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Abstract

The Retinex perception theory tries to mimic the human ability to cope with the high dynamic
range of natural scenes. In 1986 E. Land proposed a formulation of this model in terms of
a Center/Surround operation involving two steps, a local adaptation and a global transform.
This model gave rise to the so-called Center/Surround tone-mapping algorithms. In this paper
we unify the different Center/Surround algorithms proposed in the literature using a common
framework and analyze several possibilities for the local and global operations involved.

Source Code

The reviewed and documented source code and an online demo are available at the web page of
this article1. Compilation and usage instructions are included in the README.txt file of the
archive.

Keywords: Retinex theory; tone mapping; center/surround method; color enhancement

1 Introduction

The adaptation of the human visual system (HVS) to several orders of magnitude of light intensity
permits us to perceive a wide spectrum of lights and contrasts which, in general, a camera is unable
to capture. The reason is that the eye is a contrast detector, not an absolute detector like the sensor
in a digital camera. Edwin Land proposed, in 1964, a complex algorithm involving image paths to
compute relative lightness values from the absolute values captured by the camera [6].

Later, he published [7] an alternative formulation of the original algorithm in which the relative
lightness was computed as the ratio between the value of a pixel and the weighted average of the
surrounding values. This operation was followed by a logarithmic mapping of the ratios in order to
mimic the non-linear behaviour of the HVS with respect to low and high values of the illumination.

1https://doi.org/10.5201/ipol.2021.391
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A generalization of this formulation leads to the following model for the computation of the image
lightness L

L(x) = f

(
I(x)

F ∗ I(x)

)
, (1)

where I(x) is the light intensity captured by the camera at pixel x (we are considering here a
single-channel image), F is a surround radial kernel, and f is a global scaling function.

Equation (1) defines a Center/Surround model of image perception. In this paper we shall
analyze different alternatives both for the kernel and the scaling function, and we will give algorith-
mical details of the implementation of the model. For a more detailed analysis we refer the reader
to [10].

The paper is organized as follows: in Section 2 different alternatives for the kernel function
are analyzed; similarly, several possible scaling functions are examined in Section 3. The main
center/surround algorithm is described in Section 4, together with some technical details. Several
experiments are displayed in Section 5, and some conclusions are drawn in Section 6.

2 Kernel Functions

Mathematically, two conditions should be imposed to the kernel: scale invariance and integrability.
As proved in [14], the only radial kernel which is scale invariant is F (r) = K

r2
, which is the (non-

integrable) kernel proposed by Land in [7]. Several other radial kernels have been proposed in the
literature [7, 13, 5, 4, 3, 12, 14, 17]. In [10] an exhaustive analysis of these kernels is performed,
and some new ones are proposed. The authors unify all these kernels into five models, which are
summarized in Table 1 and described next:

• FAG is the generalization of the Gaussian kernel and a linearized version of the multiscale
Retinex (MSR) [4]. It is a weighted average of Gaussian kernels at different scales and it is
defined as

FAG(r) =
N∑
i=1

wiFG,σi =
N∑
i=1

wi
1

2πσ2
i

e
− r2

2σ2
i , (2)

where N is the number of scales, σi is the scale parameter of the i-th kernel and wi is its
corresponding weight factor.

Following [4], the scales are distributed following a geometric series

σi = σ1r
i−1.

The initial scale σ1 is a parameter. Since convolutions with Gaussians whose σ is of the order
of the image size or bigger yield a constant result, the final scale σN can be chosen depending
on the image dimensions

σN = S ·min(image width, image height),

where S is also a parameter.

Finally, we propose to define the weights as wi = 1
N

. In this way, we have reduced the
parameters of the kernel to N , σ1 and S.
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• FIG was first introduced in [14] to find a compromise between scale invariance and integrability.
It is a continuous average of Gaussians from scale σ1 to σ2.

FIG(r) =


1

2π log(σ2/σ1)

exp

(
− r2

2σ22

)
−exp

(
− r2

2σ21

)
r2

, r 6= 0,

σ−2
1 −σ

−2
2

4π log(σ2/σ1)
, r = 0.

