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Abstract

This article presents an implementation of the FTC (Fine-to-Coarse) algorithm for histogram
segmentation, presented by Delon et al. in 2007. This algorithm uses a non-parametric a
contrario approach to segment a 1D histogram into its meaningful modes. We describe also how
the method may be applied to the hue, saturation and intensity histograms of color images in
order to automatically extract their more representative colors, the so-called color palette. The
algorithm for color palette extraction described in this paper is based on the one first published
in 2007 by Delon et al., with an improvement that affects low-saturated colors. Several results
illustrate the effectiveness of the algorithm.

Source Code

The C source codes implementing the algorithms described in the paper, and the online demo,
are accessible at the associated web page1.

Keywords: 1D histogram segmentation; a contrario method; color palette

1 Introduction

Histograms are extensively used in data analysis because they provide a compact representation of
large amounts of data. Moreover, it is often possible to infer global properties of the data from the
behavior of their histogram. Histograms can be described by the list of their modes, i.e., the ranges
of values around which the data are concentrated.

In 2007 Delon et al. [8] proposed a non-parametric algorithm (the FTC algorithm) for the seg-
mentation of a 1D histogram into its meaningful modes. The meaningfulness of each node was
determined using the a contrario approach, following previous works of the same authors [9, 10, 11].
The algorithm was later refined in [3].

1https://doi.org/10.5201/ipol.2021.344
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The FTC algorithm has found applications in diverse problems, such as camera stabilization [6],
video demultiplexing [13], color palette extraction [7], and satellite image analysis [1].

In this paper we provide a detailed description of the FTC algorithm, and we illustrate its
application to the extraction of the main colors of a digital image, as proposed in [7] and [3].

The paper is organized as follows: the histogram segmentation algorithm is described in Section 2,
the algorithm for color palette extraction is presented in Section 3, several experiments are shown in
Section 4, and, finally, some conclusions are summarized in Section 5.

2 Automatic Location of the Meaningful Modes of a His-

togram

As commented in the Introduction, a mode of a histogram can be loosely defined as a range of values
in which data concentrate. Our goal will be to locate these modes in the 1D case.

More formally, we seek to find intervals of values (which we call segments) on which it is “likely”
that the histogram is the realization of a unimodal law. A density function f is said to be unimodal
on some interval [a, b] if f is increasing on some [a, c] and decreasing on [c, b], for some c in (a, b).

Such a segmentation is usually not unique (think of the segmentation defined by all the local
minima of the histogram) and we will impose two conditions that lead to a unique result:

• in each segment, the histogram is “statistically unimodal”,

• no union of consecutive segments is “statistically unimodal”.

The notion of “statistically unimodal” histogram is presented next.

2.1 Testing a Histogram against a given Probability Law

Consider a discrete histogram h = (hi)i=1...L, with N samples on L bins {1, . . . L}. The number hi is
the value of h in bin i and we have that

L∑
i=1

hi = N. (1)

For each discrete interval [a, b] of {1, . . . L}, let h(a, b) denote the proportion of points in [a, b],

h(a, b) =
1

N

(
b∑
i=a

hi

)
. (2)

Consider now a discrete probability law p = (pi)i=1...L. For each interval [a, b] of {1, . . . L}, let
p(a, b) be the probability for a point to fall into the interval [a, b],

p(a, b) =
b∑
i=a

pi. (3)

We define the relative entropy of an interval [a, b] of h with respect to p as

Hh,p([a, b]) = h(a, b) log
h(a, b)

p(a, b)
+ (1− h(a, b)) log

1− h(a, b)

1− p(a, b)
(4)
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Hh,p gives a measure of how well h follows the law p in a given interval2. If the relative entropy
is large we can state that h doesn’t follow the law p. In particular, we say that the interval [a, b] is
a ε-meaningful rejection of law p if

Hh,p([a, b]) ≥
1

N
log

L(L+ 1)

2ε
(5)

In [3] it is proved that the expected number of intervals [a, b] of h that satisfy the previous
condition is less than ε when h is indeed following law p in [a, b]. In general ε is set to 1.

2.2 Testing the Unimodal Hypothesis

As commented above, an unimodal law can be described as the concatenation of an increasing func-
tion with a decreasing function. More precisely, we say that a histogram h follows the unimodal
hypothesis on the interval [a, b] if there exists c ∈ (a, b) such that h follows the increasing hypothesis
on [a, c] and h follows the decreasing hypothesis on [c, b].

Moreover, we say that a histogram h follows the decreasing hypothesis (resp. the increasing
hypothesis) on an interval [a, b] if the restriction of the histogram to [a, b] (i.e. h|[a,b] = (ha, ha+1, . . . hb))
contains no ε-meaningful rejection for the decreasing (resp. increasing) hypothesis. In particular, we
compute

C[a,b] = N ·H − log
L(L+ 1)

2ε
(6)

with H the maximum of the relative entropies of all the subintervals of [a, b] with respect to the
hypothesis. If C[a,b] ≥ 0 the hypothesis is rejected.

The decreasing (resp. increasing) laws against which the intervals of h must be tested can be
computed from h itself using the Grenander estimator [12], as explained next.

