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Abstract

ESA’s Sentinel-2 satellites have been in orbit for six years, acquiring massive amounts of data
all over the world. They are a formidable tool for mass detection as they are freely available
and cover the entire world. Given their future role in the energetic transition and their spread
over countries or continents, wind turbines are natural candidates for such studies. We detail
the implementation of a single-date automatic wind turbine detector for low resolution optical
satellite images based on an a contrario approach, exploiting the geometry of wind turbines’
shadows and hubs.

Source Code

The reviewed reference source code for this article is available from the web page of this article.
The algorithm is implemented in Python3. Compilation and usage instructions are included in
the README.txt file of the archive.

Keywords: remote sensing; wind turbine detection; a contrario method; NFA

1 Introduction

A wind turbine is a device that converts the wind’s kinetic energy into electricity. In its 2019 report,
the American Wind Energy Association [3] identifies wind as America’s top renewable, no-emissions
energy source. As a result, wind turbines may have a key role to play in the energetic transition
coming within the next decades. Being able to detect automatically their locations and thus their
number and installed capacity could prove useful in managing the electrical network and planning
wind power plant projects. It could also allow for blade movement detection: once we know precisely
the wind turbine’s position, it may be possible to assess whether it is rotating or not. Despite the
usefulness of knowing their locations for meteorological [5], environmental [4], radar analysis [11],
or electricity management reasons [7, 1, 2], there are very few works addressing the problem in the
literature, the majority of which use neural networks and require high resolution images (at least
2m/px).
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(a) Wind turbine (b) Sentinel-2 image (c) Central detail

Figure 1: Pictures of wind turbines. (a) Seen from the ground. If we ignore the blades, we can see its T-shape: we call
tower the vertical bar and hub the top horizontal bar. (b) Scene of a wind farm acquired with Sentinel-2. (c) Detail of
picture (b) on the central wind turbine. We can spot it thanks to its dark shadow and its bright hub. This example is one
of the most visible cases we can get with Sentinel-2 images given its low resolution.

For the objective of monitoring the electricity production of whole countries, huge areas must be
acquired and scanned. Therefore, using aerial, drone or most high resolution commercial satellite
images is too expensive. Images used must have an adequate resolution for detecting wind turbines
– their hubs’ length are around 10 meters – but still be inexpensive enough so that the cost of
monitoring doesn’t overwhelm the value of the extracted pieces of information. The Sentinel-2
constellation, launched by the European Spatial Agency (ESA) in 2015 and 2017, provides free
optical images of the whole world with a revisit time of 2 to 3 days and a 10 meters resolution.
Images produced by Sentinel-2 seem therefore appropriate for this task. As a consequence, the
algorithm described here, based on the a contrario approach [6], was especially designed to work on
low resolution images (10m/px). This work expands and provides further details on a wind turbine
detection method initially proposed in [9].

The rest of this paper is organized as follows. In Section 2, we explain the theoretical framework.
We detail the algorithm’s functioning in Section 3; then in Section 4 we discuss the results and the
parameters. Finally, Section 5 concludes the paper.

2 Proposed Method

The structure of a wind turbine is T-shaped, with a vertical tower at the top of which stands the
hub, where the rotating blades connect (see Figure 1a). The height of a very large majority of towers
is around 80 meters [8] (see Figure 2). For heat reasons they are all painted in white (see Figure 1a).
As we can see in Figures 1b and 1c, a wind turbine’s footprint is composed of two parts: the dark
shadow induced by the tower, and the bright hub. Since this kind of footprint is shared by every wind
turbine in the world, we can use this knowledge coupled with the known positions of the satellite and
the sun (and a hypothesis on the height of the tower) to build a detector. This detector is the fusion
of a shadow detector and a hub detector. To use most of that knowledge and quantify the degree of
certainty of our detections, we choose the a contrario framework [6]. Only the B02 spectral band is
used: the blue one, to avoid blurring effects due to rotating blades.
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Figure 2: Height histogram of US wind turbines in meters [8].