(3)

where the initial scale σ1 is a parameter, and the final scale σ2 is chosen depending on the
image size as in the previous case

σN = S ·min(image width, image height),

where S is also a parameter.

• F2,σ is the continuous version of the Land kernel F (r) = 1/r2

F2,σ(r) =
C(

r
σ

)2
+ 1

, (4)

where C is a normalization constant such that

∫
Ω

F2,σ(r)dr = 1.

• FIE is a continuous average of exponentials

FIE(r) =


1

2π(σ2−σ1)
e
− r
σ2 −e−

r
σ1

r
r 6= 0,

1
2πσ2σ1

r = 0.

(5)

It is inspired by an early work by Moore et al. [13], which proposed an exponential kernel

FE,σ(r) =
1

2πσ2
e−

r
σ , (6)

that permitted a real-time implementation in analog VLSI.

In FIE the weight of the central point in the convolution kernel is of order O( 1
σ1σ2

) showing
the inverse proportionality of both parameters. As is analyzed in [10], to obtain good results
the product between σ1 and σ2 must be constant. Since the kernel is not scale invariant, the
values of the initial and final scales σ1 and σ2 are chosen depending on the image size as

σ1 = s/min(image width, image height),

σ2 = S ·min(image width, image height),

where s and S are parameters.

• F1,σ is the continuous version of the ACE kernel [17]

F1,σ(r) =
C(

r
σ

)
+ 1

, (7)
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where C is a normalization constant such that

∫
Ω

F1,σ(r)dr = 1.

This kernel is not scale invariant, therefore the scale σ is chosen depending on the image size
as

σ = s/min(image width, image height),

where s is a parameter.

Kernel Parameters

FAG(r) =
N∑
i=1

wiFG,σi N , σ1, S
σN = S ·min. image dimension

σi = σ1

(
σN
σ1

) i−1
N−1

wi = 1
N

i = 1, . . . , N

FIG(r) =


C
exp

(
−r2
2σ2

2

)
− exp

(
−r2
2σ2

1

)
r2

, r 6= 0

C
σ−2

1 − σ−2
2

2
r = 0

C =
1

2π log(σ2/σ1)

σ1, S
σ2 = S ·min. image dimension

FIE(r) =


C
exp

(
−r
σ2

)
− exp

(
−r
σ1

)
r

, r 6= 0

1

2πσ2σ1

, r = 0

C =
1

2π(σ2 − σ1)

s, S
σ1 = s/min. image dimension
σ2 = S ·min. image dimension

F1,σ(r) =
C(

r
σ

)
+ 1

s
σ = s/min. image dimension

F2,σ(r) =
C(

r
σ

)2
+ 1

σ

Table 1: The five models of surround kernels that summarize the state of the art.
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Optimum Values of the Kernel Parameters

In [10] the authors studied, in terms of some distortion measures, the range of values of the parameters
of the different kernels. In this study they observed that kernels FAG, FIG and F2,σ, which are
differentiable at r = 0, produce more halo distortion than FIE and F1,σ which are non-differentiable
at r = 0. This is because the halo becomes more visible as the size of the kernel decreases, and the
non-differentiable kernels have a less local behavior. Table 2 presents the recommended parameter
values. In Section 5 several examples illustrate how these parameters influence the obtained results.

Kernel Recommended parameter values
FAG N = 5, S ≥ 0.5, σ1 indifferent
FIG S ≥ 1, σ1 ≥ 0.25
FIE S ≥ 0.5, s ≥ 0.5
F2,σ σ ≥ 0.25
F1,σ s ≥ 0.1

Table 2: Recommended ranges of values of the parameters of the kernels that guarantee a minimum degree of visual
distortion in the results.

