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Abstract

This article describes a generic bundle adjustment methodology for multi-view stereo pipelines
for 3D reconstruction from high-resolution optical satellite imagery. The Rational Polynomial
Camera (RPC) model of each input view is refined by composing it with a rotation that com-
pensates errors related to the attitude angles encoding the satellite orientation. A set of tie
points, derived from feature tracks detected across the input images, is used to find the optimal
corrective rotations by minimization of the reprojection error. We evaluate the performance of
our method using time series of SkySat acquisitions over two different areas of interest. As an
internal evaluation metric we compute the standard deviation between corresponding height es-
timations derived from different stereo pairs, before and after the bundle adjustment correction.
Lastly, the results are also compared to an alternative solution for multi-view stereo pipelines
that eludes any explicit correction of the camera models by directly registering independent
dense surface models.

Source Code

The reviewed source code and documentation for this method are available at the web page of
this article1. Usage instructions are included in the README file.
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1 Introduction

The Rational Polynomial Camera (RPC) model is a generic sensor model, which is widely used to
describe the acquisition process of optical satellite sensors independently from the specific physical
properties of the sensor. The RPC model associated with each satellite image relates 3D object space
coordinates to 2D image coordinates. Both the 3D to 2D mapping (the projection function) and its
inverse (the localization function) are expressed mathematically as a ratio of cubic polynomials.

The projection function P of an RPC model can be expressed as

(r, c) = P(X, Y, Z) =

(

a(X, Y, Z)

b(X, Y, Z)
,
e(X, Y, Z)

f(X, Y, Z)

)

, (1)

where X, Y, Z represent the longitude, latitude and altitude of a 3D point; and r, c are the row
and column of its projection on the image plane. In practice (X, Y, Z) and (r, c) are expressed in
normalized coordinates, within a range of [−1, 1], for reasons of numerical stability [2].

Equation (1) is characterized by a, b, e, f , which are cubic polynomials of 20 coefficients. Each of
these polynomials is defined as

p (X, Y, Z) = p0 + p1Z + p2Y + p3X + p4ZY + p5ZX + p6Y X + p7Z
2 + p8Y

2

+ p9X
2 + p10ZY X + p11Z

2Y + p12Z
2X + p13Y

2Z + p14Y
2X

+ p15ZX
2 + p16Y X2 + p17Z

3 + p18Y
3 + p19X

3,

(2)

where pi is the i-th coefficient of p, and p can be a, b, e, or f .
Given a 2D point correspondence across two or more satellite images, the associated RPC models

can be used to triangulate and retrieve the 3D point that projects onto them. Although RPCs
provided by image vendors are expected to be precise enough, the complex system they encode is
subject to measurement errors, which are mainly related to the attitude angles that define the sensor
orientation. Such inaccuracies can easily cause a 3D point to project tens of pixels away from its
real location on the image plane, according to the RPC projection function P . This behavior implies
that different views of a scene are typically not consistent in a common frame of reference. The RPC
models may therefore introduce systematic errors in the triangulation of corresponding image points,
substantially degrading the accuracy of 3D models reconstructed from multiple views.

Nowadays, small push-frame satellites such as SkySat from Planet are capable of covering large
areas of the Earth by acquiring long strips of partially overlapping frames with a small geographic
footprint [33]. In stereo acquisition mode, a second (and even a third) strip of images is captured dur-
ing the same passage with a different inclination after reorienting the satellite. RPC inconsistencies
are especially problematic when it comes to using such fragmented acquisitions for 3D reconstruc-
tion. The reason is that the relief of the entire area of interest can only be obtained by fusing large
collections of local and partially overlapping 3D models derived from the small footprint images.
RPC inaccuracies produce different coordinates for corresponding local surfaces, which enormously
increases the difficulty of the fusion process. In this context, designing efficient RPC correction
strategies has become essential to effectively harness push-frame satellite imagery for large-scale
multi-view 3D reconstruction, as illustrated in Figure 1.

This work describes a bundle adjustment methodology, and its implementation, to refine the
RPC models of a group of satellite images observing a certain area of interest (AOI) from different
viewpoints. Our contributions are:

1. A minimalist solution, which seeks to estimate a light and non-redundant amount of parameters
to address the root of the problem from a physical point of view. The only inputs that are
strictly necessary are the initial RPC models and the corresponding georeferenced images.
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(a) (b) (c)

Figure 1: Toy example illustrating the benefits of RPC refinement on multi-view 3D reconstruction. (a) Independent point
clouds computed from four different pairs of satellite images. (b) Relative location of the models in the object space,
using unrefined RPC models. (c) Relative location of the models in the object space, using RPC models corrected with the
proposed methodology. RPC inaccuracies result in non-consistent reconstructions, which accumulate in different layers, as
shown in (b). The refined RPCs solve this problem and provide accurately aligned models, as shown in (c).

2. A stand-alone design. The refined cameras are output using the same standard as the input
cameras, the RPC model, which makes them directly pluggable to any satellite stereo pipeline.
Current open-source state of the art alternatives employ different formats to represent the
corrected camera models, which is useful for internal use but not for reproducibility, e.g. the
NASA Ames Stereo Pipeline [7].

3. A performance validation by measuring the practical impact in a multi-view 3D reconstruction
context. We compute the deviation between corresponding height values of digital surface
models (DSMs) derived from different pairs of SkySat cameras, before and after the RPC
correction. The results are also compared to the equivalent deviation values obtained using a
geometry registration algorithm for dense 3D models.

Bundle adjustment in a nutshell. Bundle adjustment is the problem of jointly optimizing the
viewing parameters (external and/or internal) of multiple cameras and the 3D locations of the objects
they observe [43]. Given an initial set of K 3D points {Xk}k=1,...,K , and their 2D observations xmk

across M cameras with projection functions {Pm}m=1,...,M : R3 → R2, bundle adjustment finds the
optimal solution by minimizing the reprojection error of the setting

E(Pm,Xk) =
K
∑

k=1

M
∑

m=1

‖xmk − Pm(Xk)‖
2, (3)

where Xk and Pm contain the variables to be adjusted. Following (3), the reprojection error is
typically defined as the sum of squared Euclidean distances between the estimated reprojected 3D
points, i.e. Pm(Xk), and their actual 2D observations in the images, i.e. xmk.

The alternative approach to the bundle adjustment problem proposed in [38] is worth mentioning.
Bundle adjustment creates a significant number of variables to be estimated when the number of
observed points is large. To avoid this growth in search variables, [38] introduce an alternative cost
function based on the cross product of the projection rays. In particular, the classic reprojection
error is replaced by a sum of squares of the minimum distance between the projection rays for each
point. Since in this formulation the 3D point locations are implicit, the search space is reduced to
the camera parameters only; however, the authors conclude that the standard bundle adjustment
formulation provides similar convergence properties for most applications.
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2 Related Work

Over the past two decades, researchers have thoroughly investigated the problem of RPC refinement.
The literature can be broadly divided into indirect or direct approaches. Indirect refining methods
propose complementary functions, defined in image or object space, which are composed with the
original RPC functions to correct the camera models. Oppositely, direct methods seek to explicitly
modify the RPC coefficients. The variables involved in the RPC correction process are usually tuned
based on a set of Ground Control Points (GCPs), i.e. tie points seen in the images whose absolute
location in the 3D object space is known [23, 42, 46]. In absence of GCPs, keypoint feature detectors
can be used to infer a substitute set of tie points between two or more images and perform a relative
(not absolute) correction between the input cameras [21, 22, 45]. Due to the complexity of the task,
direct methods require a larger number of tie points and are prone to poorer stability and accuracy
with respect to indirect methods, which are the most common practice [46].

Nowadays, bundle adjustment strategies based on the minimization of the reprojection error of a
set of tie points represent the standard solution for RPC correction in most state of the art pipelines
for 3D reconstruction from satellite images [7, 26]. The projection of each tie point across the different
cameras after bundle adjustment should ideally result in exactly corresponding 2D locations in the
images, implying that the corrected RPCs are consistent in a common frame of reference.