Let P(L) be the space of discrete probability distributions on {1, . . . L}, i.e., the vectors r =
(ri)i=1,...L such that

∀i ∈ {1, 2, . . . , L}, ri ≥ 0 and
L∑
i=1

ri = 1. (7)

Let D(L) ⊂ P(L) be the space of all decreasing densities on {1, . . . L}. If r = 1
N
h ∈ P(L) is the

normalized histogram of our observations, the decreasing Grenander estimator of r, denoted by r̄, is
the only distribution of D(L) which achieves the minimal Kullback-Leibler distance from r to D(L).

This estimator can be computed using the Pool Adjacent Violators algorithm (see [2] and [4]),
which is summarized as follows:

1. Consider the operator D : P(L)→ P(L), applied on r = (ri)i=1,...L ∈ P(L),

2. For each interval [i, j] on which r is increasing, i.e. ri ≤ ri+1 ≤ · · · ≤ rj and ri−1 > ri and
rj+1 < rj, define D as

D(r)k =
ri + · · ·+ rj
j − i+ 1

for k ∈ [i, j]. (8)

3. Otherwise, define D as D(r)k = rk

This operator D replaces each increasing part of r by a constant value (equal to the mean value
on the interval).

A similar procedure can be used to compute the increasing Grenander estimator. A detailed
description of the method is provided in Algorithm 3.

2More precisely, Hh,p([a, b]) is the Kullback-Leibler distance between the two Bernoulli distributions of respective
parameters h(a, b) and p(a, b) (see [5]).
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2.3 The FTC Algorithm

The two conditions stated at the beginning of this section for obtaining an adequate segmentation
of a histogram into its modes can be fulfilled by applying the following algorithm, known as Fine to
Coarse (or FTC) algorithm:

1. Define the initial segmentation, S ={s0,. . . , sn}, as the finest segmentation given by the list of
all the minima, plus the end points 1 and L of the histogram.

2. Repeat:

(a) For each i, i = 0, . . . , n − 2, the cost of the union of interval [si, si+1] with its successive
interval [si+1, si+2] is defined as the lowest rejection against the unimodal hypothesis on
their union

Ci = C([si, si+1] ∪ [si+1, si+2]) = min
[a,b]∈[si,si+1]∪[si+1,si+2]

C[a,b],

with C[a,b] as defined in Equation (6).

Obtain the list L = {C0, . . . , Cn−2}.
(b) Sort the list of costs L, in increasing order.

(c) Assume that the lower cost is Cj. If Cj is lower than 0, then merge the intervals [sj, sj+1]
and [sj+1, sj+2].

(d) Update S.

Stop when no more pair of successive intervals follows the unimodal hypothesis, that is, when
the lower cost is higher than 0.

3. Repeat step 2 with the unions of j segments, j going from 3 to length(S).

A detailed description of the method is provided in Algorithms 1 and 2.

Adaptation of FTC to circular histograms. If h = (hi)i=1...L is a circular histogram (e.g. a
histogram of angular values), the previous algorithm can be adapted easily by defining an auxiliary
histogram h̃ as the concatenation of three copies of h. The FTC algorithm is applied to h̃ but only
the modes contained in the central part of this new histogram are used as output. The process is
described in Algorithm 4.
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Algorithm 1: FTC algorithm

Input : input histogram, h = (hi)i=1···L
Input : maximum expected number of meaningful rejections of unimodal law, ε

(default: ε = 1)
Output : segmentation of the histogram into n meaningful modes, s = {s0, · · · , sn},

with 1 = s0 < s1 < · · · < sn = L

//Compute local minima of the histogram (including endpoints)

1 m = {m1, · · · ,mK} = GetMinima(h) //K values, with m1 = 1 and mK = L

//Compute local maxima of the histogram

2 M = {M1, · · · ,MK−1} = GetMaxima(h) //K − 1 values, we have that mi < Mi < mi+1

//Initial segmentation: s = m

//Each interval Ii = [mi,mi+1] follows the unimodal law

//([mi,Mi] is monotonically increasing and [Mi,mi+1] is monotonically decreasing)

//The number of intervals is K − 1

//Merging of intervals

3 J = 1 //Number of consecutive intervals to merge= 1 + J

4 while J < K − 1 do
5 do

//Compute cost of merging 1 + J consecutive intervals

//from Ii = [mi,mi+1] to Ii+J = [mi+J ,mi+J+1]

6 C ← ∅ //List of costs

7 for i = {1, · · · , K − J − 1} do
//Compute cost of considering [mi,Mi+J ] monotonically increasing

8 costI = CostMonotone(h,mi,Mi+J , ‘increasing’, ε) //Algorithm 2

//Compute cost of considering [Mi,mi+J+1] monotonically decreasing

9 costD = CostMonotone(h,Mi,mi+J+1, ‘decreasing’, ε) //Algorithm 2

//Final cost is the smallest of both values

//Store index, cost and type

10 if costI < costD then
11 Ci = {i, costI , ‘increasing’}
12 else
13 Ci = {i, costD, ‘decreasing’}
14 C ← C ∪ Ci //Add cost to list

//Find minimum of all costs

15 {i∗,mincost, type} = C∗ ∈ C such that C∗(cost) < Cj(cost) ∀Cj ∈ C
//Merge intervals while no meaningful rejection to monotone hypothesis

16 if mincost < 0 then
17 Update list of minima m: remove from mi∗+1 to mi∗+J .
18 if type == ‘increasing’ then
19 Update list of maxima M : remove from Mi∗ to Mi∗+J−1.
20 else
21 Update list of maxima M : remove from Mi∗+1 to Mi∗+J .