3 Scaling Functions

The human visual system (HVS) is able to discount the effect of the illumination in the perception
of the scenes. The Retinex theory tries to mimic the HVS, with the center/surround formulation.
Moreover, Land in [8] observed that the function which relates reflectance with lightness sensation
can be approximated by a logarithmic function. Naka and Rushton [15] were the first to model
the contrast sensitivity as a sigmoid function. Reinhard in [16] noticed the mathematical properties
of sigmoid functions to model the HVS. On the other hand digital images suffer several camera
processes, such as gamma-corrections and white balance, which these mapping functions must take
into account. In [10] different options for these mapping functions (also known as scaling functions)
were analyzed. Table 3 summarizes them. Note that these functions are defined for single channel
images. For color images they are applied on a channel-by-channel basis.

In what follows, Min and Max refer to the minimum and maximum values of the range of the

center/surround operation
I

F ∗ I
, which shall be mapped to the usual [0, 255] range.

Name Function f
Linear fL(x) = 255

(
x−Min

Max−Min

)
Logarithmic flog(x) = 255

log(Max−Min+1)
log(x−Min+ 1)

Power fα(x) = 255
(

x−Min
Max−Min

)α
Naka-Rushton fNR(x) = 255(A+1)(x−Min)

A(Max−Min)+x−Min

Histogram based fE(x) = C
∫ x
Min

h(t)
1
p+1dt

Table 3: Scaling functions reviewed in Section 3.
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• Linear mapping. It consists in just a linear stretching of the input range to the desired output
range.

fL(x) = 255

(
x−Min

Max−Min

)
. (8)

• Logarithmic mapping. Inspired by the tone curve proposed by Drago et al. [1], which produces
better results (less noisy in dark areas) than simply replacing the linear values by logarithms
in Equation (8).

flog(x) =
255

log(Max−Min+ 1)
log(x−Min+ 1). (9)

• Power function.

fα(x) = 255

(
x−Min

Max−Min

)α
(10)

The parameter α can take positive and negative values. In our implementation, we have the
option to automatically fix α so that the median of the input values is mapped to the center
of the output range, i.e. 127.52.

• Naka-Rushton function. Naka and Rushton [15] modeled the contrast sensitivity in the human
visual system as the sigmoid function f(x) = x

x+s
, where s is the value which is mapped to 0.5.

We modify this function such that Min is mapped to 0 and Max is mapped to 255.

fNR(x) =
255(A+ 1)(x−Min)

A(Max−Min) + x−Min
, (11)

where A > 0 is a constant that controls the steepness of the function. For large values of A
fNR tends to a linear function fL.

In our implementation, we have the option to automatically fix A so that the median of the
input values is mapped to the center of the output range, i.e. 127.53. Note that this can only
be achieved for positive values of A when the median is below Min+Max

2
. If this is not the case,

A is fixed automatically to a large value, so fNR becomes linear.

• Taking into account the shape of the histogram of the center/surround operation
I

F ∗ I
, we

consider a histogram-based function, which is adapted to the pixel distribution of the values.
It is a generalization of the one proposed by Mai et al. [11]. The function is computed as the
minimizer of the functional

min
g

∫ Max

Min

h(x)

g′(x)p
dx,

subject to the condition ∫ Max

Min

g′(x)dx = 255,

where h denotes the normalized histogram and p > 0 is a parameter.

The closed-form solution of the minimizing problem is

fE(x) = C

∫ x

Min

h(t)
1
p+1dt. (12)

where C is such that fE(Max) = 255. Observe that for p = 0 fE is a histogram equalization.
In general, the parameter is fixed to p = 2, as proposed in [11].

2In our implementation, if the automatically computed α is smaller than 0.3, then its value is clipped to 0.3, to
prevent excessive enhancement of low input values.

3In our implementation, if the automatically computed A is smaller than 0.1, then its value is clipped to 0.1, to
prevent excessive enhancement of low input values.
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Definition of Min and Max. The values defining the range of the center/surround operation
I
F∗I could simply be computed as the minimum and maximum values of this operation. However,
in order to increase the dynamic range of the final output, it is sometimes useful to clip to either 0
(black) or 255 (white) some of the lowest (resp. highest) values of the original range. Therefore, Min
and Max are computed by selecting the percentages of image pixels that will be clipped to black
(sblack%) or white (swhite%). Algorithm 1 describes how these values are computed. This algorithm
is an adaptation of the algorithm for robust normalization proposed in [2], which itself is a variant
of the simplest color balance algorithm proposed in [9].