In the case of satellite images, since cameras are far from the Earth’s surface (typically above
500 km), the main component of the reprojection error comes from the inaccurate knowledge of the
satellite orientation [23]. Thus, the energy in (3) could ideally be minimized by composing each
projection map Pm with a 3D transformation Rm, whose objective is to reorient the camera with
respect to the object coordinates. This way the problem can be reformulated as

E(Rm,Xk) =
K
∑

k=1

M
∑

m=1

‖xmk − Pm(Rm(Xk))‖
2. (4)

In [23] it was shown that the net effect of RPC inaccuracies related to the attitude angles reduces to
a 2D translation (also termed as correction offset) in images covering lengths up to 50 km. Based on
this observation, bias compensation approaches for such scenarios have in common the optimization
of a 2D correction offset for each RPC model [17, 20, 34]. Following the notation from (3), this
amounts to finding the 2D translations Tm in the image domain that minimize

E(Tm,Xk) =
K
∑

k=1

M
∑

m=1

‖xmk − Tm(Pm(Xk))‖
2. (5)

Note that (4) inserts the correction transformation before the original RPC projection, while (5) does
it after. More generally, RPCs can also be corrected by composing them with polynomial functions
depending on the image or object coordinates of the tie points. This allows modeling other error
sources beyond attitude inaccuracies, such as time-dependent drift or lens distortion. Although they
are normally orders of magnitude smaller, these errors may not be negligible for certain scenarios,
e.g. large images covering hundreds of kilometers [23, 42].

To bundle adjust or not? For small areas of interest, covering lengths up to some hundreds of
meters or a few kilometers, RPCs can be locally modeled as affine cameras, using the first order
Taylor approximation [16, 18, 23, 41]. Under this approximation, a translation in the image domain
is equivalent to a translation in the object world. This implies that triangulation errors due to
RPC inaccuracies can ideally be corrected by a 3D translation, which can be estimated after the
3D reconstruction stage, e.g. with a point cloud registration algorithm. Previous works show that
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geometry based alignments can be used at a local scale to elude any prior RPC correction [18, 24, 29],
but they offer poor scalability as the amount of models to register increases. Running a bundle
adjustment to refine the RPC models seems a more natural and less-constrained solution to the
problem, as long as enough tie points are available. To further explore this issue, we compare our
methodology to an alternative algorithm that can be used to explicitly register independent dense
surface models (Section 4.4).

3 Methodology

We present a bundle adjustment methodology to refine the RPC models of a group of satellite images
observing a certain AOI from different viewpoints. Our objective is to produce a set of corrected RPC
models, consistent with each other, which will result in the automatic alignment of corresponding
relief estimates derived from different stereo pairs processed by a stereo reconstruction pipeline.

A block diagram of our method is shown in Figure 2. The first part of the pipeline is dedicated
to feature tracking, which serves to initialize the image and object coordinates of a set of tie points
observed across the input images. The tie points and their image observations, together with the
input camera models, are input to the second part of the pipeline, where the bundle adjustment
problem is solved. Based on the solution, a corrected RPC model is finally fitted for each input
image. The different blocks of the chain are explained in detail in the following subsections.

Feature
detection

Stereo pairs
selection

Pairwise
matching

Feature tracks
construction

Feature tracks
triangulation

Feature tracks
selection

Define BA
parameters

Run BA
(soft-ℓ1 cost)

Reprojection
error filtering

Run BA
(ℓ2 cost)

Fit
corrected RPCs

Feature tracking stage

Bundle adjustment (BA) stage

Figure 2: Block diagram of the proposed bundle adjustment methodology for RPC correction. Dashed blocks indicate
optional but recommended processing, intended to improve accuracy and/or efficiency.

3.1 Feature Tracking

As stated in Section 1, bundle adjustment problems are solved based on the reprojection of a set of
tie points across the input cameras. The list of 2D coordinates containing the observation of a 3D
point across multiple images is known as a feature track (Figure 3). In particular, the feature tracks
employed in our methodology result from pairwise correspondences of distinctive keypoints.

This section describes in detail the blocks involved in the feature tracking stage, which are listed
in the diagram in Figure 2.

3.1.1 Feature Detection

We employ the SIFT method to extract distinctive keypoints from the input images [28, 37]. Each
SIFT keypoint is identified by a descriptor of 128 values, invariant to image translation, rotation,
and scaling. SIFT descriptors are also robust to a wide range of image transformations, such as slight
changes of viewpoint, noise, blur, contrast changes or scene deformation.
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Figure 3: Example of 30 feature tracks detected across 3 overlapping views.

For large images, limiting the maximum number of keypoints per view can be useful to regulate
the cost of the matching step, which usually represents the bottleneck of feature tracking algorithms.
To this end, we order the SIFT features of each image from the coarsest to finest scale and select the
first Nkp keypoints to proceed to the matching step. The rationale is that coarse keypoints are less
affected by image noise, thus more likely to be seen in the other images. In this work we consider
a large value for Nkp, 60000 SIFT keypoints are allowed per image. Lower values of Nkp, e.g. only
a few thousand points, can be used to speed up the feature tracking stage, at the risk of a possible
loss of accuracy. This is because keypoints from the coarser scales are located with less precision. In
the same way, fewer keypoint correspondences can be expected to be found as Nkp decreases.

3.1.2 Stereo Pairs Selection

A key aspect of feature tracking is to define which pairs of images are suitable to be matched to
construct feature tracks and which pairs can be omitted. Avoiding unnecessary pairs is the most
effective way to save computational time and prevent undesired mismatches, which would result in
erroneous tie points for the bundle adjustment problem.

Algorithm 1 is employed to select suitable image pairs to match from all possible stereo pairs
based on the projected area overlap, in UTM coordinates, between the two images. The list of
pairs to match is denoted by pairs_to_match. Out of all the pairs in this list, the subset of
pairs offering a well-posed baseline-to-altitude ratio is stored in pairs_to_triangulate. The pairs
in pairs_to_triangulate are used to define the 3D tie point associated with each feature track
(Section 3.1.5). Matches from pairs in pairs_to_match that are not part of pairs_to_triangulate

are kept to contribute to the reprojection error of the bundle adjustment stage if they are part of a
feature track containing observations in at least one triangulation pair.

Algorithm 1: Stereo pairs selection
input : list of initial stereo pairs, input_pairs [default value = all possible pairs]

minimum image footprint overlap ratio, toverlap [default value = 0.1]
minimum baseline-to-altitude ratio, tbaseline-alt [default value = 1/4]
orbit altitude, in meters [default value = 500000] Orbit altitude ≈ 500 km for SkySat

output : list of stereo pairs suitable to match, pairs_to_match
list of stereo pairs suitable to triangulate, pairs_to_triangulate

Initialize pairs_to_match and pairs_to_triangulate as empty lists
for each pair in input_pairs do

Get the two images of the current pair, i.e. Iref, Iaux

Intersect footprints of Iref and Iaux in UTM coordinates
if UTM intersection area

UTM area Iref
≥ toverlap then

Add pair to pairs_to_match
Compute baseline between Iref and Iaux

if baseline
orbit altitude

≥ tbaseline-alt then
Add pair to pairs_to_triangulate
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3.1.3 Pairwise Matching

For each stereo pair in the pairs_to_match list, SIFT keypoints are matched using an automatic Fast
Approximate Nearest Neighbors algorithm [32]. The search for matches is restricted to points located
within the regions of the images corresponding to the intersection of their geographic footprints.

Mismatches in the feature track observations can strongly undermine the bundle adjustment
performance, leading to failure or strong biases [3, 29]. We remove erroneous matches by means
of a distance ratio test with a relative threshold of 0.6 [28]. Optionally, if the images cover small
geographic footprints and the local affine camera approximation holds, as explained in Section 2, this
can be followed by a RANSAC geometric filtering using the fundamental matrix2 [25].

Lastly, the distance dgeo between the approximate geographic coordinates of matched keypoints
is also used to further remove pairwise mismatches. dgeo is computed, in meters, as

dgeo = ‖UTM(Lref(xref, yref, zref))− UTM(Laux(xaux, yaux, zaux))‖, (6)

where xref, yref and xaux, yaux are the image coordinates of a keypoint and its match, respectively.
The approximate geographic coordinates of each point are obtained using the localization functions
of the two cameras, denoted by L, evaluated at a certain reference altitude, i.e. zref. The reference
altitude is arbitrarily set as the SRTM altitude at the center of the image footprints. The geographic
coordinates are converted to the UTM system to compute dgeo.

The values of dgeo should concentrate around an offset induced by the RPC errors. In presence
of outliers, such distances, if sorted, typically describe a well-defined elbow shaped function. Based
on this observation, an outlier rejection threshold τ is automatically set using the elbow point (i.e.
the point with largest distance with respect to the line defined by the minimum and maximum dgeo

values), as shown in Figure 4. If τ rejects more than 20% of the matches it is assumed that the
distribution does not follow an elbow shape and no thresholding takes place, i.e.

τ =

{

τ, if τ is larger than the 80th percentile of dgeo

∞, otherwise.
(7)

All pairwise matches where dgeo > τ are discarded.

x

y

Figure 4: Example of pairwise matching result. The plot on the right shows, in blue, the sorted approximated geographic
distances dgeo (y-axis) for each match of a stereo pair (x-axis), computed using (6). An outlier rejection threshold τ , in
red, is automatically set using the elbow point. The elbow point is defined as the point with largest distance with respect
to the dashed line, i.e. the line defined by those points of the distribution with the minimum and maximum y values.