2.1 A Contrario Framework

The a contrario approach is inspired by visual perception [6]. The human eye is attracted by patterns
which differ from their background. If the background can be probabilistically modeled, one can
question this model by observing the structure of some of the pixels present in the image, and then
quantify how far it diverges from the model. If it diverges sufficiently, it means there is a structure
to be detected. Informally, an observed structure is meaningful only when the relation between its
parts is too regular to be the result of an accidental arrangements of independent parts. This leads to
a statistical framework used to set detection thresholds automatically in order to control the number
of false detections.

Following the a contrario methodology [6], we define the Number of False Alarms (NFA) of an
event e with an observed value s(e) as

NFA(e) = Ntests ·P
[
SH0(e) ≥ s(e)

]
, (1)

where the right hand term is the probability of obtaining, in the background model H0, a value
SH0(e) larger or equal to the observed one s(e); Ntests is the total number of tests performed. The
smaller the NFA, the more unlikely the event e is to be observed by chance in the background model
H0; thus, the more meaningful. The a contrario approach prescribes accepting as valid detections
the candidates with NFA < ε for a predefined threshold value ε. It can be shown [6] that under
H0, the expected number of tests with NFA < ε is bounded by ε. As a result, ε gives an a priori
estimate of the mean number of false detections under H0.

In what follows, we consider a slightly different but equivalent formulation. Let tNFA = − log10(ε).
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Now, detections will be declared when − log10(NFA) > tNFA, which is equivalent to NFA < ε. This
change of variables serves two purposes. Firstly, it improves the visualization: rather than having
white NFA maps with black pixels indicating significant detections, we have the opposite. White
pixels are easier to spot on a black background than the contrary. Secondly, it converts very small ε
thresholds into not-too-high tNFA ones. For example, if ε = 10−6, then tNFA = 6.

2.2 Pixel Values Comparisons

Let I be an image. Consider each of its pixels ui to be a continuous random variable, and suppose
these variables are independent and identically distributed (i.i.d.). This is the background random
model H0 we will use for our a contrario setting.

The independence assumption here is, as always, questionable. Indeed, the necessary band limited
spectral response of the optical system, and the image processing pipeline that produces the image,
both result in some kind of correlation of the values of neighbor pixels. As a consequence, the estimate
of NFA may not be fully accurate and some manually tuning of its threshold may be needed. There
are three ways of dealing with this difficulty. A first approach is to adapt the method in order to
satisfy the independence hypothesis; this can be done, for example, by increasing the sampling rate
δ. The fatal flaw of this idea is that we already lack samples when working with low resolution
images; we cannot afford losing more information. A second approach is to modify the background
model to take into account the dependency; this can be done, for instance, using first and second
order statistics [10]. While this is a valid and interesting possibility, it results in a more complex
method and is beyond the scope of this article; future works may focus on this alternative. The
third and last approach is to assume that neighbor pixels are only slightly correlated. If the model
is good enough, useful results may be obtained in spite of the inaccurate hypothesis (cf. “all models
are wrong, but some are useful”); this is the approach taken here.

Under these assumptions,

P(ui1 ≤ ui2) = P(ui1 ≥ ui2) =
1

2
,

for i1 6= i2; and more generally, for any l ∈ N

P

(
l⋂

k=1

(ui0 ≤ uik)

)
= P

(
l⋂

k=1

(ui0 ≥ uik)

)
=

1

2l
. (2)

We should see l as the number of neighboring pixels to which the considered pixel value is compared.
Let Xi,j = 1ui≤uj be a random variable, where 1 is the indicator function; thus Xi,j = 1 if ui ≤ uj

and Xi,j = 0 otherwise. Symmetrically, let Yi,j = 1ui≥uj . Denoting B the Bernoulli distribution, we
know from Equation (2) that Xi,j ∼ B(1

2
) and Yi,j ∼ B(1

2
).

Let J = {j1, j2, . . . , jl} with jk all different. We define the random variable

Xi,J =
l∏

k=1

Xi,jk . (3)

We should see J as the locations of the neighboring pixels to which the considered pixel value is
compared.

