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Abstract

In this work we consider two methods for joint single-image super-resolution and image parti-
tioning. The proposed approaches rely on a constrained and on an unconstrained version of the
inverse Potts model where an `0 regularization prior on the image gradient is used for promoting
piecewise constant solutions. For the numerical solution of both models, we provide a unified
implementation based on the Alternating Direction Method of Multipliers (ADMM). Upon suit-
able assumptions on both model operators and on the algorithmic parameters involved, we show
that all the ADMM subproblems admit closed-form solutions, thus making the resulting algo-
rithms computationally very cheap even when high-dimensional data are considered. Numerical
details of the implementation of both models are given and several experiments are carried out
on both synthetic and natural images to underline the accuracy and the computational efficiency
of the models.

Source Code

The Matlab source code, the code online documentation and the online demo are available from
the web page of this article1. Compilation and usage instruction are included in the README.txt
file of the archive.

Keywords: single-image super-resolution; image segmentation; inverse Potts model; ADMM

1https://doi.org/10.5201/ipol.2022.393

Dario Mylonopoulos, Pasquale Cascarano, Luca Calatroni, Elena Loli Piccolomini , Constrained and Unconstrained In-
verse Potts Modeling for Joint Image Super-Resolution and Segmentation, Image Processing On Line, 12 (2022), pp. 92–110.
https://doi.org/10.5201/ipol.2022.393

https://doi.org/10.5201/ipol
https://doi.org/10.5201/ipol
http://creativecommons.org/licenses/by-nc-sa/3.0/
https://doi.org/10.5201/ipol.2022.393
https://doi.org/10.5201/ipol.2022.393
https://doi.org/10.5201/ipol.2022.393


Constrained and Unconstrained Inverse Potts Modeling for Joint Image Super-Resolution and Segmentation

1 Introduction

Single-Image Super-Resolution (SISR) and Image Partitioning (IP) are two popular tasks in the
field of image processing. In SISR, the objective is to enhance the spatial resolution of a given
Low-Resolution (LR) and possibly blurred and noisy image so as to retrieve a High-Resolution (HR)
version enhancing the quality of the LR data. In IP (a technique which is often referred to as image
segmentation), the objective is to extract from a given digital image regions of interest on the basis
of geometric/semantic information. Such task is typically performed to facilitate subsequent data
classification and labeling. A standard approach to extract a suitable IP from LR data consists
in performing the SISR and the IP steps in a disjoint sequential manner. A clear limitation of
such sequential strategy is that the quality of the partitioning obtained as final result depends on
the quality of the super-resolved image obtained after performing the former reconstruction step.
Typically, this depends on the SISR model used and on the accurate choice of its hyperparameters.
To overcome these limitations, a joint SR and IP approach performing both tasks at the same time
has been proposed, e.g., in [10, 6, 3] based on a Bayesian approach.

In this paper, we consider a joint SISR and IP model assuming, for a given vectorized image
g ∈ RNl , the following image formation model

g = SHu + η, (1)

where u ∈ RNh is the unknown HR image defined on a finer grid of dimension Nh so that Nh =
L2Nl, L ∈ N, L ≥ 1, H ∈ RNh×Nh is the operator corresponding to the modeling of a Gaussian space-
invariant blur with standard deviation σH > 0, S ∈ RNl×Nh is the discrete down-sampling operator
and η ∈ RNl denotes the realisation of a Gaussian random variable of mean 0 and standard deviation
equal to ση > 0.

Finding u given g as in (1) is an ill-posed (under-determined) inverse problem whose solution
requires the use of suitable regularization. In a variety of works [12, 13, 11, 4], Storath et al. considered
the inverse Potts regularization model for joint image restoration and segmentation. Heuristically,
such approach is based on the use of a penalized regularization functional defined in terms of an `0-
type gradient smoothing prior reducing noise and preserving distinctive details (such as image edges).
Furthermore, due to its strong sparsification properties, it favors simplified and almost-partitioned
reconstructions that can be easily used for subsequent segmentation purposes. Inspired by this
work, in [2] the authors extended the aforementioned approach to the problem of joint segmentation
and SISR. To show the effectiveness of such modeling, as an example, in Figure 1 some results are
reported. Namely, for given unknown piecewise constant (Figure 1 (a1)) and natural (Figure 1 (d1))
HR image data, the super-resolved results obtained by means of the approach in [2] are reported
in Figure 1 (c1) and Figure 1 (f1), respectively. As it can be clearly seen, the method provides an
accurate partitioning of both images which can be a precious pre-processing for further tasks. To
motivate this further, we report in Figure 1 (c2), in Figure 1 (f2) and in Figure 2 (d) an example
of how a good joint SR and IP process helps in the detection of the objects of interest, which are
there shown in terms of a given binary mask computed through standard segmentation algorithms
or super-imposed to the image, respectively.