Algorithm 1: Compute Min-Max (adapted from [2])

Input : input image u with N pixels
Input : percentage of saturation in the white and the black, respectively swhite and sblack

Output : Min, Max
1 if u is color image then
2 umax ← max{uR, uG, uB} //Compute max channel

3 umin ← min{uR, uG, uB} //Compute min channel

4 else
5 umax ← u
6 umin ← u

7 umax ← Sort(umax) //Sort increasing

8 umin ← Sort(umin) //Sort increasing

9 Min← umin(b sblack
100

Nc) //Find minimum value

10 Max← umax(d(1− swhite

100
)N − 1e) //Find maximum value

4 Center/Surround Algorithm

The complete algorithm for the computation of the center/surround operation on an image is pre-
sented in Algorithm 2.

Computation of the convolution I ∗ F . The convolution between the original image and the
kernel function is computed in the Fourier domain. By using the FFT and IFFT functions of the
FFTW software library4 the original image is extended symmetrically across its sides, so that the
extended image, which is four times bigger, becomes symmetric and periodic. In fact, with the
FFTW library the symmetrization is implicit and performed directly as a cosine transform. By using
these functions the convolution is computed as

I ∗ F = IFFT{DFT(I) ·DFT(F )}.

5 Experiments

In a previous article [10], we carried out an analysis for different combinations of kernel and global
mappings, using quantitative and qualitative criteria, over HDR images. For these images, most of
the values were concentrated on the lower part of their dynamic range. This is not usually the case
for the LDR images studied in the current paper. For this reason the conclusions of our analysis

4M. Frigo and S. G. Johnson. FFTW package. http://www.fftw.org/
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Algorithm 2: Center/Surround Retinex Algorithm

Input : input image u
Output : processed image v
Parameters: kernel type F ∈ {FAG, FIG, FIE, F1, F2} scaling function

f ∈ {fL, flog, fα, fNR, fE}, percentages of black and white saturated pixels (sblack

and swhite), parameters of kernels and scaling functions

1 for each image channel I from u do
//Compute I ′ = I ∗ F

2 if F == FAG then
//Compute weighted sum of Gaussian convolutions

3 I ′ ←− 0
4 for each i ∈ {1, . . . , N} do
5 I ′ ←− I ′ + wi · I ∗ FG,σi
6 else

//Compute convolution

7 I ′ ←− I ∗ F
//Compute center/surround image

8 ICS = I
I′+ε

//Add small constant value (ε = 10−8) to avoid division by zero

//Compute range [Min,Max]

9 Min,Max←− Compute Min Max(u, s1, s2) //Algorithm 1

//Map range [Min,Max] to [0, 255] using scaling function f

10 v ←− ∅ //Initialize output image

11 for each image channel ICS do
12 Iout ←− f(ICS)
13 v ←− v ∪ Iout //Add processed channel to output image

14 return v

are slightly different from the ones in [10]. In general, we have observed that, for these images, the
recommended ranges of values of the parameters of the kernels, shown in Table 2, are correct, but
some minimum values must be increased.

In Figure 1 we compare the value of different parameters for the FAG kernel, with a fixed scaling
function (flog). In this image, we can observe that we obtain better results with the number of scales
greater or equal to 5. We also observe that values of S smaller than 0.5 produce artifacts in the
image. The tests show that the variation of the σ1 parameter does not produce meaningful changes
in the results.

In the case of the FIG kernel, the minimum recommended value of the σ1 parameter in Table 2 is
0.125, however, for most LDR images it produces excessively bright results. A value greater or equal
to 0.5 produces better results in this case. This fact can be observed in Figure 2.

The recommended values for the parameters of the kernel FIE in Table 2 are valid for the tested
LDR images. However, the parameter of the kernel F1,σ must be increased. In Figure 3, we can
observe that values smaller than 0.5 may enhance excessively the bright parts of the image.

Finally, the σ parameter for the kernel F2,σ should be set to values greater than 0.5, as it can be
seen in the experiments of Figure 4.