22 while mincost < 0
//Increase number of intervals to merge

23 J ← J + 1

24 s = m //Return final list of minima (including end points)

25 return s
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Algorithm 2: CostMonotone function

Input : input histogram, h = (hi)i=1···L
Input : endpoints of an interval of the histogram, i1, i2
Input : type of computation, type ∈ ‘increasing’, ‘decreasing’
Input : maximum expected number of meaningful rejections of unimodal law, ε
Output : Cost of considering interval [i1, i2] monotonically increasing or decreasing

//The cost is computed w.r.t. a monotonically increasing or decreasing version of

the histogram in [i1, i2], which is computed using the Pool Adjacent Violators

algorithm

//Get subhistogram

1 hs = {hi such that i ∈ {i1, · · · , i2}}
//Number of bins:

2 L = i2 − i1 + 1
//Number of samples in subhistogram:

3 N =
∑L

i=1 h
s
i

//Get monotone version of subhistogram (Grenander estimator of hs)

4 r̄ = PoolAdjacentV iolators(hs, type) //Algorithm 3

//Normalize histograms

5 hs ← hs

N

6 r̄ ← r̄
N

//Compute maximum relative entropy between all possible intervals of hs and r̄

7 H = max[a,b]∈{1,··· ,L}Hhs,r̄([a, b]) //Hhs,r̄([a, b]) is defined in Equation (4)

//Compute cost C

//C assesses the expected number of rejections of the monotone hypothesis

//If C ≥ 0 the monotone hypothesis is meaningfully rejected

//Smaller costs mean that the monotone hypothesis is less meaningfully rejected

8 C = N ·H − log(L(L+ 1)/2ε) //Equation (6)

9 return C
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Algorithm 3: Pool Adjacent Violators Algorithm

Input : input histogram, h = (hi)i=1···L
Input : type of computation, type ∈ ‘increasing’, ‘decreasing’
Output : output monotone histogram, r̄ = (ri)i=1···L
//Initialize output histogram

1 r̄ = h
2 do
3 if type == ‘increasing’ then

//List of monotonically decreasing intervals

4 I ← Intervals [i, j] such that ri ≥ ri+1 ≥ · · · ≥ rj and ri > ri−1 and rj < rj+1

5 else
//List of monotonically increasing intervals

6 I ← Intervals [i, j] such that ri ≤ ri+1 ≤ · · · ≤ rj and ri < ri−1 and rj > rj+1

//Replace each monotonically decreasing/increasing interval by constant value

7 for each [i, j] ∈ I do
8 for k = {i, · · · , j} do
9 rk =

ri+···+rj
j−i+1

10 while I is not empty
11 return r̄

Algorithm 4: FTC algorithm (for circular histograms)

Input : input circular histogram, h = (hi)i=1···L
Input : maximum expected number of meaningful rejections of unimodal law, ε

(default: ε = 1)
Output : segmentation of the histogram into n+ 1 meaningful modes, s = {s0, · · · , sn},

with s0 < s1 < · · · < sn, (last mode in [sn, s0])

//Build auxiliary histogram: concatenation of 3 copies of input histogram

1 haux = {h, h, h}
//Segmentation of auxiliary histogram

2 saux = FTC algorithm(haux, ε)
//Segmentation of input histogram

3 s←− ∅ //Initialize output to empty set

4 for each si ∈ saux do
5 if si > L and si ≤ 2L then
6 s←− s ∪ {si − L} //Add shifted value to final list

7 return s
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2.4 Examples

Figure 1-top displays two examples of the use of the FTC algorithm for the segmentation of a
histogram into its modes, using the default parameter ε = 1. The histograms in both images are
identical, but the one on the right has been segmented under the assumption that it is circular (i.e.
using Algorithm 4). In the bottom row the histogram has been segmented using a smaller value of
ε (ε = 0.001), which leads to a coarser segmentation.
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Figure 1: Top, segmentation of a histogram into its modes using the “classical” (left) and “circular” (right) versions of the
FTC algorithm, with ε = 1. Bottom, results with ε = 0.001.

3 Color Palette Estimation

In this section we describe the application of the FTC algorithm to the analysis of the colors of
an image. In particular, we deal with the problem of finding the minimum set of colors needed to
describe an image. By analogy between this set of colors and the palette of a painter the problem is
usually referred to as color palette estimation.

The method presented in this section was proposed in [7] (refer also to [3] for further details).
The authors imposed two requirements for the construction of their palette, namely, reduction of
redundant colors, and preservation of rare colors. They proposed a hierarchical algorithm in which
colors were first discriminated by their hue; next, colors with similar hue were discriminated by their
saturation; and finally, colors with similar hue and saturation were discriminated by their intensity.
At each step of the algorithm the discrimination between different values of a given magnitude (hue,
saturation or illumination) was performed by analyzing the associated 1D histograms using the FTC
algorithm.