By independence, Xi,J ∼ B( 1
2l

). Symmetrically, we can define Yi,J ; Yi,J ∼ B( 1
2l

).
Finally, let X = {Xi1,J1 , . . . , Xin,Jn}, with i1 6= . . . 6= in, #J1 = · · · = #Jn = l, and ∀1 ≤ i, j ≤

n, Ji ∩ Jj = ∅. We define SX =
n∑
s=1

Xis,Js . By independence and identical distribution,

SX ∼ Bin

(
n,

1

2l

)
, (4)
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where Bin is the binomial distribution. We should see n as the number of sampled pixels.
As a result of what we have stated, we can easily compute the probability for a group of specific

pixels to have larger values than its neighbors. Intuitively, we will be surprised to find a group X of
n random variables such that SX is large (i.e., large relative to what would be expected under H0).

2.3 Shadow Detection

For each pixel ui ∈ I, we want to compute if it is a plausible candidate for the beginning of the
wind turbine’s shadow. Given the sun’s altitude θsun and azimuth φsun, and the tower’s height h,
the coordinates (x, y) at the end of the shadow are

(x, y) =

(
−h sin(φsun)

| tan(θsun)|
, −h cos(φsun)

| tan(θsun)|

)
. (5)

Angles θsun and φsun are usually provided on the satellite’s metadata, allowing to compute the
footprint of the shadow, and sample it. The number of obtained samples is noted nsh. The sampling
is detailed in Section 3.1.

For each of these samples uik , 1 ≤ k ≤ nsh, we consider the two neighbors perpendicular to the
shadow’s direction: Jik = {uik,1 , uik,2}, see Figure 3, middle. We consider

sshi =
nsh∑
k=1

Xik,ik,1 ×Xik,ik,2 , (6)

where sshi takes a value between 1 and nsh, the larger the value the better the agreement with a
shadow being observed at pixel ui. Under the random assumptions H0, and using Equation (4), sshi
becomes the random variable Sshi ∼ Bin(nsh, 1

4
).

ui1

ui3,1

ui3,2

ui3,6

ui1,1

Figure 3: Left, a wind turbine view from a Sentinel-2 image, with its hub shadow (blue cross), pylon foot (red cross) and
hub (green cross). Middle, zoomed in, the sampling along the pylon shadow where nsh = 5. Right, zoomed in, the sampling
around the hub where nhub = 4.

2.4 Hub Detection

For each pixel ui ∈ I, we want to compute if it is a plausible candidate for the bottom of the turbine’s
tower. Similarly as before, given the satellite’s altitude θsat and azimuth φsat, and the tower’s height
h, the coordinates (x, y) at the end of the hub are

(x, y) =

(
−h sin(φsat)

| tan(θsat)|
, −h cos(φsat)

| tan(θsat)|

)
. (7)
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Given the satellite’s metadata, one can compute the position of the hub (Figure 3 green cross) and
sample it. The sampling is detailed in Section 3.2. Notice that the apparent hub is a bit shifted
relative to the pylon foot because the satellite is not necessary at the wind turbine zenith; the more
the wind turbine is far from the nadir point of view, the more it appears slanted. For each of these
samples uik , 1 ≤ k ≤ nhub, we consider the six neighbors which are the vertices of a hexagon centered
in uik : Jik = {uik,1 , . . . , uik,6}, see Figure 3, right. We consider

shubi =
nhub∑
k=1

6∏
l=1

Yik,ik,l , (8)

where shubi takes a value between 1 and nhub, the larger the value the better the agreement with a
hub being observed at pixel ui. Under the random assumptions H0, and using Equation (4), shubi

becomes the random variable Shubi ∼ Bin(nhub, 1
26

).

2.5 Shadow and Hub Aggregation

Once shubi and sshi are computed, we need to aggregate those two pieces of information to get an
indicator of detection for the whole wind turbine. Let si = shubi +sshi . Since we know the distributions
of Shubi and Sshi , we know the distribution of their sum Si ∼ Bin(nsh, 1

4
) + Bin(nhub, 1

26
). To facilitate

the calculation, we approximate the sum of binomials in a new one: Bin(nsh, 1
2
) + Bin(nhub, 1

26
) ≈

Bin(n, pw), with n = nsh + nhub and pw is the weighted average of the success probabilities of the

two binomials: pw =
nsh × 1

4
+ nhub × 1

26

nsh + nhub
. As a result we can compute the probability of false alarm

P(Si ≥ si). Finally, the number of false alarms is NFAi = Ntests × P(Si ≥ si), which corresponds
to the expected number of false alarms under H0 when Ntests trials are made (here, the number of
pixels in the image).