3.1.4 Feature Tracks Construction

The recursive union-find algorithm from [31] is used to efficiently extend pairwise matches to feature
tracks of arbitrary length (Algorithm 2). Keypoints that belong to the same track are assigned a
common parent value. This strategy is independent of the order by which stereo pairs were matched.

2 The code uses a generic fundamental matrix, derived using the 7-point algorithm. In many respects the epipolar
geometry of two affine cameras is identical to that of two perspective cameras, with some simplifications due to the
fact that the epipoles are at infinity [25]. The RANSAC rejection threshold is set to 0.3 pixels.
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Algorithm 2: Feature tracks construction
input : list of pairwise matches connecting N keypoints, pairwise_matches
output : list of feature tracks, {Tj}j=1,...,Ntracks

Create a unique id for each matched keypoint from 1 to N
Initialize an empty vector parents with length N , where each position corresponds to an id
Define the union-find functions:

Function Find(parents, id):
parent_id = parents[id], i.e. the id-th value of parents
return id if parent_id is empty; else Find(parents, parent_id)

Function Union(parents, idleft, idright):
parent_idleft = Find(parents, idleft), parent_idright = Find(parents, idright)

if parent_idleft 6= parent_idright then parents[parent_idleft] = parent_idright

for each pairwise match in pairwise_matches do
Union (parents, left keypoint id, right keypoint id)

Ntracks = number of unique values in parents
Each track Tj corresponds to the set of keypoints whose ids have the same value in parents

Algorithm 3: Feature tracks triangulation
input : list of stereo pairs suitable to triangulate, pairs_to_triangulate

list of feature tracks, {Tj}j=1,...,Ntracks

output : list of 3D points corresponding to the input feature tracks, {Xj}j=1,...,Ntracks

for each track Tj do

Initialize Xj = (0, 0, 0) Xj is the 3D point projecting on the j-th feature track
Set wj = 0 wj counts how many triangulation pairs have been used to compute Xj

for each pair in pairs_to_triangulate do
Get the two images of the current pair, i.e. Iref, Iaux

for each track Tj do

if Tj is seen in Iref and Iaux then
Get the 2D point observations of Tj in Iref and Iaux, i.e. xrefj , xauxj

X = Triangulate (xrefj , xauxj) Triangulate using the RPC models of Iref and Iaux

Xj = (wjXj +X) / (wj + 1) Update the coordinates of the j-th 3D point
wj = wj + 1 Update the counter of pairs employed to compute the j-th 3D point

3.1.5 Feature Tracks Triangulation

Similarly to [29], the object coordinates of the tie point that projects onto each feature track are
initialized by triangulating all the pairwise matches of the track and taking the mean of the resulting
3D locations (Algorithm 3). The RPC triangulation algorithm from [15], denoted by Triangulate

in Algorithm 3, is employed to triangulate keypoint correspondences with the RPC camera models.

3.1.6 Feature Tracks Selection

In large-scale scenes, using an optimal subset of tracks may benefit bundle adjustment in two ways:

1. Speed up the process and reduce memory usage by removing redundant constraints.

2. Increase the calibration accuracy due to the rejection of tracks with higher localization error.

Our pipeline employs the feature tracks selection method from [12], summarized in Algorithm 4,
to select an optimal subset of feature tracks (or equivalently tie points) for the bundle adjustment.
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Algorithm 4: Feature tracks selection
input : epipolar graph, EG = {V,E} V and E denote the nodes/cameras and edges of EG

list of tracks, {Tj}j=1,...,Ntracks

number of spanning trees, KEG [default value = 60]
output : subset of tracks, S
Tranked = set of ranked tracks in T in decreasing priority (length-scale-cost criterion)
Initialize k = 0 k is the counter of spanning trees
Initialize S = {} S is the output subset of tracks
while k < KEG do

Compute camera weights Equation (8)
Croot = camera with largest weight,
Create inverted_list using Tranked a list that sorts the tracks seen in each camera using Tranked

Set l = 1 l counts the layers in the current tree
Initialize Hk(l) = {Croot} Hk(l) is the set of cameras in the l-th layer of the current tree
Set h = 1 h counts the number of cameras in Hk(l)
Initialize Sk = {} Sk is the set of tracks selected by the current tree
Initialize Ik = {Croot} Ik is the set of cameras connected by the current tree
while V − Ik 6= ∅ and h > 0 do

Initialize Hk(l + 1) = {} Hk(l + 1) is the set of cameras to visit in the next layer of the tree
for each node Cq in Hk(l) do

for each track Tq in inverted_list visible in node Nq do

if Tq /∈ Sk then
Wq = cameras where Tq is seen
Rq = neighbor cameras of Cq according to the EG
Zq = Wq ∩Rq Zq = neighbor cameras of camera Cq where track Tq is seen
if Zq 6⊂ Ik and Zq 6= ∅ then

Add {Zq − Zq ∩ Ik} to Hk(l + 1) neighbor cameras part of the track and not
yet visited will be visited in the next layer

Sk = Sk ∪ Tq add track to the set of tracks selected by the current tree
Ik = Ik ∪ Zq update the set of cameras visited by the current tree

l = l + 1
h = number of cameras in the l-th layer of tree Hk

Sort cameras in the l-th layer in descending order according to their camera weight

S = S ∪ Sk add all tracks selected by the current tree to the output subset
Tranked = Tranked − Sk remove tracks selected by the current tree from the set of ranked tracks
k = k + 1 update the counter of spanning trees, a new tree will be explored next

Algorithm 4 represents the input cameras and the feature tracks connecting them with an epipolar
graph (EG). In the EG each camera is a node and edges represent the epipolar relationship between
pairs of nodes. The weight of each edge can be seen as the number of pairwise matches between two
cameras, while the weight associated with the i-th camera, denoted by Ci, is defined as

w(Ci) = n(Ci) + e−cost(Ci), (8)

where n(Ci) is the number of neighbor cameras of Ci and cost(Ci) is computed as

cost(Ci) = mean(Ci) + µ · std(Ci), (9)

where mean(Ci) and std(Ci) correspond to the mean and the standard deviation of the average
reprojection errors of visible tracks in Ci. The scalar µ is a balancing factor set to 3 [12].
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C1 C2

C3C4

C5

3.5

3.1

4.3

4.1

2.2

C1 C2

C3C4

C5

T5 (C1, C3, C4, C5)

T2 (C1, C2, C5)

T1 (C2, C3, C4)

T3 (C1, C3, C5)

T6 (C1, C2)

T4 (C2, C3)

inverted list:

C1: T5, T2, T3, T6

C2: T2, T1, T6, T4

C3: T5, T1, T3, T4

C4: T5, T1

C5: T5, T2, T3

(a) Epipolar graph (EG), with the (b) Input feature tracks, where each (c) Ranked feature tracks from highest
weight w(Ci) next to each camera Ci track Tj is assigned a different color to lowest priority and inverted list

C1 C2

C3C4

C5

C1 C2

C3C4

C5

C1 C2

C3C4

C5

(d) First spanning tree selection, (e) Second spanning tree selection, (f) Output set of feature tracks S
i.e. Sk with k = 0 i.e. Sk with k = 1 for KEG = 2, T6 and T4 are discarded

Figure 5: Toy example of Algorithm 4 applied to five cameras connected by six feature tracks.

The selection process is a sequential procedure that constructs a number of spanning trees, denoted
by KEG. Each spanning tree selects a group of feature tracks, from those not chosen before, that can
be used to connect all nodes in the EG. An example of EG, with the corresponding camera weights,
is shown in Figure 5(a). Given the set of feature tracks in Figure 5(b), two different spanning tree
selections are shown in Figure 5(d) and 5(e). The final result of the algorithm is obtained from the
union of the feature tracks selected by all spanning trees, as illustrated in Figure 5(f).

Each spanning tree is constructed following a logic that establishes which cameras of the EG
have to be visited first and which of the tracks visible in each camera have to be considered first. In
general terms, cameras connected to a larger number of nodes are visited first, and longer tracks are
selected first. In case of a tie (e.g. if two cameras are connected to the same number of nodes or if
two tracks have the same length), other secondary characteristics are used to decide the order.