3.1 Color Representation

The color palette is estimated from the HSI representation of the image colors. The reason is that hue
(H), saturation (S) and intensity (I) are magnitudes that can be interpreted intuitively and have a
physical meaning [15]: the hue relates to the visual sensation of color purity, the saturation measures
the proportion of white light diluted with pure color, and the intensity is related to the amount of
light reflected by an illuminated object.
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Figure 2: RGB color cube [14] and illustration of H, S and I magnitudes for a given color point M = (R,G,B).

In [3] the authors redefine the classical formulas for the conversion from RGB to HSI color space.
They adapt the formulas to the following intuitive definitions of the three magnitudes: the intensity
is the average of the 3 color components; the saturation measures the distance from the color point
to the gray axis (locus of points in RGB space having identical color components); finally the hue
is an angle around the gray axis3. Figure 2 illustrates the previous definitions and the conversion
formulas are given by Equations (9)–(11).

I =
R +G+B

3
, (9)

S =
√

(R− I)2 + (G− I)2 + (B − I)2, (10)

H = sign (−2(R− I) + (G− I) + (B − I)) · arccos

(
G−B√

2S

)
. (11)

With these definitions, the range of values of intensity, saturation and hue are, respectively,
[0, 255], [0, 208.2066]4, [−π,+π].

3.2 Achromatic Colors

From Equation (11) we can see that the hue magnitude cannot be defined for colors in the gray
axis (i.e. colors with zero saturation). In practice, the hue component cannot reliably be computed
for RGB colors whose saturation is small. For this reason, hue values are only computed for colors
with large enough saturation, which are considered as chromatic, in contrast with low-saturated
colors, which are called achromatic. In [7] the saturation threshold that discriminates chromatic
from achromatic colors is computed using a simple argument: for a fixed intensity, at a distance S
from the gray axis the maximum allowed number of color points is 2πS, therefore, if we decide to
quantize the hue component with Q different values S must be above Q

2π
to allow this quantization

3The angle is computed with respect to vector v = (0, 1/
√

2,−1/
√

2), which is orthonormal to the gray axis (see

Figure 2). The angle ranges from 0 to π, and a sign is assigned depending on the projection of vector
−−→
PM onto

(−2, 1, 1), which is orthogonal to the gray axis and to the previous vector.
4The maximum corresponds to the saturation of pure red, green or blue colors, e.g. (255, 0, 0).
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Figure 3: Illustration of the criterion used to fix the saturation threshold for the computation of hue values. If the saturation
is too small (R), then the hue magnitude cannot be quantized into Q bins. This can be achieved only when the saturation
is large enough (R′).

(see Figure 3). The saturation threshold defines a cylinder in RGB space that contains the achromatic
colors, the so-called gray cylinder.

3.3 Color Palette and Gray+Color Palette

In [7] and [3] it was proposed the following hierarchical algorithm for the construction of the color
palette:

1. Apply the FTC algorithm on the hue histogram of the image (computed from the colors not
belonging to the gray-cylinder). Let S be the obtained segmentation.

2. Link each color of the gray cylinder to its corresponding interval Si = [si, si+1], according to its
hue value. If the color belongs to the gray axis, then consider that its hue value is zero.

3. For each i, construct the saturation histogram of all the colors in the image whose hue belongs
to Si. Take into account the colors of the gray cylinder. Apply the FTC algorithm on the
corresponding saturation histogram. For each i, let {Si,1, Si,2, . . .} be the obtained segmentation.

4. For each i and each j, compute and segment the intensity histogram of all the colors whose hue
and saturation belong to Si and Si,j, including those in the gray cylinder.

Remark that the above algorithm assumes that the input is a color image, and therefore cannot be
applied to grayscale images. Moreover, as can be observed in Figures 4 to 6, it can produce palettes
with an overrepresentation of dark colors. For these reasons, we propose in the current paper an
alternative version of the algorithm in which Step 2 has been modified as follows:

2’) Compute the intensity histogram for the pixels of the gray cylinder and apply the FTC algo-
rithm to obtain a palette of gray values.
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The rest of steps of the algorithm remain the same (except that all the references to the gray
cylinder must now be removed). As a result of this modified algorithm both a gray and a color
palette are obtained. In the next section, the images shown in Figures 4, 5 and 6 permit to compare
the results of both versions of the algorithm.

A complete description of the automatic color palette algorithm (in its two versions) is provided
in Algorithm 11. Several auxiliary functions are also described in Algorithms 5 to 9. In particular,
the set of gray values that compose the gray palette is computed in Algorithm 6, the segmentation
of the hue, saturation and intensity histograms is described in Algorithms 7 and 8. Finally, the
hierarchical process for the computation of the color palette is described in Algorithm 9. The only
parameters of the algorithm are the sizes of the bins (quantization factors) used to compute the hue,
saturation and intensity histograms. The default values for these parameters are, respectively, 6◦, 5
and 5, although they can be modified by the user.