2.6 Tightening Tests and Empirical Probabilities

We have presented the theoretical framework of the method. Yet, we could dramatically improve
the performances by tweaking the process a bit. The two ideas are to tighten the tests and then to
replace the former theoretical probabilities by empirical ones.

Rather than wanting for a shadow-sampled pixel to be just darker than its two neighbors, we ask
it to be darker than its two neighbors minus a threshold tshadow. As a result, the probability for a
randomly chosen pixel to pass the new test is not the theoretical 1

22
anymore, but some unknown

value which we estimate empirically. We note it pt
shadow

emp . Similarly, for a hub-sampled pixel, we want

it to be brighter than its six neighbors plus a threshold. We define pt
hub

emp the probability for a random
pixel to be brighter than six neighbors plus threshold thub.

We replace Xi,j by X̂ t
i,j = 1(ui ≤ uj − t) and Yi,j by Ŷ t

i,j = 1(ui ≥ uj + t). With these new
notations, we can define the new hub and shadow scores

ŝhubi =
nhub∑
k=1

6∏
l=1

Ŷ thub

ik,ik,l
, ŝshadowi =

nsh∑
k=1

X̂ tshadow

ik,ik,1
× X̂ tshadow

ik,ik,2
. (9)

Finally, under the assumption H0, ŝ
sh
i becomes the random variable Ŝshi ∼ Bin(nsh, pt

shadow

emp ), and

ŝhubi becomes the random variable Ŝhubi ∼ Bin(nhub, pt
hub

emp). The new scores are less likely to be high,
and can lead to better significance.

The empirical shadow (resp. hub) probability is computed directly on the image: we count the
number of pixels which satisfy the shadow (resp. hub) test, and divide by the total number of pixels.
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3 Algorithms

The programming of our NFA computation is divided into three algorithms. Algorithm 1 gives the
subpixel values of shadow samples and their neighbors, Algorithm 2 does the equivalent for the
hub, and Algorithm 3 is the main algorithm which makes all the computations using the previous
outcomes.

3.1 Shadow Sampling

We will now describe the procedure for sampling the shadow, as detailed in Algorithm 1. If there
is a h-meter-tall wind turbine on a pixel i of coordinates coordsi, the induced shadow is a segment
beginning at i and ending at a subpixel location. We name the latter coordinates coordstopi . To
determine these coordinates, we need to know the direction of the shadow and its length in pixels.
The required information is usually available in the metadata. Here, the crucial piece of information
is the position of the sun in the sky, that is to say the sun’s azimuth φsun and the sun’s altitude
θsun. These are two angles: the first one gives the direction, the second one induces the stretch of
the shadow. Given this, we can compute the metric shift (x, y) between the bottom and the top of
the shadow using Equation (5). We then need to convert this metric shift into a subpixel shift; this
is done simply by dividing it by the satellite’s resolution, as can see in line 2 of the pseudo-code.
Notice that only the shift needs to be divided by the resolution, as the coordinates are already in
image units.

Now we need to sample the segment [coordsi, coords
top
i ]. To do that, we just have to choose a

sampling rate δ. We sample every δ meters, or equivalently pixδ = δ/resolution pixels. The whole
list of samples is named COORDSshadowi . Finally, we can determine the two neighbors’ positions for
each sample. They are sampled in the orthogonal direction of the shadow segment, and distant of
it by eo meters (equivalently eo/resolution pixels, see Figure 3, middle). Table 1 gives the default
values of the parameters of this algorithm.

Now we have managed to get all interesting pixels locations and, since most of them are in fact
subpixel locations, we get their values by bilinear interpolation. In the code, the process is a little
different: here, to write Algorithm 3 as light as possible, the computation of the pixels’ and neighbors’
values is made in the auxiliary algorithms.