As far as the numerical solution of the inverse Potts joint SISR and IP model is considered, in [2]
an Alternating Direction Method of Multipliers (ADMM) algorithm has been applied and fixed-point
convergence results were shown. From a computational point of view, the most expensive step in
the proposed algorithm was shown to be the Conjugate-Gradient (CG) type solver required to solve
the linear system arising in the quadratic substeps of the ADMM scheme. In the case of large-
scale data, this can of course be a computational burden preventing the model to be used in practice.
Under specific structural assumptions on the down-sampling operator S, however, quadratic substeps
can be solved in closed-form by using Fourier-based techniques combined with the application of
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Woodbury’s formula [18]. This technique significantly improves the computational complexity in
several applications such as 3D imaging [14] and automatic parameter selection strategies [9].

An alternative approach providing a joint super-resolved and partitioned version of the image but
relying on a constrained approach still defined in terms of an `0-type constraint on the gradient was
proposed in [8]. This alternative approach can be used in place of the unconstrained one whenever
information on the number of jumps (i.e. image discontinuities) of the desired solution is available.

(a1) GT (b1) LR data (L = 3) (c1) Joint SR & IP [2]

(a2) Mask on GT (b2) Mask on (b1) (c2) Mask on (c1)

(d1) GT (e1) LR data (L = 3) (f1) Joint SR & IP [2]

(d2) Mask on GT (e2) Mask on (e1) (f2) Mask on (f1)

Figure 1: Joint SISR and IP of a piecewise constant (upper rows) and natural image (lower rows). The simulated
LR acquisitions are corrupted according to model (1) by setting L = 3, ση = 0.01, σH = 1.0. The SR images have been
obtained by solving the proposed jump-penalizing model (4) as in [2] with µ = 0.0024 and µ = 0.023, respectively.

Contribution We consider a constrained and an unconstrained approach based on the `0 smooth-
ing of the image gradient to jointly perform SISR and IP. The choice of the regularization considered
is justified as an effective way of simplifying as much as possible image contents in order to favor IP.
For both models, an ADMM iterative scheme is used to compute efficiently the desired numerical
solution.

The unconstrained approach has been previously presented in [2], the only difference being the
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(a) LR data (b) GT + mask (c) Sequential SR + IP (d) Joint SR & IP

Figure 2: Cell detection on low- and super-resolved data. Masks are computed on the cells of interest are coloured
cyan. (a) LR image (L = 5). (b) GT image with superimposed mask. (c) SR image computed by first applying the bicubic
interpolation algorithm to the LR data and then the IP algorithm based on constrained gradient smoothing described in [17].
(d) SR image obtained from LR data by solving (4) using the proposed approach, see [2].

use of a new and much faster solver for the linear system arising in the quadratic step of the ADMM
scheme. Upon suitable assumptions on the downsampling operator considered, such step can be
solved in closed-form after a clever application of Woodbury’s formula [18] which, after some ma-
nipulations, allows the use of Fourier-based techniques significantly improving the computational
complexity, see, e.g., [14, 9], thus making the overall iterative scheme fast and suitable also to the
analysis of large scale data with large SR factors.

Analogously, we extend to the SISR problem the constrained `0-based formulation proposed
in [8] for image denoising only. Also in this case, we consider a similar efficient ADMM algorithm for
solving the constrained model and report several numerical comparisons between the two approaches
considered for different levels of blur and noise in the data.

2 Joint SISR and IP Via Inverse Potts Modeling

We introduce in this section the main notation and definitions used in the following and we present
both the constrained and the unconstrained `0-gradient based models assumed to perform joint SR
and IP.

A discrete jump penaliser. For N ∈ N, let Γ = {Γ1, . . . ,ΓK} be a partition of the set {1, . . . , N},
that is a set of 1 ≤ K ≤ N non-empty subsets Γi such that for all Γi ∈ Γ:

• Γi ⊂ {1, . . . , N}, for i = 1 . . . K,

• Γi ∩ Γj = ∅, for i, j = 1 . . . K, with i 6= j,

• ∪Ki=1Γi = {1, . . . , N}.

Given a generic x ∈ RN and an element Γi ∈ Γ, we denote by xΓi
the subvector extracted from x

whose entries are specified by the indexes in Γi. We can then define the `0 pseudo-norm with respect
to the partition Γ as the function ‖·‖Γ

0 : RN → R+ as

‖x‖Γ
0 :=

K∑
i=1

|‖xΓi
‖|0, (2)

where |·|0 denotes the non-zero counting scalar function which is equal to 0 whenever the argument
is zero and one otherwise and ‖·‖ stands for any `p norm, p ≥ 1. As a particular instance of (2),
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if K = N and Γi = {i} for all i = 1 . . . N , then the `0 pseudo-norm function counts the number of
non-zero entries of the vector x ∈ RN .