In Figure 5, we can compare the results obtained with the different kernels on the same input
image and with a fixed scaling function (flog). The parameters of the kernels are fixed to their
optimum values according to the previous comments. We observe that the non-differentiable kernels,
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Calobra image

N = 2, σ1 = 0.5, S = 1 N = 5, σ1 = 0.5, S = 1 N = 10, σ1 = 0.5, S = 1

N = 5, σ1 = 1, S = 0.125 N = 5, σ1 = 1, S = 0.5 N = 5, σ1 = 1, S = 2

Figure 1: Comparison between the different parameters with the FAG kernel with flog scaling function.

σ1 = 0.125, S = 1 σ1 = 0.5, S = 1

σ1 = 1, S = 1 σ1 = 4, S = 1

Figure 2: Comparison between the different parameters with the FIG kernel with flog scaling function applied to the image
Calobra in Figure 1.
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s = 0.1 s = 0.25

s = 0.5 s = 1

Figure 3: Comparison between the different parameters with the F1,σ kernel with flog scaling function applied to the image
Calobra in Figure 1.

σ = 0.25 σ = 0.5

σ = 1 σ = 2

Figure 4: Comparison between the different parameters with the F2,σ kernel with the flog scaling function applied to the
image Calobra in Figure 1.

FIE and F1,σ, obtain much better results, in terms of creation of halo artifacts. This is because the
halo becomes more visible as the size of the kernel decreases, and the non-differentiable kernels have
a less local behavior than the differentiable ones. Finally, in Figure 6, we can see another example.
In this case, the halo artifacts are not detectable, but we can observe an excessive saturation in the
window when using non-differentiable kernels.

If we analyze the scaling functions and their parameters, we observe that most of them have
no parameters, or these can be fixed automatically to obtain that the median of the values of the
C/S output is mapped to 127.5. Some results obtained with different values of the parameters for
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Calobra image FAG with N = 5, σ1 = 1, S = 1 FIE with S = 1, s = 1

FIG with S = 1, σ1 = 1 F1,σ with s = 1 F2,σ with σ = 1

Figure 5: Comparison between the different kernels with the flog scaling function.

functions fα and fNR are displayed in Figure 7.
Figures 8, 9 and 10 show results obtained with the different scaling functions (using the automat-

ically estimated parameters when necessary) and three different kernels. In general, the results are
brighter for flog and fNR, and better contrasted for fE. In some images (e.g. Figure 9) the results
with the fα scaling are excessively dark.

6 Conclusions

The center/surround formulation of the Retinex theory has been thoroughly analyzed in this paper.
Several alternatives, both for kernel and scaling functions, have been considered.

Experiments conducted on several images show that non-differentiable kernels at r = 0 (FIE
F1,σ), being less local, produce fewer visual artifacts (e.g. halos) than differentiable ones (FAG, FIG,
F2,σ). On the other hand, the rendition of image details is better for the latter. Regarding the scaling
functions, fE produces the better contrasted results.

The reader is invited to test the different options with the online demo associated to the article.
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Cathedral image FAG with N = 5, σ1 = 1, S = 1 FIE with S = 1, s = 1

FIG with S = 1, σ1 = 1 F1,σ with s = 1 F2,σ with σ = 1

Figure 6: Comparison between the different kernels with flog scaling function.
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Swam image

fα with automatic value fα with α = 0.5 fα with α = 2

fNR with automatic value fNR with A = 2 fNR with A = 4

Figure 7: Comparison between the results obtained with different parameters for the fα and fNR scaling functions, with
fixed FIG kernel.
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Swam image fE with p = 2 fL

flog fα with automatic value fNR with automatic value

Figure 8: Comparison between the results obtained with different scaling functions, using a fixed FIE kernel.

Horses image fE with p = 2 fL

flog fα with automatic value fNR with automatic value

Figure 9: Comparison between the results obtained with different scaling functions, using a fixed FAG kernel.
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Horses image fE with p = 2 fL

flog fα with automatic value fNR with automatic value

Figure 10: Comparison between the results obtained with different scaling functions, using a fixed F1,σ kernel.
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