3.2 Hub Sampling

We will now describe the procedure for sampling the hub, as detailed in Algorithm 2. Due to the
tilt, the footprint of the hub is not necessarily at the same location of the base of the wind turbine.
As we did before for the shadow, we have to calculate the shift between basis and top of the tower
in the image, and then sample around the top. The shift is computed as detailed in Equation (7).
We convert this metric shift into a subpixel shift by dividing it by the satellite’s resolution, line 3 of
the pseudo-code. Shifting away from the basis of the tower to the hub’s footprint, we sample around
it. The sampling shape is a regular (nhub−1)-sided polygon of side δ meters (pixδ = δ/resolution
pixels), plus its center (the four red dots in Figure 3, right). The list of sample positions is named
COORDShubi and contains thus nhub coordinates. We then want to determine the positions of the
samples’ neighbors. Given a sampled pixel, we get 6 neighbors around it at eh meters, regularly
spaced. This forms a regular hexagon, see Figure 3, right. Table 1 gives the default values of the
parameters of this algorithm.

Now we have managed to get all the interesting coordinates and, since most of them are subpixel
locations, we get their values by bilinear interpolation. Here again, in the code, the process is a little
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Algorithm 1: sample shadow

input : I Satellite image

input : coordsi Tested pixel position

input : φsun, θsun Sun’s zenith and azimuth

parameter : h Hypothetical height of wind turbine

parameter : r Resolution in meters

parameter : δ Sampling rate in meters

parameter : eo Neighbor distance in meters

output : uij , uij,1 , uij,2 Sampled shadow values and associated neighbors

1 shift = (x, y)← (− h sin(φsun)
| tan(θsun)| ,−

h cos(φsun)
| tan(θsun)| ) Shift between bottom and top of shadow, Equation (5)

2 coordstopi ← coordsi + shift/r Convert the shift from meters to pixels

3 COORDSi ← Samples from coordsi to coordstopi with a sampling rate of δ/r.
4 foreach coordsij in COORDSi do

5 pixshift← (−y,x)
||shift||

eo
r

Shift between samples and neighbors, in pixels

6 coordsij,1 ← coordsij + pixshift

7 coordsij,2 ← coordsij − pixshift Neighbors’ coordinates computation

8 uij , uij,1 , uij,2 ← bilinear interpolation of I in coordsij , coordsij,1 , coordsij,2 respectively.

9 return {uij , uij,1 , uij,2}

different: to write Algorithm 3 as light as possible, the computation of the pixels’ and neighbors’
values is made in the auxiliary algorithms.

Algorithm 2: sample hub

input : I Satellite image

input : coordsi Tested pixel position

input : φsat, θsat Satellite’s zenith and azimuth

parameter : h Hypothetical height of wind turbine

parameter : r Resolution in meters

parameter : δ Sampling rate in meters

parameter : eh Neighbor distance in meters

parameter : nhub Number of samples; number of sides of the sampling polygon minus 1

output : uik , uik,l Sampled hub values and associated neighbors

1 pixδ ← δ/r Sampling rate conversion: meters → pixels

2 shift← (− h sin(φsat)
| tan(θsat)| ,−

h cos(φsat)
| tan(θsat)| ) Shift between bottom and top of tower, Equation (7)

3 coordstopi ← coordsi + shift/r Shift converted from meters to pixels

4 COORDSi ← Samples at coordstopi and at the vertices of a regular nhub − 1-sided polygon

with side pixδ and center coordstopi .
5 foreach coordsik in COORDSi do
6 foreach l in {1, . . . , 6} do
7 coordsik,l ← coordsik + eh

r
(cos(2iπl

6
), sin(2iπl

6
)) Neighbors’ coordinates computation

8 uik,l ← bilinear interpolation of I in coordsik,l

9 uik ← bilinear interpolation of I in coordsik
10 return {uik , uik,l}
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3.3 Main Procedure

The main procedure is detailed in Algorithm 3. For each pixel in the image I, we want to calculate
its wind turbine detection score, then convert it into a probability in order to finally get an NFA
map. Given pixel i, we use Algorithms 1 and 2 to obtain the needed samples on the shadow and the
hub’s predicted footprint. We can then increment the score by comparing the sampled values with
the sampled neighbors.