By choosing the standard Euclidead norm (i.e. p = 2) in (2) and denoting by D ∈ R2Nh×Nh the
discrete finite difference operator defined as the block matrix (Dx; Dy), Dx,Dy ∈ RNh×Nh , being
the first order difference operator along the horizontal and vertical axes, respectively, we define a
function R`0 : RNh → R+ as

R`0(u) = ‖Du‖Γ
0 , (3)

where Γi = {i, i+Nh}, i.e. the set containing the indices corresponding to the vertical and horizontal
differences at the i-th pixel, for i = 1 . . . Nh. The function R`0 in (3) penalizes the number of jumps
in u in terms of the non-zero values of its gradient magnitudes, jointly accounted for each pixel and
thus favoring image partitioning in sharp piecewise constant patches.

To improve the readability of the following section, by Γ we will always refer to the partition such
that Γi = {i, i+Nh} for i = 1 . . . Nh. Therefore given x ∈ R2Nh we will denote by xΓi

the subvector
of x whose entries are (xi,xi+Nh

) for i = 1 . . . Nh. Finally, we will omit Γ when using the notation
referring to the function defined in (2).

The `2-R`0 unconstrained/constrained models For solving (1) we introduce twoR`0-regularized
SISR models, both in an unconstrained and in a constrained fashion. Due to the non-convexity of
the regularization under consideration, we remark that such formulations are indeed not equivalent,
hence they deserve a separate discussion.

The unconstrained inverse Potts model has previously been considered in [2] for the problem of
SISR. It computes solutions u∗ as

u∗ ∈ arg min
u∈RNh

1

2
‖SHu− g‖2

2+µ‖Du‖0, (4)

where the `2 fidelity term describes the presence of additive white Gaussian noise statistics and µ > 0
denotes the regularization parameter.

The form of the analogous constrained model is inspired by the formulation proposed in [8] for
simple image denoising problems (i.e. with no forward operator) and adapted here to the SISR task.
It computes solutions u∗ as

u∗ ∈ arg min
u∈RNh

1

2
‖SHu− g‖2

2 s.t. ‖Du‖0 ≤ α ∈ N. (5)

The parameter α can be interpreted as the number of expected jumps in the desired solution. Choos-
ing a proper value of α in (5) may be more practical than choosing µ in (4) whenever edge-maps
specifying the number of edges for adjusting the flatness of the output are available. On the other
hand, the choice of µ may be driven by standard a posteriori parameter rules, such as, e.g., the
Morozov discrepancy principle [7] or whiteness-based principles [9].

Anyway, both models (4) and (5) favor `0-type gradient smoothing, thus favoring simplified,
piecewise-constant solutions which are amenable for precise IP.

We finally remark the connection of both models (4) and (5) with the piecewise constant Mumford-
Shah model, as analyzed, for example in [5].

3 ADMM Optimization

To numerically solve problems (4) and (5), we propose to use the iterative Alternating Direction
Method of Multipliers (ADMM), a common optimization strategy which has been largely studied
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both in convex [1] and in non-convex [15] regimes. For both the unconstrained and the constrained
problem, the ADMM iterations are defined in terms of a suitable variable splitting corresponding to
the solution of three different sub-problems which can be efficiently solved either by standard solvers
or via some manipulations, as described in the following.

3.1 Variable Splitting: the Unconstrained Case

Following [2], the optimization problem in (4) can be equivalently reformulated in terms of an aux-
iliary variable z ∈ R2Nh defined by z := Du as

arg min
u∈RNh , z∈R2Nh

1

2
‖SHu− g‖2

2 + µ‖z‖0, (6)

s.t. z = Du.

In particular, for a given initialization u0 ∈ RNh and z0 ∈ R2Nh , under suitable assumptions on the
gradient operator D, a fixed-point convergence result for the sequence {uk}k∈N generated, for initial
u0 ∈ RNh and z0 ∈ R2Nh , by the iteration

zk+1 ∈ arg min
z∈R2Nh

µ‖z‖0 +
βk

2
‖z− (Duk +

λk

βk
)‖2

2,

uk+1 = arg min
u∈RNh

1

2
‖SHu− g‖2

2 +
βk

2
‖Du− (zk+1 − λk

βk
)‖2

2,

λk+1 = λk − βk(zk+1 −Duk+1),

(U-SISR)

is given for an increasing sequence of penalty parameters {βk}k∈N such that βk = k(1 + ε), ε > 0 for
each k, see [2, Theorems 2-3].

3.2 Variable Splitting: the Constrained Case

Similarly, we can reformulate the constrained optimization problem (5) as

arg min
u∈RNh , z∈R2Nh

1

2
‖SHu− g‖2

2 + i{‖·‖0≤α}(z), (7)

s.t. z := Du,

where i{‖·‖0≤α}(·) : R2Nh → {0,+∞} denotes the indicator function of the non-convex set {z ∈ R2Nh :
‖z‖0 ≤ α}. By following [8] and considering a sequence of increasing penalty parameters {βk}k∈N
for guaranteeing convergence, we thus seek for an approximation of an optimal solution of (7) by
iterating the following scheme for initial u0 ∈ RNh and z0 ∈ R2Nh

zk+1 ∈ arg min
z∈R2Nh

i{‖·‖0≤α}(z) +
βk

2
‖z− (Duk +

λk

βk
)‖2

2,

uk+1 = arg min
u∈RNh

1

2
‖SHu− g‖2

2 +
βk

2
‖Du− (zk+1 − λk

βk
)‖2

2,

λk+1 = λk − βk(zk+1 −Duk+1).