More specifically, the aforementioned logic is obtained by sorting the cameras in descending order
according to their weight (8) and by ranking all input feature tracks from highest to lowest priority.
Tracks are ranked using the length-scale-cost criterion: first, comparing the number of images where
they are visible (track length), i.e. longer tracks are given higher priority; then, for those tracks with
the same length, the average scale of the keypoints (track scale) is considered, i.e. lower scale tracks,
susceptible of being located with higher precision, have higher priority; finally, for those tracks equal
in length and scale, the ones with lower cost have a higher priority (track cost). Similarly to (9), the
cost associated with the j-th track, denoted by Tj, is defined as

cost(Tj) = mean(Tj) + µ · std(Tj), (10)

where mean(Tj) and std(Tj) correspond to the mean and the standard deviation of the reprojection
errors of all feature observations in track Tj. Based on the tracks ranking, an inverted list, which sorts
the visible tracks per camera in decreasing priority, can be generated. An example of an inverted list
derived from a set of ranked tracks is shown in Figure 5(c).

The only hyper-parameter of Algorithm 4 that needs to be set is KEG. Ultimately, KEG indirectly
controls the number of selected tracks, since higher values will result in the union of subsets found
by a wider variety of spanning trees. Further details and other toy examples similar to Figure 5
describing Algorithm 4 can be found in [12].
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3.2 Bundle Adjustment for RPC Model Refinement

Bundle adjustment is essentially a nonlinear weighted least squares problem, which can be written
in generic form as

min
x

1

2

N
∑

i=1

wir
2
i (x), (11)

where wi are the weights and ri is the nonlinear function employed to compute the reprojection
residual of the i-th feature track observation, i.e. ri = ‖xmk − Pm(Xk)‖ in (3).

The vector x in (11) contains all the parameters to estimate, which consist of

1. The parameters that are necessary to correct each camera model.

2. The coordinates of the tie points in object space.

The initial values of 1 define a set of rotations compensating for RPC inaccuracies (Section 3.2.1),
and the initial values of 2 are obtained after the feature track triangulation step (Section 3.1.5).

Given the solution of (11), the corrected tie points, projected with the corrected camera models,
should ideally match the corresponding feature track observations. Since SIFT keypoints are located
with a certain degree of noise, a minimum subpixel error should be expected.

The next section describes the camera correction parameters and the details of the optimization
process related to the bundle adjustment stage in Figure 2.

3.2.1 Camera Correction Parameters

The presented pipeline aims to refine the input RPC models by means of a corrective rotation around
the camera center, which compensates errors in the attitude angles defining the satellite orientation.
Given a 3D point X, its bundle adjusted projection is obtained as

xBA = P(R(X −C) +C), (12)

where xBA = (rBA, cBA), i.e. the bundle adjusted image coordinates, P is the unrefined projection
function of the input RPC model and R is the corrective rotation estimated by bundle adjustment.
The camera center C is derived by regressing a projective model from each RPC model, and it remains
fixed during the optimization3. The corrective rotation R is initialized as the identity matrix and it
is represented using Euler angles, which entails three values to optimize per camera:

Rm = Rx(φm)Ry(θm)Rz(αm) =





1 0 0
0 cosφm − sinφm

0 sinφm cosφm









cos θm 0 sin θm
0 1 0

− sin θm 0 cos θm









cosαm − sinαm 0
sinαm cosαm 0

0 0 1



, (13)

where φm, θm and αm are the three Euler angles to optimize for the m-th camera. This formulation
is similar to the one introduced in [29], the key distinction is that in this work the estimated rotation
corrects the original RPC model itself instead of a local affine camera that approximates it.

3Each projective model is obtained by creating a 3D grid in the scene space and finding its projection with the
RPC. A DLT resectioning algorithm is used to estimate a projective matrix using the 3D to 2D correspondences [25].
The center C of the projective model is used as center of rotation in (12). This is a coarse approximation, similar
to [7], but from our experience the exact value of C has little impact on the bundle adjustment solution.
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3.2.2 Numerical Optimization

The bundle adjustment problem is iteratively solved using a Trust Region Reflective method for large-
scale bound-constrained nonlinear minimization problems [8]. Our code uses an implementation from
the open-source Python library SciPy4, which employs the LSMR solver5 [19]. Instead of explicitly
computing the derivatives of the problem, the algorithm relies on a finite difference estimation using
the sparsity structure of the Jacobian to speed up the optimization process [13, 4].

Trust region methods can be seen as an evolution of Levenberg-Marquardt algorithms (both be-
ing damped Newton step methods) which are able to follow the negative curvature of the objective
function for faster convergence [5, 27, 43]. Further details on damped Newton methods and the con-
struction of large sparse Jacobian matrices for bundle adjustment problems are given in Appendix A.

The numerical optimization stops iterating when the change of the cost function falls below a
certain threshold controlled by a ftol tolerance value. Similarly, other tolerances for termination
checking the change of the independent variables (xtol) and the norm of the gradient (gtol) are used
as well. The default values of ftol, xtol and gtol are set to 10−4, 10−10 and 10−8 respectively.

3.2.3 Cost Functions and Reprojection Error Based Filtering

In addition to the outlier rejection tests conducted during the pairwise matching step (Section 3.1.3),
a wide variety of compatible strategies have been studied in the literature to further minimize the
impact of erroneous observations in bundle adjustment problems. The rejection of points whose
reprojection error exceeds a certain threshold after a series of initial iterations is a popular strat-
egy [39, 44, 29]. Other approaches use cost functions that enforce robustness to occasional large resid-
uals, or employ iterative reweighting according to the reprojection error of each observation [43, 3, 47].

In line with the previous ideas, the proposed bundle adjustment optimization starts with some
initial iterations, employing a soft-ℓ1 cost function (a variant of the Huber loss). Equation (11) thus
takes the form

min
x

1

2

N
∑

i=1

2

(

√

1 + r2i (x)− 1

)

. (14)

After this, a second series of iterations is applied using a classic sum of squared ℓ2 differences, which
yields the optimal estimator for Gaussian distributed perturbations. If we assume uniform weights:

min
x

1

2

N
∑

i=1

r2i (x). (15)

At the end of each series of iterations, the average reprojection distance ρ per feature track observation
is computed as the average value of ri, i.e. ρ = 1

N

∑N

i=1 ri.
Since (14) offers higher robustness to outliers than (15), after the first iterations we expect the

gap in terms of reprojection distance between inlier and outlier observations to increase. In presence
of outliers, at the end of the soft-ℓ1 iterations, the sorted observation-wise reprojection distances for
each image generally describe an elbow function. The method illustrated in Figure 4 can be used to
automatically set a rejection threshold τρ, following the same logic as (7). If ri > τρ, the i-th feature
track observation is discarded. The remaining tracks that contain at least two observations are fed
to the second series of iterations, that quickly converges to the final solution.

We set the maximum number of iterations Niter soft-ℓ1 and Niter ℓ2 to 50 and 300, for (14) and (15)
respectively. A summary of all the parameters listed so far, their meaning and their default values,
can be found in Table 1.

4Generic interface for least-squares minimization, https://github.com/scipy/scipy/blob/master/scipy/

optimize/_lsq/least_squares.py
5LSMR software, David Fong, Michael Saunders, https://web.stanford.edu/group/SOL/software/lsmr, 2011.
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Parameter Meaning [default value] Section
Nkp max number of SIFT keypoints per image (larger scale points have priority) [60000] 3.1.1

toverlap min geographic area overlap ratio between two images to match, from 0 to 1 [0.1] 3.1.2
tbaseline-alt min baseline-to-altitude factor between two images to triangulate [1/4] 3.1.2
tsift-ratio SIFT matching relative threshold between nearest and second nearest descriptors [0.6] 3.1.3
KEG number of spanning trees of the epipolar graph covered after feature track selection [60] 3.1.6

Kranking ranking criteria for feature track selection, in decreasing priority [length-scale-cost ] 3.1.6
ftol tolerance for BA termination by the change of the cost function [10−4] 3.2.2
xtol tolerance for BA termination by the change of the independent variables [10−10] 3.2.2
gtol tolerance for BA termination by the norm of the gradient [10−8] 3.2.2

Niter soft-ℓ1 max BA iterations with a soft-ℓ1 cost function [50] 3.2.3
Niter ℓ2 max BA iterations with a squared ℓ2 cost function [300] 3.2.3

Table 1: Main hyper-parameters of the feature tracking and bundle adjustment blocks.

3.3 RPC Model Fitting

After the bundle adjustment optimization, a new RPC model is fitted for each input image. The
new model encodes the corrected projection function PBA, which results from the composition of the
estimated rotation matrix R and the input RPC projection function P , as defined in (12).