Given a shadow sample, the natural idea is to increment the score if it is darker than both
neighbors. But the designed test is in fact tighter: a threshold tshadow is added. We want a sampled
shadow pixel to be darker than its neighbors minus the threshold, see line 11. The equivalent is done
for the hub: a threshold thub is fixed. We want a sampled hub pixel to be brighter than each of its
neighbors plus the threshold, see line 13. Since these thresholds are set, the theoretical probabilities
are no longer valid; we need to compute empirical probabilities pshadow and phub. It simply is the
fraction of pixels in the image which satisfy the tightened shadow, respectively hub, test.

Once the scores and empirical probabilities are computed, we just have to wrap up: add the scores
to get the likelihood score, compute the weighted average of the empirical probabilities and then the
tail of the binomial distribution to convert likelihood into probability, and multiply by the total
number of pixels examined to convert probability into NFA. Finally, threshold the − log10(NFA) by
tNFA to have the detection map.

Parameter Default value
Height (h) 80m
Resolution (r) 10m
Sampling rate (δ) 10m
Distance neighbor-shadow (eo) 15m
Distance neighbor-hub (eh) 30m
Number of hub samples (nhub) 7
Number of hub neighbors per hub sample 6

Table 1: Default parameter values.

4 Results

Among all parameters set for the algorithm, the thresholds tshadow, thub, tNFA and h are the most
decisive. Since h is supposed fixed at 80m, we analyze the three others. Figure 4 shows eight
Sentinel-2 images and their detection map, with (tshadow, thub, tNFA) = (25, 50, 1). Figure 5 shows a
wider area of 1000 by 1000 pixels and its detection map.

On the eight small images, with this set of parameters, the algorithm manages to detect a decent
amount of wind turbines, with some false detections. On the four bottom images, we can see a
detection pattern in the form of a segment, centered on the hub. This segment has the same direction
as the shadow; it comes from the overlapping of the computed shadows around the central hub. It
should reduce or disappear if tNFA was increased.

This detection pattern can be confusing. It does not come from noise, but from the detection
of other parts of the shadow. We should aim at suppressing it, to get only one pixel detected for
each wind turbine. A natural idea is to group these detection blobs, for instance by non-maximum
suppression. We tried to do it and chose not to include it in the final algorithm: it led in numerous
cases to a loss of true detections, because they got sucked by false or true ones when they were too
close to each other.
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Algorithm 3: Detection map computation

input : I Satellite image

input : φsun, θsun Sun’s zenith and azimuth

input : φsat, θsat Satellite’s zenith and azimuth

parameter : height Hypothetical height

parameter : tshadow, thub, tNFA Thresholds

parameter : sh sampl, hub sampl Many parameters, detailed in appropriate algorithms

output : Detection map
1 psh ← compute pt

shadow

emp Empirical probability for a random pixel to be shadow

2 phub ← compute pt
hub

emp Empirical probability for a random pixel to be hub

3 foreach pixel position i do
4 tabshi ← sample shadow(I,coordsi,φsun, θsun,height,sh sampl) Algorithm 1

5 nsh ← length(tabshi )
6 tabhubi ← sample hub(I,coordsi,φsat, θsat,height,hub sampl) Algorithm 2

7 nhub ← length(tabhubi )
8 ŝshi ← 0
9 ŝhubi ← 0

10 foreach ushij ∈ tab
sh
i do

11 ŝshi ←− ŝshi + 1(ushij < ushij,1 − t
shadow)× 1(ushij < ushij,2 − t

shadow) Shadow score update

12 foreach uhubik
∈ tabhubi do

13 ŝhubi ←− ŝhubi +
6∏
l=1

1(uhubik
> uhubik,l

+ thub) Hub score update

14 si ← ŝshi + ŝhubi Total score

15 n← nsh + nhub

16 pw ← 1
n
(nshpsh + nhubphub)

17 Pi ← P(B(n, pw) ≥ si) Compute tail of Binomial distribution

18 NFAi ← Pi× #columns in I × #rows in I We get an NFA map, same size as I

19 Detection map ← − log10(NFA) > tNFA

20 return Detection map

Some false positives coincide with spots on bright roads mistaken for a hub as we can see in
row 3 columns 3–4, or along natural identifiable dark structures in the image, row 4 columns 1–2.
This illustrates the weak part of this algorithm: we have designed a detector of bright dot and dark
segment at the same time. A very visible shadow can be sufficient for a detection regardless of the
presence of a bright dot, and vice-versa. Moreover, the shadow part of the detector can be easily
misled by ground structures like paths, roads or crop fields; the hub part can be duped by bright
structures such as buildings, roads or snow.