(C-SISR)

We will now provide more details on how to solve the different substeps for both ADMM
schemes (U-SISR) and (C-SISR).
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3.3 Solving the `0 Sub-Steps

Due to the structure of the `0 term defined in (2), the objective function corresponding to the

z-subproblem in (U-SISR) is separable. Hence, denoting by vk the vector Duk + λk

βk a solution

zk+1 ∈ R2Nh can thus be computed by solving Nh 2D-optimization problems of the form

arg min
x∈R2

δk‖x‖0 + ‖x− vkΓi
‖2

2, i = 1 . . . Nh, (8)

where δk = 2µ
βk . To solve (8), we apply the 2D hard-thresholding operator HTδk to vk as in [17].

Then, for i = 1 . . . Nh

zk+1
Γi

= HTδk(vkΓi
) =

{
0 if ‖vkΓi

‖2
2 < 2δk,

vkΓi
, if ‖vkΓi

‖2
2 ≥ 2δk.

The steps for the solution of the `0 subproblem in (U-SISR) are summarized in Algorithm 1.

Algorithm 1 – `0 sub-step for (U-SISR)

input: Duk ∈ R2Nh , λk > 0, βk > 0, µ > 0
output: zk+1

1: vk ← Duk + λk

βk

2: for i = 1 . . . Nh do

3: zk+1
Γi
←

{
0 if ||vkΓi

||22 <
2µ
βk

vkΓi
otherwise

4: end for

Concerning the constrained algorithm (C-SISR), a solution of the corresponding `0 substep asso-
ciated to z can be computed by projecting vk by following [8, Proposition 1]

zk+1 =

{
vk, if ‖vk‖0 ≤ α,

ṽk otherwise,
, with ṽkΓi

:=

{
vkΓi

i ∈ {(1), . . . , (α)}
0 i ∈ {(α + 1), . . . , (Nh)}

,

and the indexes (1), . . . (Nh) are computed by sorting in descending order the `2 norms of the sub-
vectors vkΓi

for i = 1 . . . Nh, and relabelling them accordingly. In other words, zk+1 is computed by
replacing by zero the Nh − α subvectors vkΓi

of vk with the smallest `2 norm.
The steps for the solution of the `0 subproblem in (C-SISR) case are summarized in Algorithm 2.

Algorithm 2 – `0 sub-step for (C-SISR)

input: Duk ∈ R2Nh , λk > 0, βk > 0, α ∈ N
output: zk+1

1: vk ← Duk + λk

βk

2: Compute {(1), . . . , (Nh)} by sorting the subvectors of vk in descending order in terms of their `2

norm and compute ṽk.
3: Compute:

zk+1 =

{
vk, if ‖vk‖0 ≤ α

ṽk otherwise.
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3.4 Solving the `2-`2 Sub-Steps: Exploiting the Structure of H, S and D

On the structure of H. Due to the space-invariant assumption on the blur kernel, the matrix
H ∈ RNh×Nh is a 2D convolution matrix. Assuming periodic boundary conditions, H thus takes the
form of a block circulant matrix with circulant blocks (BCCB), hence it can be easily diagonalized
by the 2D discrete Fourier Transform, whose unitary matrix will be denoted by F ∈ RNh×Nh , as

H = FHΛF with FHF = FFH = INh
, (9)

and where Λ ∈ RNh×Nh is diagonal. The computation of matrix-vector products of the form Hz or
HHz can thus be performed element-wise in the Fourier domain.

On the structure of S. We consider a down-sampling matrix S ∈ RNl×Nh in the form of a
decimation operator removing selected rows and columns from the vectorized image it is applied to,
see Figure 3 for a schematic example of the action of S for Nh = 16 and L = 2. Following [18], we
assume in particular that the operator SH ∈ RNh×Nl interpolates the decimated image with zeros.
The matrix S is thus unstructured and, in particular, it cannot be diagonalized by the 2D discrete
Fourier Transform. As a consequence, the computation of matrix-vector products of the form Sz and
SHw for z ∈ RNh and w ∈ RNl cannot be a priori fastly computed. However, following [18] some
considerations can still be done to improve the computational efficiency. For an integer d, denoting
by Jd ∈ Rd×d a matrix of all ones, by 1d the d-dimensional vector of ones and by Id ∈ Rd×d the
identity matrix, the following chain of identities holds

FSHSFH :=
1

L2
(JL ⊗ Inr)⊗ (JL ⊗ Inc) (10)

=
1

L2

(
1L1TL ⊗ InrInr

)
⊗
(
1L1TL ⊗ IncInc

)
(11)

=
1

L2

(
(1L ⊗ Inr)

(
1TL ⊗ Inr

))
⊗
(
(1L ⊗ Inc)

(
1TL ⊗ Inc

))
(12)

=
1

L2
((1L ⊗ Inr)⊗ (1L ⊗ Inc))

(
1TL ⊗ Inr

)
⊗
(
1TL ⊗ Inc

)
, (13)

where nr and nc are the number of rows and columns of the LR image and ⊗ denotes the standard
Kronecker product.