The RPC fitting error derived from the i-th tie point with known 3D coordinates (X, Y, Z) and
image coordinates (r, c), can be expressed as a vector of two components (δri, δci),

δri =
a (X, Y, Z)

b (X, Y, Z)
− r =

aTui

bTui

− r, (16)

δci =
e (X, Y, Z)

f (X, Y, Z)
− c =

eTui

fTui

− c, (17)

where δri and δci are the differences in pixel units between the projected and the real image coor-
dinates. The vectors a, b, e, f contain 20 coefficients each, defining the cubic polynomials a, b, e, f

that characterize the RPC projection function (1), i.e.

a = [a0 a1 a2 · · · a19]
T , b = [b0 b1 b2 · · · b19]

T ,

e = [e0 e1 e2 · · · e19]
T , f = [f0 f1 f2 · · · f19]

T .

The vector ui, in turn, contains the variables associated with each polynomial coefficient in (2),

ui = [1 Z Y X ZY ZX YX Z2 Y 2 X2 ZY X

Z2Y Z2X Y 2Z Y 2X ZX2 Y X2 Z3 Y 3 X3].

Following (16) and (17), the new RPC coefficients are estimated by solving mina,b

∑

i |δri|
2 and

mine,f

∑

i |δci|
2 with a sufficient amount of 3D to 2D point correspondences, which are known as

Control Points (CNPs). This is done in the presented pipeline by means of the open-source regularized
weighted least squares algorithm described in [2]. The projection function PBA obtained from the
resulting RPC coefficients encodes the corrected mapping given by the bundle adjustment solution
with high precision. The average absolute δr and δc errors are of the order of 10−4 pixels or less.

The set of CNPs employed to fit each output RPC model results from a virtual regular grid of
n× n× n samples in the object space. This grid is projected to the image space using the corrected
mapping, to establish the 3D to 2D correspondences that are necessary to fit PBA (Algorithm 5).
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Algorithm 5: RPC model fitting using bundle adjustment solution (for one camera)
input : input RPC model, with unrefined projection function P and localization function L

bundle adjusted corrective rotation, R
camera center, C
altitude range, [Zmin, Zmax] this range can be defined based on the tie points 3D location
number of samples per dimension, n [default value = 10] defines a grid of n×n×n points

output : corrected RPC model, with a new projection function PBA

Set a certain margin (in pixel units), m = 10
Define a regular grid of n× n 2D points, G2D, covering the input image + m in each dimension
Define n elevation layers {li}i=1,...,10, uniformly distributed within [Zmin, Zmax]
Define a regular grid of n×n×n 3D points, G3D, by localizing G2D at each elevation layer l using L
Obtain the corrected image coordinates (rBA, cBA) of each point (X,Y, Z) in G3D Equation (18)
if the convex hull of the set of (rBA, cBA) coordinates covers the entire input image then

Fit PBA by running [2] with the n3 correspondences between (X,Y, Z) and (rBA, cBA)

else
Dilate the grid of fitting points by repeating all previous steps using m = 2m

3.3.1 Drift Correction in Object Space

The proposed methodology does not set any constraint to fix the bounding box that contains the
3D coordinates of the tie points employed by the bundle adjustment. The optimization process is
therefore free to move the scene through the object space to find a better fit between the input
cameras. As a result, a certain drift may exist between the initial and output location of the scene.
To minimize any possible drift, we compose the corrected projection mapping of each camera with a
translation in object space, Tdrift, which is common for all cameras. The corrected projection function
that maps a 3D point X to its location xBA in the m-th image evolves from (12) to

xBA = Pm(Rm(X + Tdrift −Cm) +Cm), (18)

where Tdrift is given by the solution of

min
Tdrift

K
∑

k=1

‖Xk − (X̂k + Tdrift)‖
2. (19)

Following equation (18), Tdrift is applied previously to the corrected projection mapping found by
bundle adjustment. In (19), X̂k represents the k-th tie point initial 3D location, while Xk is its
location after the bundle adjustment. Therefore Tdrift seeks to bring the tie points from the initial
scene location to that location in the object space where the bundle adjustment found the optimal
consistence between the input cameras. Note that the absolute location of the corrected camera
models remains subject to the absolute localization error of the input RPC functions, but our ob-
jective is to ensure consistency between cameras so that they can be exploited for multi-view 3D
reconstruction, not their exact absolute location.

4 Experiments

This section aims to assess the performance of the proposed bundle adjustment pipeline for RPC
correction. First, we introduce the data, the evaluation procedure and its metrics. Secondly, we
briefly describe a geometry based method for DSM registration, which aligns DSMs from different
stereo pairs without any preceding RPC correction, and we compare our approach to it. Finally, the
results of the conducted experiments are analyzed from a quantitative and qualitative point of view.
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4.1 Data

We test our method on two time series of SkySat panchromatic L1B frames, each covering a specific
AOI. Each time series consists of groups of partially overlapping images acquired at different dates
(Figure 6). SkySat L1B frames have a nadir resolution of ∼0.72 m per pixel and a total size of
1349×3199 pixels. The main characteristics of SkySat acquisitions and each series are detailed next.

...

D1 D2 D3 D4

Figure 6: Illustration of a time series of SkySat imagery. A collection of partially overlapping views covering a certain area
of interest is available at each acquisition date Di of the time series.

4.1.1 SkySat Acquisition Geometry

SkySats have 3 staggered sensors in their acquisition platform (Figure 7(a)), and each sensor acquires
a continuous strip of single frame images at a time (Figure 7(b)). The minimum swath width across
the strips amounts to ∼6.6 km on the ground. There is a small overlap between images of different
strips and between images of the same strip [14, 1].

SkySats can provide tri-stereo acquisitions, which can be used for 3D reconstruction [36]. The
tri-stereo acquisition mode produces image triplets, consisting of a forward, nadir and backward view
of each area, taken from the same orbit, with a time difference of a few seconds. Thus, the content
of each strip is seen at least three times in the tri-stereo data (Figure 7(c)).
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Figure 7: (a) Scheme of a SkySat focal plane. The upper half of the sensors is used for panchromatic capture (PAN),
the lower half is divided into 4 bands with the blue, green, red and near infra-red (NIR) filters. (b) Scheme of a SkySat
acquisition, where the strips of frames acquired by each sensor are outlined in different colors. (c) Number of overlapping
views of a SkySat tri-stereo acquisition.

4.1.2 Time Series Description

• Richards Bay: 136 images, distributed in groups of 5-6, over 24 acquisition dates from January
to May 2020. The AOI measures 1 km2 and covers part of the Richards Bay coal terminal
(Figure 8(a)). The maximum time interval between consecutive dates is 20 days (Figure 9(a)).
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• Morenci Mine: 3 entire tri-stereo acquisitions, from 3 different dates in January 2019. Each
tri-stereo acquisition amounts to ∼100 images, resulting in a total of 303 frames. The AOI
(Figure 8(b)) measures 62 km2 and covers the Morenci copper mine. As shown in Figure 9(b),
the time interval between consecutive dates is of a few hours.

h
e
ig
h
t
[m

]

12.0

17.5

23.0

28.5

34.0

39.5

45.0

50.5

56.0

h
e
ig
h
t
[m

]

900.0

1062.5

1225.0

1387.5

1550.0

1712.5

1875.0

2037.5

2200.0

(a) Richards Bay site (South Africa) (b) Morenci Mine site (United States)

Figure 8: On the left, the selected area of interest (AOI) of each time series, marked in yellow, covered by a collection of
SkySat L1B frames outlined in dashed blue lines. On the right, a digital surface model (DSM) of the AOI, obtained by
multi-view stereo reconstruction after RPC correction.

(a) Richards Bay time series. (b) Morenci Mine time series.

Figure 9: Number of images per acquisition date and time distance between consecutive dates.

Note that all images in the Richards Bay series were acquired by the same sensor (sensor 2 in
Figure 7(a)), while the Morenci Mine acquisitions contain the 3 strips per date, i.e. images from the
3 SkySat sensors. Also, note that all the images are free from clouds in the concerned AOIs.

4.2 Evaluation Procedure

The RPC correction is done in a date-wise manner, as in [30], solving an independent bundle adjust-
ment problem for the group of cameras of each date in the time series. This ensures that the scene
geometry is coherent for each group, which is not guaranteed if multiple dates are treated at once.

We evaluate the performance of our method by measuring its practical impact on the registration
of 3D reconstructions from different stereo pairs of the same acquisition date. To this end, for each
stereo pair, a DSM is generated with the satellite stereo pipeline SP2 [15, 11] using the corrected
RPC models resulting from the bundle adjustment. The resulting pairwise DSMs are restricted to
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the part of the AOI that is visible in each stereo pair, as shown in Figure 10. If the RPC correction
was successful, the pairwise DSMs of each date should be automatically registered in the object
space. This allows us to easily merge them into a denser and highly accurate model of the entire
AOI by taking the average height value in each cell of the DSM. Figure 10 illustrates the complete
multi-view stereo reconstruction procedure that is carried out for each date of the time series.
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Figure 10: Multi-view stereo reconstruction process run at each acquisition date of the time series. The DSMs from different
stereo pairs obtained with S2P [11], using the corrected RPC models, are merged into a complete DSM of the entire AOI
by taking the average height value at each cell.