Some other false positives come from less visible yet existent structure, row 2 columns 1–2 for
example. To get rid of the latter, we can try to increase tshadow or thub. Some wind turbines are not
detected, mostly in the first and last images. In these images, they are less visible than in the other
ones; either the shadows do not emerge well from the background or the hubs are not very bright.
On the borders of the images, a safe zone is not explored by the algorithm. That is because on the
pixels too close to the borders it may not be possible to fully sample shadow and hub.

On the big image, the same observations follow. We can also see that bright buildings can be
mistaken for wind turbines.

To quantify the influence of the examined parameters of the method, we designed the following
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Figure 4: Wind turbine detection computed with the proposed algorithm on eight Sentinel-2 images. First and third columns
are detection maps, where gray pixels correspond to undetected pixels while white corresponds to detected ones; second
and fourth columns are corresponding Sentinel-2 images. The gray background on the detection maps helps visualizing the
borders of the images, contrasting with the black background. The parameters (tshadow, thub, tNFA) are set to (25, 50, 1).
On the Sentinel-2 images, hubs are circled in green and shadows in dark blue.

208



Single Date Wind Turbine Detection on Sentinel-2 Optical Images

Figure 5: Wind turbine detection computed with the proposed algorithm on a wide Sentinel-2 image. On the left is the
detection map, where gray pixels correspond to undetected pixels while white corresponds to detected ones; on the right
is the corresponding Sentinel-2 image. The gray background the on detection maps helps visualizing the borders of the
images. The parameters (tshadow, thub, tNFA) are set to (25, 50, 1). On the Sentinel-2 image, hubs are circled in green and
shadows in dark blue.

experiment: we applied the algorithm on two sets of around 300 Sentinel2 images: one containing
a wind turbine in its center, and the other not. We only look at a central square of the images to
assess if a detection is made or not. We can then compute the number of true and false positives,
true and false negatives, and finally a F1-score. Each set of (tshadow, thub, tNFA) gives a F1-score; by
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making one of these parameters vary while fixing the other two we can check the robustness of the
method. See Figure 6.
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Figure 6: Performance curves. Upper left: evolution of F1-score (blue) when tshadow varies from 0 to 200. Here,
(tNFA, thub) = (1, 50), fixed. Precision (orange) and Recall (green) are plotted. Upper right: evolution of F1-score
(blue) when thub varies from 0 to 200. Here, (tshadow, tNFA) = (25, 1), fixed. Precision (orange) and Recall (green) are
plotted. Lower left: evolution of F1-score (blue) when tNFA varies from −3 to 5. Here, (tshadow, thub) = (25, 50), fixed.
Precision (orange) and Recall (green) are plotted.

4.1 Impact of tshadow

Figure 7 shows the same eight Sentinel-2 images of Figure 4 and their detection maps with the set of
parameters: (tshadow, thub, tNFA) = (100, 50, 1). We try to toughen the shadow test, to get only very
visible shadows. In this figure, the segment-shaped detections mostly disappear. The detection maps
are globally cleaner, with yet again false detections. The ones due to a misleading bright dot remain;
those misidentified earlier in the image, in row 2 columns 1–2, disappear. Unfortunately the bottom-
left image is way worse than before. Here, the ground dark structures are fully spotted as shadows,
since their directions coincide well. In a way, this is just a worsening of the two-in-one detector
problem. If we toughen the test for a shadow pixel, then its test becomes more significant and allows
more easily to overlook the hub part. If we were to keep raising tshadow, we would ultimately get a
brightness detector. Indeed, if the threshold is too high, no pixel will pass the shadow test and only
the hub detector will be discriminant.