SHS

Figure 3: Action of the down-sampling and of the up-sampling operators S SH . S acts on a 4× 4 image with L = 2,
SH acts on a 2× 2 image with L = 2.

On the structure of D. As far as the operator D is concerned, assuming periodic boundary
conditions, we have that both matrices Dx and Dy are BCCB, hence they can be diagonalized by
Fourier transforms as

Dx = FHΣxF and Dy = FHΣyF, (14)
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with Σx ∈ RNh×Nh and Σy ∈ RNh×Nh diagonal matrices. As a consequence, the product DHD =
DH
x Dx + DH

y Dy, corresponding to the Laplace operator, can be expressed by

DHD = FH
(
Σx

HΣx + Σy
HΣy

)
F. (15)

Solving the `2-`2 substeps. We now focus our attention on the solution of the `2-`2 subproblems
required for the computation of uk+1 both in (U-SISR) and (C-SISR). As mentioned above, this
substep is the most expensive one in terms of computational times, as it requires, in the case of
unstructured matrices, the use of iterative solvers, such as, e.g., Conjugate-Gradient schemes [2].

By optimality, the desired uk+1 is the solution of the following linear system(
HHSHSH + βkDHD

)
uk+1 =

(
HHSHg + βkDH(zk+1 − λk

βk
)

)
. (16)

To reduce the computational complexity of the linear system in (16) a direct solver is desirable. Due
to the structure of the decimation operator S, however, the product SH cannot be diagonalized in the
frequency domain, thus preventing any direct computation of uk+1 in terms of fast Fourier solvers.
However, following [18] we can exploit the assumptions pointed out in Section 2 and manipulate (16)
in terms of F and FH to deduce the following chain of equalities(

FHΛHFSHSFHΛF + βkFH
(
Σx

HΣx + Σy
HΣy

)
F
)

uk+1 = rk (17)(
FHΛH 1

L2
(JL ⊗ Inr)⊗ (JL ⊗ Inc) ΛF + βkFH

(
Σx

HΣx + Σy
HΣy

)
F

)
uk+1 = rk (18)(

ΛH 1

L2
(JL ⊗ Inr)⊗ (JL ⊗ Inc) ΛF + βk

(
Σx

HΣx + Σy
HΣy

)
F

)
uk+1 = Frk (19)(

1

L2
ΛHΛ + βkΣx

HΣx + Σy
HΣy

)
Fuk+1 = Frk, (20)

where we have defined

rk := HHSHg + βkDH

(
zk+1 − λk

βk

)
, Λ :=

(
1TL ⊗ Inr

)
⊗
(
1TL ⊗ Inc

)
Λ. (21)

From (20), we can thus deduce

uk+1 = FH

(
1

L2
ΛHΛ + βkΣx

HΣx + Σy
HΣy

)−1

Frk. (22)

By using now Woodbury formula [16] to determine the expression of uk+1 we have

uk+1 =
1

βk
FHΨFrk − 1

βk
FHΨΛH

(
βkdINl

+ ΛΨΛH
)−1

ΛHΨFrk, (23)

where Ψ := F
(
DHD

)−1
FH . In order to overcome the fact that the discrete Laplace operator DHD

may not be invertible, we can follow [18] and add a regularization term σL‖u‖2
2, depending on a

small constant 0 < σL � 1, to make the operator Ψ invertible and the iteration (23) well-defined,

so that ΨσL :=
(
ΣH
x Σx + ΣH

y Σy + σLINh

)−1
.

Expression (23) provides now an efficient formula to compute at each k ≥ 1 the quantity uk+1

since it only requires the inversion of diagonal matrices through standard FFT evaluations. We
remark that such update is not possible for a general down-sampling operator S (such as, e.g., the
Lanczos interpolation operator, often employed in the context of SISR problems), as the chain of
equalities (10)-(13) is no longer true. Algorithm 3 reports the main step for the solution of the `2−`2

subproblem (9).
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Algorithm 3 – Fast solution of `2-`2 problems

input: g ∈ RNl , S ∈ RNl×Nh , H ∈ RNh×Nh , Dx ∈ RNh×Nh , Dy ∈ RNh×Nh , zk+1 ∈ R2Nh , βk > 0,
0 < σL � 1
output: uk+1

1: H = FHΛF
2: Dh = FHΣxF
3: Dv = FHΣyF

% Compute Λ and Ψ
4: Λ←

(
1TL ⊗ Inr

)
⊗
(
1TL ⊗ Inc

)
Λ

5: Ψ←
(
ΣH
x Σx + ΣH

y Σy + σLINh

)−1

% Compute solution of the linear system

6: rk ← HHSHg + βkDH(zk+1 − λk

βk
)

7: uk+1 ← 1

βk
FHΨFrk − 1

βk
FHΨΛH

(
βkdINl

+ ΛΨΛH
)−1

ΛHΨFrk.