Algorithm 5: Compute histogram

Input : array of values v, of size N
Input : number of histogram bins, L
Input : quantization of histogram bins, q
Output : histogram, h = (hi)i=1···L
//Initialize all bins of histogram to zero

1 h←− 0
2 for n from 1 to N do
3 i = bv[n]/qc+ 1 //index of bin, from 1 to L, b·c is floor operator

4 hi ←− hi + 1 //increase bin count

5 return h

The lists of pixels associated to each mode of the histograms obtained with the hierarchical
algorithm are recorded during the process. These lists are used to compute the average RGB color
of all the pixels contributing to the same mode. These colors are displayed in a color palette image,
which shows, in successive rows:

• the average intensity values of each mode of the histogram of intensities of the achromatic
colors (that is, the gray palette), if the new version of the algorithm is used;

• the average RGB values of the pixels contributing to the modes of the hue histogram (first step
of the algorithm);

• the average RGB values of the pixels contributing to the modes of the saturation histograms
computed in the third step of the algorithm;

• the average RGB values of the pixels contributing to the modes of the intensity histograms
computed in the last step of the algorithm (that is, the final color palette).

A second output of the algorithm is a segmentation of the input image using the colors in the
palette. In [7] the colors in the final palette were used as seeds of a K-means algorithm in order to
obtain a segmentation of the original image. In [3] a more direct approach was used: since the set of
pixels associated to each mode of the hue, saturation and intensity histograms is known, the average
RGB value of each set was computed and applied to all the pixels in the set. This is the approach
that has been used in our implementation (see Algorithm 10).

The online demo that complements this paper lets the user upload any image, choose the quanti-
zation factors for the construction of the histograms, and displays both the color palette image and
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Algorithm 6: Compute palette of grays

Input : color or grayscale image (u = (H,S, I), or u = I)
Input : saturation threshold, Smin

Input : number of bins in Intensity histogram, L
Input : quantization of histogram bins, q
Input : segmentation of the Intensity histogram into n meaningful modes,

s = {s0, · · · , sn}, with 1 = s0 < s1 < · · · < sn = L
Output : gray level palette (list of main gray levels of u), G = {G1, · · · , Gn}
Output : sets of pixels associated to each gray level in the palette, PG = {PG1 , · · · , PGn}

//Initialize output values

1 G ←− ∅
2 PG ←− ∅
//Assign labels to histogram bins: assign same label to all bins in range [si−1, si]

3 for each i ∈ {1, · · · , n} do
4 for k = {si−1, · · · , si} do
5 label[k]←− i

//Compute average gray level and list of pixels associated to each segment [si−1, si]

//Initialize average values and lists of pixels

6 for each i ∈ {1, · · · , n} do
7 Gi = 0
8 PGi

←− ∅
9 for each pixel x of image u do

//Consider gray value if the saturation of the pixel is below threshold Smin
10 if S(x) ≤ Smin then
11 k = bI(x)/qc+ 1 //bin to which intensity value at pixel x contributes

12 i = label[k] //index of segment with intensity values in range [qsi−1, qsi]

13 Gi = Gi + I(x) //update total gray value associated to segment i

14 PGi
←− PGi

∪ x //add pixel to list associated to segment i

//Compute averages

15 for each i ∈ {1, · · · , n} do
16 Gi = Gi/|PGi

| //| · | denotes the size of the set

17 G ←− G ∪Gi

18 PG ←− PG ∪ PGi

19 return G, PG

the segmentation result, for the two versions of the algorithm. It also permits to select the parameter
ε of the FTC algorithm, which leads to finer or coarser segmentations of the histograms.
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Algorithm 7: Hue segmentation

Input : color image u = (H,S, I)
Input : saturation threshold, Smin

Input : number of bins in Hue histogram, LH
Input : quantization of Hue histogram bins, qH
Input : segmentation of the Hue histogram into n+ 1 meaningful modes,

s = {s0, · · · , sn}, with s0 < s1 < · · · < sn (last mode is in [sn, s0])
Input : optionGray boolean variable, if True compute gray+color palette, else only

color palette
Output : list of pixels associated to each mode of the Hue histogram, PH
//Initialize output: empty list

1 PH ←− ∅
//Assign labels to Hue histogram bins: assign same label to all bins in range

[si−1, si]

2 for each i ∈ {1, · · · , n} do
3 for k = {si−1, · · · , si} do
4 label[k]←− i

//Take into account that the Hue histogram is circular (last mode is in [sn, s0])

5 for k = {sn, · · · , LH} do
6 label[k]←− n+ 1

7 for k = {0, · · · , s0} do
8 label[k]←− n+ 1

//Compute list of pixels associated to each segment of Hue histogram

9 for each i ∈ {1, · · · , n+ 1} do
10 PHi

←− ∅
11 for each pixel x of image u do

//If optionGray is True consider only pixels whose saturation is above Smin,

else use all pixels

12 if optionGray is False or S(x) > Smin then
13 k = bH(x)/qHc+ 1 //bin to which hue value at pixel x contributes