We compute the average evaluation metrics across all dates of each time series. Note that the
proposed date-wise evaluation procedure does not seek to register DSMs from different acquisition
dates. By splitting the time series into independent bundle adjustment problems, we aim to measure
the degree of consistency between cameras that can be attained in a single date scenario, without
the risk of reaching a solution that is affected by changes in the geometry of the AOI over time.

4.3 Evaluation Metrics

The following metrics are employed to assess the functioning of bundle adjustment:

• Number of feature tracks: denoted by Ntracks, it corresponds to the number of feature tracks
employed to perform the bundle adjustment.

• Number of iterations: denoted by Niters, it corresponds to the number of iterations com-
pleted by the numerical optimization. This amount results from the addition of the number of
iterations required to minimize the cost functions (14) and (15).

• Reprojection error: denoted by ρ, it amounts to the average reprojection error, in terms of
Euclidean distance and measured in pixels, that is obtained from all feature track observations.

• DSM height deviation: denoted by σheight, this measure quantifies the consistency of cor-
responding height values retrieved from different stereo pairs of the same acquisition date. It
results from computing the average point-wise standard deviation, in height and measured in
meters, of the 2D points that are seen in more than one of the pairwise DSMs (i.e. middle
image in Figure 10). Ideally, these DSMs should coincide exactly, with a standard deviation
equal to zero. In practice, a small amount of noise derived from the computation of depth
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from stereo can be expected, but this indicator should reach values as close to zero as possible.
Visual examples of σheight are shown in Figure 11. Small holes or unfilled parts in Figure 11
correspond to points of the AOI that are not seen by at least two pairwise DSMs, where σheight

cannot be computed.

4.4 Comparison with a Geometry Based DSM Registration

We compare the proposed bundle adjustment methodology to an alternative geometry based strategy
that explicitly aligns dense surface models, described in Algorithm 6. As mentioned in Section 2,
working with images with small geographic footprint allows the local approximation of RPCs as
affine cameras. Geolocation errors related to RPC inaccuracies can then be corrected by applying 3D
translations in the object space, to register the 3D models derived from different stereo pairs [18, 41].

Algorithm 6 aligns independent DSMs based on their 3D points and, additionally, it also uses
the panchromatic frames originally employed to generate the DSMs. Using image based features
to compute the transformations for point cloud registration is a well established methodology in 3D
vision [40, 9, 35]. Under reasonable viewing angles, strategies of this kind can offer certain advantages
(e.g. fast solution, robustness to different cloud formats or a coarse initialization) compared to classic
exhaustive point cloud registration methods that exclusively rely on the 3D coordinates, such as the
Iterative Closest Point (ICP) algorithm and its variants [6].

Algorithm 6: Geometry based DSM registration (N -inputs)

input : N pairwise DSMs, i.e. {DSM (n)}n=1,...,N

the pairs of images used to compute each DSM, i.e. I
(n)
ref , I

(n)
aux for DSM (n)

output : N co-registered DSMs, i.e. {DSM
(n)
r }n=1,...,N

Compute all pairwise DSM intersections using the georeferenced bounds of the models
for each DSM intersection do

Retrieve the indices of the intersecting DSMs, denoted by i and j

Retrieve the reference image of each DSM, denoted by I
(i)
ref and I

(j)
ref

Find a set of matches, i.e. {x
(i)
m ,x

(j)
m }m=1,...,M , between SIFT keypoints in I

(i)
ref and I

(j)
ref

Retrieve {X
(i)
m ,X

(j)
m }m=1,...,M , where X

(i)
m are the 3D coordinates of x

(i)
m as given by DSM (i)

Define the equations derived from the M 3D matches resulting from the previous step:

The m-th correspondence amounts to Amy = bm, where bm = X
(j)
m −X

(i)
m ,

Am is a sparse vector of length N with 1 and -1 at i-th and j-th positions,
and y is the solution matrix with shape N × 3

Build the linear system Ay = b, where A and b result from stacking all rows Am and bm
Solve miny ||Ay − b|| to find the optimal solution y
for each input DSM do

Obtain DSM
(n)
r by applying the 3D translation t(n) to all the 3D points in DSM (n),

where t(n) is the n-th row of y

As noted in [41], DSM registration strategies offer little scalability for very large-scale scenarios,
with possibly hundreds of surface models to align. In line with the evaluation procedure introduced
in Section 4.2, we run Algorithm 6 in a date-wise manner, to register the DSMs obtained from stereo
pairs of the same acquisition date. The resulting height deviation, σheight, is compared to the value
obtained by the analogous experiments relying on the proposed RPC correction pipeline.
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4.5 Results

We conducted experiments using three different configurations for the proposed bundle adjustment
methodology. BA-v1 corresponds to the presented bundle adjustment pipeline using only its non-
optional blocks as shown in Figure 2. BA-v2 incorporates the two optional blocks from the bundle
adjustment stage, dedicated to filtering outlier tie point observations. BA-v3 additionally activates
the feature tracks selection, thus employing all blocks in Figure 2. The resulting evaluation metrics
are shown in Table 2. The metrics obtained with the original unrefined RPC models and Algorithm 6,
which eludes any RPC correction, are also reported.

Similarly to [1], for the Morenci Mine data, the images of each SkySat sensor are treated inde-
pendently, i.e. the AOI is divided into three smaller AOIs corresponding to each sensor strip and we
provide the average evaluation metrics across the three strips. This excludes from the evaluation all
possible inconsistencies between the intrinsic parameters of the three sensors (e.g. lens distortion).

The most important ideas that come out of Table 2 are discussed below.

Ntracks Niter ρ before BA [px] ρ after BA [px] σheight [m]

R
ic

h
ar

d
s

B
ay Unrefined RPC models - - - - 1.472

Geometry based DSM registration - - - - 0.304
Basic BA RPC correction (BA-v1) 4310 17 1.327 0.133 0.291
BA-v1 + filter after soft-ℓ1 iter. (BA-v2) 4309 50 1.326 0.132 0.290
BA-v2 + feature tracks select. (BA-v3) 197 35 1.697 0.167 0.295

M
or

en
ci

M
in

e Unrefined RPC models - - - - 2.675
Geometry based DSM registration - - - - 0.588
Basic BA RPC correction (BA-v1) 76943 8 1.352 0.178 0.662
BA-v1 + filter after soft-ℓ1 iter. (BA-v2) 76594 94 1.291 0.129 0.434
BA-v2 + feature tracks select. (BA-v3) 1094 56 1.829 0.206 0.370

Table 2: Quantitative results obtained for the two time series of SkySat imagery. Geometry based DSM registration
refers to Algorithm 6. BA-v1 corresponds to the presented bundle adjustment pipeline using all its non-optional blocks
(Figure 2). BA-v2 incorporates the two optional blocks from the bundle adjustment stage, dedicated to filtering outlier tie
point observations. Finally, BA-v3 additionally activates the feature tracks selection, thus employing all blocks in Figure 2.

BA RPC correction results in accurate DSM registration. The bundle adjusted RPC mod-
els succeed to accurately align in the object space the DSMs reconstructed from different stereo pairs
of the same acquisition date. This is reflected by the low deviation of height values, σheight, which
reaches average values of a few tens of centimeters for both series, normally below half a meter.
We obtain similar σheight values for Richards Bay, regardless of the bundle adjustment configuration
(BA-v1, BA-v2 or BA-v3). This seems reasonable as Richards Bay represents a not particularly
challenging scenario, where the AOI is small and mostly flat. Things are different for the Morenci
Mine, which covers a vast and mountainous AOI, with a more irregular relief. Thus, a wider range
of altitudes and a larger amount of feature tracks and cameras needs to be handled. The σheight

associated with the Morenci Mine strongly improves from BA-v1 to BA-v3, showing the benefits
of the reprojection error filtering after some initial iterations (BA-v2), as well as the feature track
selection (BA-v3). Using the complete pipeline (BA-v3) reduces σheight almost to the half of what is
obtained with the basic blocks (BA-v1).

BA RPC correction offers higher robustness than geometry based DSM registration.

