausible results for images containing a single
object of interest (flower and bird examples) or more complex scenes (beach example). In the case
of the road against a mountain backdrop – see the 4th row of the figure, the correspondence between
superpixels is questionable (as an example, the color of the broken line in the middle of the road has
remained unchanged).

(a) ⌊
√
H ×W ⌋ (b) 2× ⌊

√
H ×W ⌋

(c) 3× ⌊
√
H ×W ⌋

Figure 4: Influence of number of superpixels.

2Real means no computer-generated images.
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(a) Targets IT (b) References IR (c) Results ÎT

Figure 5: Application of color transfer to 4 different image series.

τ parameter sensitivity analysis. We now evaluate the impact of the main temperature
parameter τ of Equation (1), that balances the weights in the attention map A. Figure 6 illustrates
the color transfers obtained for the beachfront image and different values of τ . As stated in [3], our
experiments suggest that a value τ = 1.5× 10−2 gives satisfactory visual results on a large range of
images.

As the value of τ increases (for example, τ = 1.5× 10−1), the softmax operation of expression (1)
makes the probability distribution A(i, .) more uniform. This implies an important mixing of the
colors of all superpixels SR(j), which lead to drab colors in the synthesized image (Figure 6a). On
the other hand, when τ decreases, there is a one-to-one matching between a target super-feature and
a reference super-feature. For τ = 1.5×10−4, this results in non-uniform color transfer at the bottom
left part of the image displayed in Figure 6f.

δs and δc parameters sensitivity analysis. We now evaluate the impact of the δc and δs
parameters of Equation (6) that weight the influence of color and spatial information. Figure 7
illustrates the color transfers obtained for the road image and different values of δs and δc. As stated
in [3], our experiments suggest that values δs = 10 and δc = 0.1 give satisfactory visual results on
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(a) τ = 1.5× 10−1 (b) τ = 1.5× 10−2 (c) τ = 1.5× 10−4

(d) τ = 1.5× 10−1 (e) τ = 1.5× 10−2 (f) τ = 1.5× 10−4

Figure 6: Influence of the temperature value τ on the color transfer.

a large range of images. Indeed, with a preponderance of color information δc and less importance
given to spatial information δs, we observe an inadequate distribution of colors, particularly at the
foot of the mountain. In addition, the edges of the road are poorly colored, with dull, lackluster hues
that do not faithfully reflect the chromatic palette of the original image.

Limitations. When the shapes and contours of the target image (Figure 8a) differ significantly
from those of the reference image (Figure 8b), the transferred colors can appear inappropriate,
creating visual artifacts and degrading the perceived quality of the resulting image. In addition, the
sharp colors of the reference image may not match the hues of the target image, especially if the
latter has more subtle color transitions (see the pixels near the leaves of the tree in Figure 8c). This
incompatibility can lead to abrupt and unnatural contrasts in the transformed image, reducing its
overall aesthetic.

4 Colorization

We now propose an extension of the method [3] to colorization. In this setting, the target image IT
is a grayscale image, whereas the reference one IR is a color image.

4.1 Method

The colorization technique we propose consists of 4 steps: 1) transformation of the reference color
image into a grayscale one IRg

; 2) computing SFE-encoding and SFM-correspondences between

super-features of grayscale images IT and IRg
; 3) synthesis of the colorized target image ÎT , using

attention maps and the original colors of the source image IR; 4) post-processing in CIELAB color
space, by mixing the original luminance information in the grayscale image IT with the chrominance
channels of ÎT . For further details, please refer to Algorithm 4.
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(a) δc = 10 δs = 0.1 (b) δc = 0.1 δs = 10

(c) δc = 10 δs = 0.1 (d) δc = 0.1 δs = 10

Figure 7: Influence of the δs and δc parameters on the color transfer.
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(a) (b) (c)

Figure 8: (a) Target; (b) Reference; (c) Result.

From colors to grayscale. The transformation of the RGB color image IR = (R,G,B) into a
grayscale image is done using the standard weighted average from PAL or NTSC models: IRg

=
0.299R + 0.587G+ 0.114B.

Super-features encoding and matching. We apply the SFE-encoding to both the grayscale
image IRg

and the target one IT . Next we perform the SFM-matching with a slight modification
of the attention map computation described in Section 2.2. The merging of the attention maps
corresponding to the 3 VGG-19 layers is here realized before the softmax operation:

A(i, .) = softmax

(∑3
l=1 wlMTlRgl(i,.)

τ

)
, i = 1 · · ·NT . (7)

In our experiments, this change appeared useful to avoid the transfer of drab colors.

Color fusion framework. The colorized image ÎT is obtained by tracing back the original colors
of the superpixels in the reference image IR, as detailed in Equation (4) of Section 3.

(a) (b) (c) (d)

Figure 9: (a) Target; (b) Reference; (c) Resizing without any prior CIELAB conversion; (d) Resizing combined with CIELAB
conversion.

Post-processing step. As explained in Section 3, we are going to perform a conversion in CIELAB
space in order to improve the visual rendering during resizing, which reduces computation time.
We will concatenate the luminance channel of the target grayscale image IT with the chrominance
channel of the resulting image ÎT . Figure 9 illustrates this process that produces results that are
more consistent, more perceptually faithful and less sensitive to variations in brightness.