14 i = label[k] //index of segment the bin belongs to

15 PHi
←− PHi

∪ x //add pixel to list associated to segment i

16 for each i ∈ {1, · · · , n+ 1} do
17 PH ←− PH ∪ PHi

18 return PH
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Algorithm 8: Channel segmentation

Input : color image u = (H,S, I)
Input : channel identifier, C ∈ {S, I}, S (saturation) or I (intensity)
Input : list of image pixels P 0

Input : number of bins in channel histogram, L
Input : quantization of channel histogram bins, q
Input : segmentation of the channel histogram into n meaningful modes,

s = {s0, · · · , sn}, with s0 < s1 < · · · < sn
Output : list of pixels associated to each mode of the channel histogram, P

//Initialize output: empty list

1 P ←− ∅
//Assign labels to channel histogram bins: assign same label to all bins in range

[si−1, si]

2 for each i ∈ {1, · · · , n} do
3 for k = {si−1, · · · , si} do
4 label[k]←− i

//Compute list of pixels associated to each segment of channel histogram

5 for each i ∈ {1, · · · , n} do
6 Pi ←− ∅
7 for each pixel x ∈ P 0 do
8 k = bC(x)/qc+ 1 //bin to which channel value at pixel x contributes

9 i = label[k] //index of segment the bin belongs to

10 Pi ←− Pi ∪ x //add pixel to list associated to segment i

11 for each i ∈ {1, · · · , n} do
12 P ←− P ∪ Pi
13 return P
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Algorithm 9: Compute palette of colors

Input : color image u, RGB and HSI values are known for each pixel
Input : saturation threshold, Smin

Input : number of bins of Hue, Saturation and Intensity histograms, LH , LS, LI
Input : quantization of Hue, Saturation and Intensity histogram bins, qH , qS, qI
Input : segmentation of the Hue histogram into n+ 1 meaningful modes,

sH = {s0, · · · , sn}, with s0 < s1 < · · · < sn (last mode is in [sn, s0])
Input : parameter of FTC algorithm, ε
Input : optionGray boolean variable, if True compute gray+color palette, else only

color palette
Output : color palette (list of main colors of u), C = {C1, · · · ,CM}
Output : sets of pixels associated to each color in the palette, PC = {PC1 , · · · , PCN

}

//Obtain list of pixels associated to each mode of the Hue histogram

1 PH ←− Hue segmentation(u, Smin, LH , qH , sH , optionGray) //Algorithm 7

//Compute Saturation histogram for each mode of Hue histogram, and segment it

2 for each PHi
∈ PH do

3 S ′ ←− ∅ //Empty array of saturation values

4 for each x ∈ PHi
do

5 S ′ ←− S(x) //Add value to array

6 hS ←− compute histogram(S ′, LS, qS) //Algorithm 5

//Segment Saturation histogram

7 sS ←− FTC algorithm(hS, ε) //Algorithm 1

//Obtain list of pixels associated to each mode of the Saturation histogram

8 PHS ←− channel segmentation(u, S, PHi
, LS, qS, sS) //Algorithm 8

//Compute Intensity histogram for each mode of Saturation histogram, and

segment it

9 for each PHSi
∈ PHS do

10 I ′ ←− ∅ //Empty array of intensity values

11 for each x ∈ PHSi
do

12 I ′ ←− I(x) //Add value to array

13 hI ←− compute histogram(I ′, LI , qI) //Algorithm 5

//Segment Intensity histogram

14 sI ←− FTC algorithm(hI , ε) //Algorithm 1

//Obtain list of pixels associated to each mode of the Intensity

histogram

15 PHSI ←− channel segmentation(u, I, PHSi
, LI , qI , sI) //Algorithm 8

16 PC ←− PC ∪ PHSI

//Compute average RGB color for each group of pixels

17 C ←− ∅
18 for each Pi ∈ PC do
19 Ci = (Ri, Gi, Bi)←− (0, 0, 0)
20 for each x ∈ Pi do
21 (Ri, Gi, Bi)←− (Ri, Gi, Bi) + (R(x), G(x), B(x))

22 (Ri, Gi, Bi)←− (Ri, Gi, Bi)/|Pi| | · | denotes the number of pixels in the set

23 C ←− C ∪Ci

24 return C, PC
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Algorithm 10: Get segmented image

Input : color or gray scale image u
Input : gray level palette (list of main gray levels of u), G = {G1, · · · , GN}
Input : color palette (list of main colors of u), C = {C1, · · · ,CM}
Input : sets of pixels associated to each gray level in the palette, PG = {PG1 , · · · , PGN

}
Input : sets of pixels associated to each color in the palette, PC = {PC1 , · · · , PCN

}
Output : segmented image v

1 for each set PGi
∈ PG do

2 for each pixel x ∈ PGi
do

3 v(x) = Gi //Assign constant gray level to all pixels in set

4 for each set PCi
∈ PC do

5 for each pixel x ∈ PCi
do

6 v(x) = Ci //Assign constant color to all pixels in set

7 return v
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Algorithm 11: Automatic Color Palette

Input : color or grayscale image (u = (R,G,B), or u = I), with values in range [0, 255]
Input : quantization parameters for the Hue, Saturation and Intensity histograms