Using the RPC models corrected with the complete presented pipeline (BA-v3) provided lower σheight
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than the equivalent experiments using geometry based DSM registration (Algorithm 6). Again, the
results were close for the Richards Bay data, but stronger differences are spotted for the Morenci
Mine, whose size requires the alignment of a larger set of independent pairwise DSMs (Figure 11).
Visual inspection reveals that this is because the registration methods exclusively based on the
geometry of dense models are subject to poor results derived from the stereo reconstruction process.
Algorithm 6 compensates geolocation errors derived from the camera models by assuming that the
input DSM geometries are coherent, which may not always be true, e.g. due to outlier points or
incomplete parts. Oppositely, our bundle adjustment methodology for RPC correction is applied
before the stereo reconstruction process, in a totally independent manner, and optimizes the camera
models jointly with the geometry of the scene. The fact that bundle adjustment can natively handle
initial inaccurate geometry estimates is a key advantage.
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Figure 11: Deviation of corresponding DSM height values, σheight, for an acquisition date of each time series. 144 DSMs
from different stereo pairs are used to cover the Morenci Mine AOI (48 DSMs for each sensor strip), while 4 pairwise DSMs
are enough for the smaller AOI in Richards Bay. σheight is computed where at least two pairwise DSMs overlap, which only
occurs in some bands for Richards Bay. Geometry registration after depth from stereo fails to align some DSMs near the
top-left corner of the Morenci Mine, which is corrected when bundle adjusted RPCs are used to compute the models.

The proposed pipeline may struggle in challenging scenarios for stereo matching, which is neces-
sary to guarantee that all cameras are connected in terms of tie point observations. However, dense
stereo reconstruction is also prone to failure in front of difficulties to find stereo matches. By exten-
sion, this weakness is shared indirectly (to a certain degree) with any geometry registration method
for dense reconstructions from stereo-photogrammetry, as is the case of Algorithm 6.
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Feature track selection improves bundle adjustment convergence and accuracy. The
average number of bundle adjustment iterations is reduced significantly when a suitable subset of
feature tracks is selected using Algorithm 4. Niter drops by at least 30% from BA-v2 to BA-v3 in
Table 2. For Richards Bay, BA-v3 attains very similar DSM registration (σheight) to the equivalent
run where all tracks are used (BA-v2). For the Morenci Mine, σheight improves significantly using
BA-v3. The more cameras to be registered, the more important it seems to prioritize long tracks
and the use of a balanced set across all images. In Algorithm 4 we set KEG = 60, to ensure at least
60 track observations are used per camera, if available. The reprojection error filtering step of our
pipeline (Section 3.2.3) may further reduce the tie point observations per camera after feature track
selection, so we chose a more generous value for KEG than the one suggested in [12], where KEG = 30.

5 Conclusion

A generic pipeline to refine the RPC camera models of satellite imagery was presented and tested
using collections of SkySat images acquired across multiple dates over two different areas of interest.
Errors due to inaccuracies in sensor orientation are corrected by composing the original RPC pro-
jection function with a rotation around the camera center. The method relies on the identification
of distinctive point correspondences between images, which are employed to automatically infer a
set of tie points observed across the input cameras. The corrective rotation associated with each
RPC model is found by running a bundle adjustment that minimizes the reprojection error of the tie
points. A strategy for selecting an optimal subset of tie points was also detailed to remove redundant
constraints from the bundle adjustment problem and improve its performance.

For each input camera, the presented pipeline outputs a new and corrected RPC model based on
the bundle adjustment solution. The output cameras are highly consistent, in a common frame of
reference, and can therefore be used for 3D multi-view reconstruction in a straightforward manner.
This is validated by measuring the standard deviation between corresponding height values of surface
models computed from different pairs of images of the same acquisition date. Using SkySat L1B data
we observe that the average value of such deviation decreases from the order of meters to the order
of a few tens of centimeters after employing the refined camera models.

Finally, the presented method was compared to a different state of the art solution, which eludes
any RPC correction step by directly registering the geometry of independent local models. When a
sufficient amount of tie points connecting all cameras is available, we obtain that the bundle adjust-
ment for RPC correction exhibits better performance. This is mainly because bundle adjustment
offers robustness to initial inaccurate geometry estimates, as a consequence of simultaneously opti-
mizing not only the camera models but also the scene geometry. Oppositely, 3D model registration
methods purely based on geometry are subject to errors derived from dense stereo reconstructions.

A Fundamentals of Bundle Adjustment Optimization

This appendix overviews the fundamental concepts of numerical analysis behind the optimization
algorithms employed to solve bundle adjustment problems [10, 43].

Bundle Adjustment as Nonlinear Weighted Least Squares

Given a set of K 3D points Xk seen across M cameras Pm, the 2D observation of a point Xk in the
m-th image is denoted by xmk. The bundle adjustment problem aims at minimizing the reprojection
distance ri = ‖xmk − Pm(Xk)‖, of all points in all cameras, by jointly optimizing the parameters of
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the camera projection functions Pm and the positions of the 3D points Xk

K
∑

k=1

M
∑

m=1

‖xmk − Pm(Xk)‖
2. (20)

If each 3D point is seen by all cameras, the total number of 2D observations xmk is N = K ·M .
Equation (20) defines a nonlinear weighted least squares problem. For the following discussion

we rewrite it as a generic problem of the form

min
x

1

2

N
∑

i=1

wir
2
i (x), (21)

where ri is a set of N nonlinear functions, x = (x1, . . . , xL) is a vector of length L with all the
parameters to estimate, and wi are the weights. By defining W as a diagonal matrix with the
weights wi, and r = (r1, . . . , rN) as the vector of nonlinear functions, omitting the dependency on x,
the above expression rewrites as

min
x

1

2
rT W r. (22)

We will detail the fundamentals behind the Gauss–Newton algorithm, which iteratively finds the
value of the variables x starting from an initial guess x0 by iterating

xt+1 = xt − (JTWJ)−1 JTWr(xt), (23)

where J = (J)ij =
∂ri(x

t)
∂xj

is the Jacobian matrix of r(xt).

Newton’s Method

Given a twice differentiable function f : RN → R, we seek to solve the optimization problem

min
x∈RN

f(x). (24)

This can be solved by gradient descent, which constructs a sequence {xt} from an initial guess x0 by
taking small steps δx = −µg in the direction of the gradient g,

xt+1 = xt + δx. (25)

The step δx must be set small enough (by controlling µ) to assure that f(xt+1) < f(xt) at each
iteration until convergence.

Newton’s method improves the gradient descent strategy by determining the step at each iteration
xt by solving a second-order Taylor approximation of f

f(x+ δx) ≃ f(x) + gT δx+
1

2
δxTHδx, (26)

where g and H represent the gradient and Hessian of f , respectively. The local minimum of (26) is
obtained by setting its differential to 0. This yields the optimal step

δx = −H−1g, (27)

which is known as the Newton step. Based on this definition, Newton’s method iterates according
to (25) and estimating δx at each iteration as defined in (27).

Newton’s method is faster than a classic gradient descent algorithm. Unfortunately it can fail in
many ways: it may converge to a saddle point rather than a minimum or it may be unstable if the
Hessian is close to a singular matrix. To enforce stability, a damped version of (27) can be used, i.e.

δx = −(H + λI)−1g, (28)

where λ is some weighting factor and I is the identity.
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Gauss-Newton Method

When applying Newton’s method to a nonlinear weighted least squares problem as (22), the gradient
and Hessian of f can be expressed in terms of the Jacobian matrix of r(x). Given

J = (J)ij =
∂ri(x)

∂xj

, (29)

the gradient writes as
g = JTWr, (30)

and the Hessian as
H = JTWJ + S, (31)

where (S)jk =
∑N

i=1 wiri(x)
∂2ri(x)
∂xj∂xk

. The S term is usually very small compared to JTWJ if the current
x is not too far from a minimum, so it can be omitted leading to the Gauss-Newton approximation
of the problem, which consequently defines δx as

δx = −(JTWJ)−1 JTWr. (32)

In the same way as (28), a damped Gauss-Newton step can also be defined

δx = −(JTWJ + λI)−1 JTWr. (33)

Equation (33) is used by the Levenberg-Marquardt algorithm, which is a classic and well-known
iterative algorithm to solve bundle adjustment problems.

Damped Newton methods use λ to regulate a trade-off between the Newton and gradient descent
directions, i.e. if λ → ∞ they behave as a gradient descent (δx ∝ −g). λ can be chosen to limit
the step to a dynamically chosen maximum size (Trust Region methods), or manipulated more
heuristically, to shorten the step if the prediction is poor (Levenberg-Marquardt methods).