4 Numerical Results

In this section, we report several numerical experiments showing the performances of both consid-
ered algorithms for joint SISR and IP. All experiments reported in this section are conducted on a
workstation Intel i5-6500, 8GB RAM using codes written in MATLAB R2019b and freely available
as part of this work.

Test problems and evaluation of results. We simulate blurred and noisy LR acquisitions
starting from ground-truth (GT) HR images by applying model (1). Unless otherwise specified, we
set as default parameters the standard deviation of the Gaussian blur σH = 1, the size of the Gaussian
kernel equal to 9 × 9 and the standard deviation of the Gaussian noise ση = 0.01. We denote by L
the super-resolution factor. Following our previous notations, we thus have Nh = L2 ·Nl.

The operators H, Dx and Dy can be represented as discrete convolution operators, hence their
action on HR images can be efficiently computed as an element-wise product between their Optical
Transfer Function (OTF) and the 2D Fourier Transform of the HR image. To do so, we make use
of the MATLAB functions psf2otf and fft2 to compute the OTF of H, Dx and Dy and the 2D
Fourier Transform of the HR image, respectively.

Concerning the evaluation of the output image, we remark that we will not consider in the
following common reconstruction-based Figures Of Merits (FOM), such as PSNR, SSIM since they
are useful to compare the quality of the output image with the original one based on a comparison
with the ground truth. Given the particular type of smoothing enforced by the `0 regularizer acting
on the image gradient and the final IP objective our algorithms are expected not to provide outputs
similar to the desired GT, but, rather, to provide a smoothed super-resolved image with simplified
image contents.

Stopping criteria, regularization parameters and initializations. The unconstrained scheme
iterations in (U-SISR) are stopped whenever the following relative stopping criterion

‖uk+1 − uk‖2

‖uk‖2

≤ 0.0005,
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is met. Concerning the stopping rule for the constrained scheme (C-SISR), we stop the algorithm
when the constraint in (5) is satisfied with a tolerance of 5%

‖Duk+1‖0 ≤ α− 5%α.

We remark that the parameter α ∈ N represents the number of desired jumps in the image
gradient Du of the solution. Choosing α a priori is, typically, difficult. We found that a more
practical parameter choice consists in choosing a certain fraction αr = α

N
∈ [0, 1] of the total possible

number of jumps in the GT image (N is the number of pixels). Hence, in our experiments we fixed
αr as input parameter and derived α from it.

Regarding the choice of the initial guess u0 in both algorithms (U-SISR) and (C-SISR), we report
in the following the convergence graphs corresponding to three different possible choices for u0 : the
image obtained from the LR image via Lanczos interpolation (case S1), the zero vector (case S2) and
the solution of the `2-TV problem (case S3)

u∗ ∈ arg min
u∈RNh

1

2
‖SHu− g‖2

2+µ‖Du‖1. (24)

As an example, in Figure 4 we show the HR image (a) and its LR (L = 2) counterpart (b), the
results obtained by applying the constrained scheme (C-SISR) (Figures (c)-(d)) and the results of
the unconstrained scheme (U-SISR) (Figures (e)-(f)) starting from S1 and S2.

(a) GT image. (b) LR image (L = 2).

(c) Starting S1, (C-SISR). (d) Starting S2, (C-SISR).

(e) Starting S1, (U-SISR). (f) Starting S2, (U-SISR).

Figure 4: HR images obtained from different starting guesses. (a) GT image. (b) LR image (L=2). (d)-(e)
Reconstructions with constrained scheme (C-SISR). (f)-(g) Reconstructions with unconstrained scheme (U-SISR).

To get more insights on the algorithm results depending on the starting guess, we report in
Figure 5 some convergence plots obtained for different starting vectors u0. In each graphic, the red,
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blue and yellow lines are associated to the starting choices S1, S2 and S3, respectively. We remark
that due to the nonconvexity of the model, convergence to different local minimizers is expected.
Convergence is shown here in terms both of the ‖Duk‖0 and of the objective function value (for
the unconstrained model): we note that in terms of such quantities, solutions obtained with starting
choices S1 and S3 empirically seem to converge to the same minimizers, while a different (suboptimal,
as with higher final cost) solution is found corresponding to S2. Based on this preliminary tests, in
the following, the algorithms are always initialized using the Lanczos interpolated image (case S1).

(a) (b) (c)

Figure 5: Convergence plots for different initializations. (a) ‖Duk‖0 vs. iteration number, (C-SISR). (b) ‖Duk‖0
vs. iteration number, (U-SISR). (c) Objective function vs. iteration number, (U-SISR). Red line: S1; blue line: S2; (c)
yellow line: S3.