(qH , qS, qI)
Input : parameter of FTC algorithm, ε
Input : optionGray boolean variable, if True compute gray+color palette, else only

color palette
Output : color palette (list of main colors and/or gray levels in the image), L
Output : segmentation of the input image using the colors in the palette, v

1 if u is color image then
//Convert from RGB to HSI using Equations (9) to (11)

//Use degrees to represent angles in the computation of Hue values (range [0, 360))

//Compute number of bins of histograms

2 LH = d360
qH
e //number of bins in Hue histogram, d·e is ceil operator

3 LI = d256
qI
e //number of bins in Intensity histogram, d·e is ceil operator

4 LS = d208
qS
e //number of bins in Saturation histogram, d·e is ceil operator

//Compute minimum saturation value that prevents quantization problems in Hue

histogram (see Section 3.2 for details)

5 Smin = LH/2π
//Compute histogram of Hue values with enough saturation, and, if optionGray is

True, histogram of Intensity values with low saturation

6 H ′ ←− ∅ //Empty array of valid Hue values

7 I ′ ←− ∅ //Empty array of low-saturated Intensity values

8 for each pixel x of image u do
9 if S(x) > Smin then

10 H ′ ←− H(x) //Add value to array

11 else
12 if optionGray is True then
13 I ′ ←− I(x) //Add value to array

14 if optionGray is True then
15 hI ←− compute histogram(I ′, LI , qI) //Algorithm 5

//Segment Intensity histogram

16 sI ←− FTC algorithm(hI , ε) //Algorithm 1

//Compute gray palette

17 G, PG ←− Compute gray palette(u, Smin, LI , qI , sI) //Algorithm 6

18 else
19 G ←− ∅, PG ←− ∅
20 hH ←− compute histogram(H ′, LH , qH) //Algorithm 5

//Segment Hue histogram

21 sH ←− FTC algorithm circular(hH , ε) //Algorithm 4

//Compute color palette

22 C, PC ←− Compute color palette(u, Smin, LH ,LS ,LI, qH , qS, qI , sH , ε,optionGray) //Algorithm 9

//Final color palette

23 L ←− G ∪ C
//Segmented output image

24 v =←− get segmented image(u,G, C, PG, PC) //Algorithm 10

25 return L, v
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4 Experimental Results

Figures 4, 5 and 6 show the results of applying both versions of the algorithm to different images,
using the default values of the parameters. For each version of the algorithm, the following images
are displayed:

1) H-segmented image, where the same color has been assigned to all the pixels contributing to the
same mode of the hue histogram. The assigned color is the average RGB value of the set of pixels.
The colors displayed in this image are the ones shown in the first row of the color palette. If the
new version of the algorithm is used, the color of the achromatic pixels contributing to the same
mode of the intensity histogram is also replaced by the average intensity value of the set of pixels
(the values in the gray palette).

2) HS-segmented image, where the same color has been assigned to all the pixels contributing to
the same mode of the saturation histograms computed in the third step of the algorithm. The
assigned color is the average RGB value of the set of pixels. The colors displayed in this image
are the ones shown in the second row of the color palette.

3) HSI-segmented image, the final segmentation results, whose colors are the ones displayed in the
last row of the color palette image.

4) Color palette image.

We observe that with the new version of the algorithm we obtain a more compact representation
of the image colors: the palette contains less colors and a fewer number of similar low-saturated
colors is obtained in the final palette (observe the last row in the color palette images of the three
figures). On the other hand, the final segmentations obtained with both versions of the algorithm are
very similar. For these reasons, in the following experiments, only the new version of the algorithm
(the so-called gray+color version) shall be used.

Figures 7, 8 and 9 explore the ability of the algorithm to preserve rare colors in the images, that
is, colors corresponding to a small fraction of the image pixels. In Figure 7 we observe that the red
color corresponding to the flowers has effectively been preserved. However, this is not the case with
the yellow color of the rope in Figure 8 or the red color of the flowers in Figure 9. By observing
the first row of the color palettes and the H-segmentations obtained for these images we see that, in
the first step of the algorithm, these rare colors have been grouped together with other colors with
similar hues, and the subsequent steps of the hierarchical method are unable to discriminate them
based on their saturation or intensity.

In order to improve the segmentation of the hue values in the first step of the algorithm, a finer
quantization can be used. The default quantization factors for hue, saturation and intensity (6◦, 5,
and 5) provide good results in most cases, as shown in Figures 4 to 7, although in some cases the
results can be improved using different factors. Figures 10 to 13 display the segmentation results
obtained for different sets of quantization factors.

In Figures 10 and 11 decreasing quantization factors for the hue have been used. We observe that
the rare colors are correctly represented for finer quantizations. However, a side effect of using a finer
hue quantization is that the threshold that separates achromatic from chromatic colors increases (see
Section 3.2), and therefore a higher number of colors are considered achromatic and thus represented
by gray values.