Construction of the Jacobian Matrix

The Jacobian J of a bundle adjustment problem corresponds to a large sparse matrix [10]. This can
be easily illustrated with a toy example. Suppose we have M = 3 cameras and K = 4 3D points.
For simplicity we assume that each point is seen across all cameras. J can be expressed as

J =









































c1 c2 c3 p1 p2 p3 p4

(p1, c1) A1 0 0 B1 0 0 0
(p1, c2) 0 A2 0 B2 0 0 0
(p1, c3) 0 0 A3 B3 0 0 0
(p2, c1) A4 0 0 0 B4 0 0
(p2, c2) 0 A5 0 0 B5 0 0
(p2, c3) 0 0 A6 0 B6 0 0
(p3, c1) A7 0 0 0 0 B7 0
(p3, c2) 0 A8 0 0 0 B8 0
(p3, c3) 0 0 A9 0 0 B9 0
(p4, c1) A10 0 0 0 0 0 B10

(p4, c2) 0 A11 0 0 0 0 B11

(p4, c3) 0 0 A12 0 0 0 B12
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(34)

where the i-th row contains the partial derivatives of the reprojection error ri related to the i-th
feature observation, which corresponds to the k-th point seen in the m-th camera, i.e. (pk, cm).
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The vector of parameters to optimize x usually follows a camera-structure order, x = [c, p], where
c and p are the sets of camera parameters and 3D point coordinates to estimate, respectively. Since
ri is a norm of a residual we can write r2i = rx2

i + ry2i , where rx and ry represent the components
of the residual. Thus the first block of columns in J contains the partial derivatives with respect to
the camera parameters cm for each dimension of the image plane, i.e. Ai =

∂ri
∂cm

= [∂rxi

∂cm
, ∂ryi
∂cm

]T , while
the second block of columns contains the partial derivatives with respect to the coordinates of the
3D points pk, i.e. Bi =

∂ri
∂pk

= [∂rxi

∂pk
, ∂ryi
∂pk

]T . Therefore J has a total size equal to

(2 ·N)× (qc ·M + qp ·K), (35)

where

- K is the number of 3D points, 4 in this example.

- M is the number of cameras, 3 in this example.

- N is the number of 2D observations. N = K ·M = 12 in this example, since we assume that
each point is observed in all cameras.

- qc is the number of parameters to optimize per camera and defines the number of columns of
each block Ai in (34). E.g. qc = 3 if the camera parameters to estimate consist of 3 Euler
angles related to the camera orientation, as presented in this work.

- qp is the number of parameters to optimize per 3D point and defines the number of columns of
each block Bi in (34). E.g. qp = 3 if all 3D coordinates of each point are optimized.

Finite Differences Approximation and Sparsity Structure of the Jacobian

Computing the Jacobian matrix J of a cost function f(x) can be difficult for large sparse problems
as in bundle adjustment. Finite differences are a popular approach to approximate J in a simpler
and faster manner. Instead of explicitly computing the partial derivatives, these are approximated
as a difference between the values of f(x), e.g. f(x+ h)− f(x) for a simple forward difference with
step h. Under this approximation, finite differences offer the advantage that the cost function can
be treated as a black box in the optimization process.

The task can be further simplified by providing a sparsity structure that indicates where to
place each approximated partial derivative in J [13, 4]. The sparsity structure of J , denoted by JS,
corresponds to the binarization of J into zeros and non-zeros. JS can be used to minimize the number
of function evaluations that are necessary to compute J . Instead of constructing each column of J
individually, JS allows to group the columns beforehand into structurally orthogonal groups, where
the columns in each group do not have non-zeros in the same row position. This is useful to speed
up the process, since it allows the calculation of the partial derivatives of each group at once.

B Code Structure

This appendix summarizes the structure of the Python code associated with this paper. The main

script and the BundleAdjustmentPipeline class are described in Table 3. The rest of scripts are
briefly commented in Table 4. Usage instructions are included in the README file.

File Description

main.py Reads the input data and uses it to initialize an instance of the BundleAdjustmentPipeline

class. Afterwards, it calls BundleAdjustmentPipeline.run(), which runs the RPC correction
methodology described in this paper.

Table 3: Summary of the main script and the BundleAdustmentPipeline class. Continued on next page.
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Table 3 – Continued from previous page
File Description

ba_pipeline.py Implements the BundleAdjustmentPipeline class, illustrated by the block diagram in Fig-
ure 2. The chain is executed by run(), which sequentially launches the list of methods below.
For each method, the blocks in Figure 2 that are covered and the related scripts of code are
indicated.

- compute_feature_tracks(): Computes a set of feature tracks. This can be done
from zero using an instance of FeatureTracksPipeline or by recycling a series of
predefined pairwise matches. Blocks Figure 2: feature detection, stereo pairs selection,
pairwise matching and feature tracks construction. Related scripts: ft_pipeline.py,
ft_opencv.py, ft_s2p.py, ft_match.py, ft_utils.py.

- initialize_pts3d(): Computes the 3D tie point associated with each feature track.
Blocks Figure 2: feature tracks triangulation. Related scripts: ft_triangulation.py.

- select_best_tracks(): Selects a subset of optimal feature tracks (or equivalently tie
points). Blocks Figure 2: feature tracks selection. Related scripts: ft_ranking.py.

- define_ba_parameters(): Takes the input cameras, feature tracks and tie points and
creates an instance of BundleAdjustmentParameters, which is the data format em-
ployed by the bundle adjustment numerical optimization. Blocks Figure 2: define BA
parameters. Related scripts: ba_params.py.

- run_ba_softL1(): Runs some initial bundle adjustment iterations using the cost func-
tion (14). Blocks Figure 2: Run BA (soft-ℓ1 cost). Related scripts: ba_core.py.

- clean_outlier_observations(): Removes possibly erroneous feature track observa-
tions based on their reprojection error. Blocks Figure 2: Reprojection error filtering.
Related scripts: ba_outliers.py.

- run_ba_L2(): Runs the bundle adjustment using the cost function (15). Blocks Figure 2:
Run BA (ℓ2 cost). Related scripts: ba_core.py.

- save_corrected_cameras(): Fits a corrected RPC model for each input camera.
Blocks Figure 2: Fit corrected RPCs. Related scripts: ba_rpcfit.py.

File Description

F
ea

tu
re

tr
ac

k
in

g
st

ag
e

ft_opencv.py Functions to detect and match SIFT keypoints using the OpenCV library.

ft_s2p.py Functions to detect and match SIFT keypoints using the S2P library.

ft_match.py Functions to compute the stereo pairs to match (Algorithm 1) and restrict the pairwise
matching of keypoints to the geographic area where two satellite images intersect. Calls
ft_opencv.py or ft_s2p.py depending on which implementation of SIFT is chosen.

ft_utils.py Functions for feature tracks construction from pairwise matches (Algorithm 2) and
other secondary tasks such as verifying that all cameras are properly connected.

ft_triangulate.py Functions for feature tracks triangulation (Algorithm 3).

ft_ranking.py Functions for feature tracks selection (Algorithm 4).

ft_pipeline.py Implements the FeatureTracksPipeline class, which coordinates the execution of
the functions from all scripts in feature_tracks to produce a set of feature tracks
connecting an input collection of satellite images.

Table 4: Summary of all the scripts used by an instance of the BundleAdjustmentPipeline class. Files are classified
according to the stage where they intervene in the pipeline (Figure 2), except for the third row, which groups generic tools
that are not specific to a certain task. Continued on next page.
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Table 4 – Continued from previous page
File Description

B
u
n
d
le

a
d
ju

st
m

en
t

st
a
g
e ba_params.py Implements the BundleAdjustmentParameters class, which sets all variables of the

problem in the data format used to feed the numerical optimization process.

ba_core.py Functions directly used during numerical optimization: definition of Jacobian sparsity
structure, computation of reprojection error and launching of Trust Region algorithm.

ba_outliers.py Functions employed to remove outlier feature track observations from an instance of
BundleAdjustmentParameters based on the reprojection error.

ba_rpcfit.py Functions to run the regularized weighted least squares algorithm employed to fit the
corrected RPC models based on the bundle adjustment output (Algorithm 5).

cam_utils.py Functions dedicated to handle camera models: composition and decomposition, local
approximation of a projection matrix from an RPC model and other secondary tasks.

geo_utils.py Functions dedicated to deal with different geographic coordinate systems and the Geo-
JSON format, which is used to represent the boundaries of geographical areas.

loader.py Functions dedicated to load and store data on the disk.

Third-party Code

The files commented in Table 3 and Table 4 were specifically coded for this paper. In addition, the
implementation also uses third-party scripts from the S2P pipeline [11] and the implementation of
the SIFT method from [37]. These are found in the c and 3rdparty/sift directories of the code,
respectively. The third-party code, in C, is employed for the detection of SIFT keypoints and the
triangulation of pairwise correspondences using RPC models. It is handled by a series of Python
bindings, which are found in the directory bundle_adjust/s2p.
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