On the choice of the regularization parameter. To favor comparisons between the constrained
and the unconstrained models, we fix the hyperparameter αr related with the value α in the con-
strained model (7) and we estimate the regularization parameter µ of the unconstrained method so
that the reconstruction computed by (U-SISR) has (approximately) the same number of jumps as
the solution of the constrained model.

As an example, in Figure 6 we report two natural images of size 480 × 320 and their simulated
LR acquisitions of size 240× 160. We compute the HR solutions obtained by solving the constrained
and the unconstrained models by setting αr = α/N = 0.16 and choosing µ accordingly. We observe
that the proposed choices of the hyperparamters α and µ produce comparable images.

4.1 Reconstruction Results

Super-resolution and segmentation of an object of interest. We apply both models to the
photographic image of Figure 7(a), aiming as providing as a final result the SR and the segmen-
tation of the bird in the foreground. We show the final HR images (L = 2) computed by the
constrained/unconstrained algorithms with αr = 0.083 and µ = 0.022, respectively. We notice that
the results obtained are very similar and both methods provide a meaningful piecewise constant
partitioning of the given image, as we can see also from the reported line profile.

Regularization effects. In the experiment reported in Figure 8 we increase the regularization
strength in both algorithms. To do so, we decrease the value of the parameter αr in the constrained
scheme (C-SISR) from 0.25 to 0.07 (so as to promote less and less jumps in the final image) and
compare with a corresponding choice for the unconstrained model (U-SISR) so as to have a similar
value for R`0(u

∗) in the final image. As previously noticed, the effect of increasing the proposed
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(a) GT (b) LR (L = 2) (c) αr = 0.15,
R`0(u∗) = 24161

(d) µ = 0.00830,
R`0(u∗) = 24160

(e) GT (f) LR (L = 2) (g) αr = 0.15,
R`0(u∗) = 24181

(h) µ = 0.02084,
R`0(u∗) = 24133

Figure 6: On the choice of µ and α. Natural GT images of size 481 × 321 ((a) and (e)). Simulated LR acquisitions
according to image formation model (1) by setting L = 2, ση = 0.01, σH = 1.0 ((b) and (f)). Reconstructions obtained by
the constrained model (C-SISR) ((c) and (g)). Reconstructions obtained by the unconstrained model (U-SISR) ((d) and
(h)).

(a) (b) (c)

Figure 7: Joint SR and segmentation of an object of interest. (a) GT image. (b) Reconstruction obtained by
using the constrained scheme (C-SISR). (c) Reconstruction obtained by using the unconstrained scheme (U-SISR). The
plots correspond to the line profile of the red dashed line. Gray dots correspond to the GT image, while colored dots to the
HR reconstructed images.

regularization is a reduced number of partitions in the restored image corresponding to a lower
number of classes in a possible later classification.

Robustness to blur and noise degradation. In Figure 9 we analyse the effects of the blur
degradation level, obtained by setting different values of the parameter σH, while considering no noise
perturbation (ση = 0) and L = 4. In the first row of Figure 9, the LR images appear more and more
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(a) αr = 0.25 (10.90s) (b) αr = 0.17 (15.32s) (c) αr = 0.10 (28.38s) (d) αr = 0.07 (44.18s)

(e) µ = 0.005 (7.77s) (f) µ = 0.01 (10.46s) (g) µ = 0.02 (13.32s) (h) µ = 0.04 (18.88s)

Figure 8: Reconstructions with increasing regularization (L = 2). (a)-(d) Images from constrained
model (C-SISR). (e)-(h) Images from unconstrained model (U-SISR).

blurred from left to right. The reconstructions depicted in the second (constrained algorithm) and
third (unconstrained algorithm) rows of the figure exhibit a very good visual quality but are slightly
different, even if the number of jumps is almost the same: the constrained model appears sharper and
preserving more details, while the unconstrained model partitions the image into larger regions and
it is just more blurred. We argue that this trend may be linked to the different dependence on the
thresholding parameters observed in Algorithm 1 and 2. While the gradient thresholding appearing
in Algorithm 1 vanish for βk →∞, the same does not happen for the analogous step in Algorithm 2,
as it solely depends on the given parameter α > 0. Late algorithmic iterations are thus expected not
to be under-regularized for Algorithm 1, while still subject to regularization for Algorithm 2. Overall
this may result in under-regularized solutions in the unconstrained case, where blur and noise are
still slightly visible.

The masks reported in the last column confirm the effectiveness of the proposed super resolution
method for image segmentation. In this case the C-SISR mask appears more accurate than the
U-SISR.

Similarly, we also test the algorithms by considering the LR image corrupted only by noise of
different intensities, without any blur (σH = 0) and L = 4. In Figure 10 we report the HR results
of the two proposed algorithms. Here all the results are very similar. This indicates that both
approaches are robust with respect to the noise: the restoration is not degraded by the increasing
noise affecting the LR input image. The masks shown in the last column on the C-SISR and U-SISR
reconstructions appear very similar in this case; they both improve the mask obtained for the LR
image.