In Figures 12 and 13 different quantizations for the saturation and intensity components have
been tested, for a fixed quantization of the hue. We observe that a finer quantization of the saturation
permits to distinguish more image details (see the mountains on the left side of the image in Figure 12,
or the letters of the boat in Figure 13). As the quantization factor increases less details are visible,
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Figure 4: Original image and results of applying the original version (left) and the new version (right) of the Automatic Color
Palette algorithm. From top to bottom: H-segmented, HS-segmented, HSI-segmented images and color palette image. The
palette on the left side contains 36 colors (last row of the palette image), while the one on the right 6+24 (6 for the gray
palette and 24 for the color palette).
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Figure 5: Original image and results of applying the original version (left) and the new version (right) of the Automatic Color
Palette algorithm. From top to bottom: H-segmented, HS-segmented, HSI-segmented images and color palette image. The
palette on the left side contains 39 colors (last row of the palette image), while the one on the right 5+24 (5 for the gray
palette and 24 for the color palette).
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Figure 6: Original image and results of applying the original version (left) and the new version (right) of the Automatic Color
Palette algorithm. From top to bottom: H-segmented, HS-segmented, HSI-segmented images and color palette image. The
palette on the left side contains 47 colors (last row of the palette image), while the one on the right 5+30 (5 for the gray
palette and 30 for the color palette).
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Figure 7: From left to right and from top to bottom: original image, final segmentation, H-segmentation, HS-segmentation
and gray+color palette. The gray palette is composed of 2 gray levels and the color palette of 13 colors.

although little differences can be observed in these images between the results for quantization factors
5 and 10. Similar remarks can be made concerning the quantization factor of the intensity component:
for finer quantizations more details are visible in some parts of the images (see the foam in the river,
in the bottom-left image of Figure 13), while less colors are obtained as the quantization factor
increases. As expected, the number of colors in the palette increases when using finer quantizations.
Variations in the saturation quantization affect only to the color palette, but not to the gray palette,
while the intensity quantization affects both palettes.

Finally, the effect of the parameter ε of the FTC algorithm on the palette results is tested. For the
images in Figures 8 and 9, for which the rare colors were not detected using the default parameters,
we show the results obtained with increasing values of ε, (the quantization parameters are fixed to
their default values). We observe that the number of detected colors increases, since the histogram
segmentations are finer. Eventually, the rare colors are included in the palette. Conversely, if we
want to obtain a palette with less colors, we should decrease the value of the parameter.
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Figure 8: From left to right and from top to bottom: original image, final segmentation, H-segmentation, HS-segmentation
and gray+color palette. The gray palette is composed of 3 gray levels and the color palette of 19 colors.
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Figure 9: From left to right and from top to bottom: original image, final segmentation, H-segmentation, HS-segmentation
and gray+color palette. The gray palette is composed of 1 gray level and the color palette of 12 colors.

qH = 3, qS = 5, qI = 5 qH = 2, qS = 5, qI = 5 qH = 1, qS = 5, qI = 5

Figure 10: Effect of the variation of the quantization of the hue values.
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qH = 3, qS = 5, qI = 5 qH = 2, qS = 5, qI = 5 qH = 1, qS = 5, qI = 5

Figure 11: Effect of the variation of the quantization of the hue values.

Original qH = 6, qS = 5, qI = 5 (5+23)

qH = 6, qS = 2, qI = 5 (5+33) qH = 6, qS = 10, qI = 5 (5+23)

qH = 6, qS = 5, qI = 2 (9+36) qH = 6, qS = 5, qI = 10 (3+21)

Figure 12: Effect of the variation of the quantization of the saturation and intensity values. The values in parentheses are
the number of colors in the gray and color palettes.
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Original qH = 6, qS = 5, qI = 5 (5+20)

qH = 6, qS = 2, qI = 5 (5+35) qH = 6, qS = 10, qI = 5 (5+19)

qH = 6, qS = 5, qI = 2 (11+49) qH = 6, qS = 5, qI = 10 (3+19)

Figure 13: Effect of the variation of the quantization of the saturation and intensity values. The values in parentheses are
the number of colors in the gray and color palettes.

101



Jose-Luis Lisani, Ana Belén Petro

ε = 1 (default) (3+19) ε = 10 (3+24) ε = 100 (8+44)

Figure 14: Effect of the variation of the parameter ε of the FTC algorithm. The values in parentheses are the number of
colors in the gray and color palettes.

ε = 1 (default) (1+12) ε = 10 (1+25) ε = 100 (1+64)

Figure 15: Effect of the variation of the parameter ε of the FTC algorithm. The values in parentheses are the number of
colors in the gray and color palettes.
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5 Conclusions

We have presented in this paper a detailed description of an algorithm for the automatic parsing of
a 1D histogram into its meaningful modes, that is, intervals where the histogram follows a unimodal
distribution.

This algorithm has then been used to analyze, in a hierarchical way, the histograms of the hue, sat-
uration and intensity components of a digital image, in order to compute a minimum representation
of the image colors, the so-called color palette.

A slight modification of the original color palette estimation method (published in [7]) has been
proposed, involving the treatment of the achromatic colors of the image, which leads to a gray+color
palette which, in general, provides a more compact representation than the original method.

Several experiments show that the presented method is able, in general, to obtain a minimum and
accurate description of the image colors, although rare colors are sometimes missed. Further improve-
ments of the method (such as the combination of the palettes obtained with different quantization
factors) could permit the preservation of these colors in the final result.
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