Figure 6, upper left, shows the influence of the variation of tshadow on the performances. There is
a good improvement from 0 to 25, then it stagnates.
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Figure 7: Wind turbine detection computed with the proposed algorithm on eight Sentinel-2 images. First and third columns
are detection maps, where gray pixels correspond to undetected pixels while white corresponds to detected ones; second
and fourth columns are corresponding Sentinel-2 images. The gray background on the detection maps helps visualizing the
borders of the images, contrasting with the black background. The parameters (tshadow, thub, tNFA) are set to (100, 50, 1).
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4.2 Impact of thub

Figure 8 shows the same eight Sentinel-2 images and their detection maps with the set of parameters:
(tshadow, thub, tNFA) = (25, 200, 1). Here the detection maps are very close to what we had with the
initial set of parameters (25, 50, 1), see Figure 4. Some correct detections have disappeared (see rows
1 and 2 columns 1–2) and some false road detections have disappeared (row 3 columns 3–4). It can
be explained as follows: the significance of unchanged detections was mainly driven by the shadow
part of the detector; the differences with the first set of parameters appear on detections which were
driven by the hub part of the detector. This shows how predominant in the detector the shadow part
is compared to the hub part. If we were to keep increasing thub, we would ultimately get a shadow
detector, for the reciprocal reason described in the previous section for tshadow.

Figure 6, upper right, shows the influence of the variation of thub on the performances. The
variations are quite small. A peak is around 50, then it decreases slowly.

4.3 Impact of tNFA

Figure 9 shows the same eight Sentinel-2 images and their detection maps with the set of parame-
ters: (tshadow, thub, tNFA) = (25, 50,−3); Figure 10 shows the same eight Sentinel-2 images and their
detection maps with the set of parameters: (tshadow, thub, tNFA) = (25, 50, 5).

With tNFA = −3, overdetection occurs. Indeed since we relax our final threshold, a lot of non-
significant pixels are detected. We can see a great aggravation of the segment-shaped detections, at
its utmost in the last image. We can also guess the limits where we set our safety gap away from
the borders, in the first image for example: this is the rectangular frame without detection, which
stands out thanks to a gestaltic completion.

On the contrary, with tNFA = 5, we just have a few detections. It is expected since we ask
for greater significance. The detected pixels are almost all correct, yet misleading dark components
still provoke false detections, as we can see in rows 2, 3 and 4, columns 1–2. The segment-shaped
detections have greatly decreased.

Figure 6, lower left, shows the influence of the variation of tNFA on the performances. Between −2
and 1 it remains close to constant, outside this interval it worsens. While setting the NFA threshold
too low means too many false detections, setting it too high means too few correct detections.

5 Conclusion

An algorithm for wind turbine detection in Sentinel-2 images was described based on the a contrario
statistical framework. The method produces correct results when the parameters are well-chosen,
but fails when misleading structures cover the ground. The most degrading ones are false shadows,
created by paths, roads or crop fields. Adapting the algorithm to use time series with various shadow
shapes should fix the problem.
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Figure 8: Wind turbine detection computed with the proposed algorithm on eight Sentinel-2 images. First and third columns
are detection maps, where gray pixels correspond to undetected pixels while white corresponds to detected ones; second
and fourth columns are corresponding Sentinel-2 images. The gray background on the detection maps helps visualizing the
borders of the images, contrasting with the black background. The parameters (tshadow, thub, tNFA) are set to (25, 200, 1).
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Figure 9: Wind turbine detection computed with the proposed algorithm on eight Sentinel-2 images. First and third columns
are detection maps, where gray pixels correspond to undetected pixels while white corresponds to detected ones; second
and fourth columns are corresponding Sentinel-2 images. The gray background on the detection maps helps visualizing the
borders of the images, contrasting with the black background. The parameters (tshadow, thub, tNFA) are set to (25, 50,−3).
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Figure 10: Wind turbine detection computed with the proposed algorithm on eight Sentinel-2 images. First and third columns
are detection maps, where gray pixels correspond to undetected pixels while white corresponds to detected ones; second
and fourth columns are corresponding Sentinel-2 images. The gray background on the detection maps helps visualizing the
borders of the images, contrasting with the black background. The parameters (tshadow, thub, tNFA) are set to (25, 50, 5).
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