4.2 Experimental Study

We present in Figure 10 colorization results obtained with the companion demonstration code applied
on four real images. When the source and target images are carefully selected, so that they have a
particularly high degree of similarity, the visual results are relevant, with realistic colorization (see
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Algorithm 4: Colorization

Input: I0T : Grayscale target image 2HT × 2WT × 1
I0R : Reference image 2HR × 2WR × 3

Result: ÎT : Colorized target image 2HT × 2WT × 3
L← 3 ;
IT ← Resize(I0T , 0.5) ; // Downsize target image with scale factor 0.5. New size: HT ×WT

IR ← Resize(I0R, 0.5) ; // Downsize reference image with scale factor 0.5. New size: HT ×WT

IRg
← Color to grayscale(IR);

ST ← Slic(IT );
SRg
← Slic(IRg

);
NT , NR ← Number of superpixels from ST and SR;
for l from 0 to L− 1 do

fT l ← Convl(IT );
fRgl ← Convl(IRg

);
FT l ← SFE(fT l, ST , NT , NR);
FRgl ← SFE (fRgl, SRg

, NT , NR);
MTRg

← SFM(FT l, FRgl, NT , NR);
Al ← w ×MTRg

;

for i from 0 to NT − 1 do

A(i, :)← softmax
(∑L

l=1 Al

τ

)
;

HT ← Height of the target image;
WT ← Width of the target image;
for h from 0 to HT − 1 do

for w from 0 to WT − 1 do
p← (h, w);
VT (p) = [p, IT (p)] ; // Position and color of pixel p

for i from 0 to NT − 1 do
V T (i) = [p̄i, IT (i)] ; // Average of the position and color centroids of ST (i).

dist(p, i)← −(VT (p)− V T (i))
TΣi(VT (p)− V T (i)) ;

d(p, i)← e
− dist(p,i)

σg ;

for j from 0 to NR − 1 do

W (p, j)←
∑NT

i=1 d(p, i)A(i, j);

IR(j)← The mean color value of pixels in superpixel j of IR;

ÎT (p)←
∑NR

j=1 W (p,j)IR(j)
∑NR

j=1 W (p,j)
;

ÎTab
(p)← RGB2Lab(ÎT (p)) ; // Passing from RGB to Lab color space to get ab chrominance

ÎTab
(p)← Resize(ÎTab

(p), 2) ; // Upsize ab chrominance with scale factor 2. New size:

2HT × 2WT

ÎT (p)← Lab2RGB(concat[I0T , ÎTab
(p)] ; // Concatenation of original luminance and predicted

chrominance.

for instance the flower and the coastline). The colorization process nevertheless tends to reproduce
the most predominant hue in the reference image (dipper and human face examples).

τ parameter sensitivity analysis. We evaluate the influence of the temperature parameter τ
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Figure 10: Application of colorization to 4 different image series.
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in Equation (7) on the flower example. As illustrated in Figure 11, when τ = 1.5 × 10−2, the color
palette of the reference image IR is better represented in the colorized image. On the other hand,
increasing the value as τ = 1.5 × 10−1 results in a decrease in the diversity of colors present in the
final image.

(a) τ = 1.5× 10−1 (b) τ = 1.5× 10−2

Figure 11: Influence of the temperature value τ in the colorization results.

δs and δc parameters sensitivity analysis. We now evaluate the impact of the δc and δs
parameters of Equation (6), that weight the influence of color and spatial information. Figure 12
illustrates the colorization process obtained for the image and different values of δs and δc. Again,
our experiments suggest that values δs = 10 and δc = 0.1 give satisfactory visual results on a
large range of images. Indeed, when the emphasis is placed primarily on color information while
neglecting spatial information, the final rendering proves less satisfactory and lacks coherence. Close
examination of the image reveals an inconsistent distribution of colors, marked by noticeable and
distinct variations in different places. This non-homogeneity creates contrasted areas where hues
appear to diverge significantly, introducing visual irregularities within the image.

(a) δc = 10 δs = 0.1 (b) δc = 0.1 δs = 10

Figure 12: Influence of the δs and δc parameters in the colorization results.

Limitations. One of the main problems observed is the tendency to produce an almost monochro-
matic result, which can appear very artificial. When the reference image (Figure 13b) is dominated
by a single hue, this color can be excessively transferred to the target image (Figure 13a), regardless
of the latter’s natural details. As a result (Figure 13c), complex or varied structures in the target im-
age can be simplified or filled by the predominant blue color of the reference, resulting in a significant
loss of chromatic diversity and visual detail. In addition, the marked difference in spatial structures
between the two images can lead to inconsistent application of color. For example, a bluish hue from
the uniform sky in the reference image may be inappropriately applied to detailed, textured areas of
the target image, such as players’ shirts. This mismatch creates unnatural visual effects.
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(a) (b) (c)

Figure 13: (a) Target; (b) Reference; (c) Result.

5 Conclusion

This paper presents a framework for color transfer and colorization of a target image using the
color information contained in a reference image. The process is based on non-local matching of
deep features extracted from superpixels through an attention mechanism. Experimental results
demonstrate the effectiveness of this technique, that manages to preserve the fine details, textures
and structures of the target images, while producing consistent and plausible color synthesis using
the information from the reference image.
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