Varying the super-resolution factor. Figure 11 contains the results obtained by varying factor
L and with fixed blur/noise degradation levels corresponding to σH = 1.0, ση = 0.01. In the first row
of Figure 11 we show the LR images obtained from the GT (of size 480 × 320) with L ∈ {2, 3, 4}
and the results obtained by the constrained and unconstrained methods are displayed in the second
and third row, respectively. The output of (C-SISR) and (U-SISR) are more and more different as
L increases. As observed in the previous tests, the images computed by (C-SISR) preserve more
details, whereas the reconstructions from (U-SISR) are less sharp and present larger flat regions.
The masks computed on the reconstructions with L = 4 and reported in the last column of Figure 11
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(a) σH = 0.5 (b) σH = 1.0 (c) σH = 1.5 (d) mask σH = 1.5

(e) σH = 0.5 (18.38s) (f) σH = 1.0 (15.07s) (g) σH = 1.5 (14.52s) (h) mask σH = 1.5

(i) σH = 0.5 (12.25s) (j) σH = 1.0 (8.97s) (k) σH = 1.5 (9.45s) (l) mask σH = 1.5

Figure 9: Reconstructions with increasing blur (L = 4 and ση = 0) and corresponding masks. (a)-(d) LR
image. (e)-(h) Constrained scheme (C-SISR) (αr = 0.1). (i)-(l) Unconstrained scheme (U-SISR) (µ = 0.03).

show that the U-SISR method with the chosen regularization parameter over-smoothes the restored
image, whereas the C-SISR method with the proposed number of jumps produces a very accurate
segmentation mask.

Computational complexity. For most of the output images we have reported the computational
time in seconds. We first observe that the executions are always very fast. In Figure 8 the time
increases when R`0(u

∗) decreases. In Figure 9 we notice that the algorithms are faster for increasing
blur, whereas Figure 10 shows that the noise does not affect the algorithms run time.

As a final test, we report two graphs showing how the algorithms execution time scales with
the size (i.e. the number of pixels of the GT image) and with factor L. Figure 12 displays the
computational times (in seconds) for increasing number of pixels and for different values of L. We
notice that the constrained method requires twice as much time as the unconstrained model to
compute the desired result. The slopes of the displayed lines confirm a linear increasing of the time
with respect to the image size in all the considered experiments.

5 Conclusions

We considered two joint single-image super-resolution (SISR) and image partitioning (IP) variational
models based on the use of an `0-type jump penalizer combined with `2 data fidelity for favoring
sharp gradient smoothing, which is desirable in reconstruction problems for both removing noise/blur
degradation while preserving edges and for image simplification in view of subsequent analysis. Upon
a specific assumption on the down-sampling operator (to be assumed as a decimation matrix) and
by introducing suitable ADMM-based iterative schemes, we detail how the solution of the joint
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(a) ση = 0.01 (b) ση = 0.05 (c) ση = 0.10 (d) mask ση = 0.10

(e) ση = 0.01 (10.07s) (f) ση = 0.05 (9.83s) (g) ση = 0.10 (10.85s) (h) mask ση = 0.10

(i) ση = 0.01 (7.14s) (j) ση = 0.05 (7.50s) (k) ση = 0.10 (6.98s) (l) mask ση = 0.10

Figure 10: Reconstructions with different level of noise (L = 4 and σH = 0) and corresponding masks.
(a)-(d) LR image. (e)-(h) Constrained scheme (C-SISR) (αr = 0.065). (i)-(l) Unconstrained scheme (U-SISR) (µ = 0.03).

approach can be computed very efficiently by diagonalization in the Fourier domain and via fast hard-
thresholding/projections in the unconstrained/constrained case, respectively. Extensive numerical
results confirming the robustness of both approaches to noise, blur degradation and upsampling size
are reported. A MATLAB code implementing the constrained/unconstrained schemes is provided
together with an online demo.
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(a) L = 2 (b) L = 3 (c) L = 4 (d) mask L = 4

(e) L = 2 (17.82s) (f) L = 3 (13.25s) (g) L = 4 (11.09s) (h) mask L = 4

(i) L = 2 (7.53s) (j) L = 3 (9.70s) (k) L = 4 (10.81s) (l) mask L = 4

Figure 11: Reconstructions with increasing super-resolution factor L (σH = 1.0, ση = 0.01) and corre-
sponding masks. (a)-(d) LR image. (e)-(h) Constrained scheme (C-SISR) results (αr = 0.065). (i)-(l) Unconstrained
scheme (U-SISR) results (µ = 0.03).

(a) (b)

Figure 12: Computational times for increasing image size. Execution times (in seconds) vs. image size for the
constrained (a) and unconstrained (b) models varying the super-resolution factor L.
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