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Abstract

The aim of the present work is to provide an SEAIR framework which takes a personalized
risk prediction score as an additional input. Each individual is categorized depending on his
actual status with respect to the disease – moderate or severe symptoms –, and the level of risk
predicted – low or high. This idea leads to a 4-fold extension of the ODE model in classical
SEAIR. This model offers the possibility for policy-makers to explore differentiated containment
strategies, by varying sizes for the low risk segment and varying dates for ‘progressive release’ of
the population, while exploring the discriminative capacity of the risk score, for instance through
its AUC. Differential contact rates for low-risk/high-risk compartments are also included in the
model. The demo allows to select contact rates and time-depending exit strategies. The hard-
coded parameters correspond to the data for the Covid-19 epidemic in France, and the risk refers
to the probability of being admitted in ICU upon infection. Some examples of simulations are
provided.

Source Code

The reviewed source code and documentation for this algorithm are available from the web page
of this article1. Usage instructions are included in the readme.md file of the archive.
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1 Introduction

In the context of the Covid-19 epidemics, several extensions of the classical SIR compartmental model
(Susceptible-Infected-Recovered) have been proposed to cover some of the features of this particular
contagion. Among the reference models used in the case of France, one of the most popular is the
SEAIR model (Susceptible-Exposed-Asymptomatic-Infected-Recovered) further developed by [3] to
account for people having moderate or severe symptoms upon infection.

The present work introduces an extension to the SEAIR model in the case where a personalized
risk prediction score would be available. By high score, we mean here a high probability of being
transmitted to an Intensive Care Unit (ICU) upon infection. Through the use of a threshold value,
the risk prediction score could support a decision-system that would categorize the population into
two segments adaptively: a high-risk segment and a low-risk segment. Depending on the context
(presence of the virus, modalities of lockdown policy, resources for protection, etc.), the respective
size of these two segments can be adjusted. Such risk-prediction models are about to become available
as epidemiological studies track the dependence between comorbidity factors and individual outcome
with respect to the disease [1]. From there, it will be quite straightforward to derive a personalized
risk prediction score based on either logistic regression or more advanced machine learning algorithms
for bipartite ranking. We refer to https://www.covidanalytics.io/infection_calculator for an
example of such a score.

Our aim is to investigate to which extent the quality of a given prediction model – captured
for example by the Area Under a ROC Curve (AUC) –, together with a policy that differentiates
high and low risk individuals, can “flatten the curve”. Here “flattening the curve” is quantified with
respect to the demand in ICU beds that has to remain below a given acceptable level. This approach
can be used both for tuning lockdown/exit strategies or for dealing with possible further epidemic
waves. We refer to [4] for an investigation of differentiated lockdown strategies in France based on
this approach.

2 SEAIR with High-risk/Low-risk Compartments

2.1 A Compact View of the Model

We propose to start with a variation of the SEAIR model with an extra state denoted by U , which
means ‘admitted in ICU’. As usual S, stands for susceptible, E for exposed (asymptomatic and not
yet contagious), A for asymptomatic (asymptomatic and contagious), I for infectious (symptomatic
and contagious), R for recovered, and finally a last compartment D is considered, counting people
who died from the disease.

The standard model is first generalized by dividing

• the susceptible state S into two states depending on each individual’s isolation policy which is
based on their associated personalized risk score, namely those predicted to be low-risk may
resume normal activities up to some extent (‘r’), while those predicted to be high risk are recom-
mended to remain confined (‘c’). These two states are denoted S(r) and S(c). Correspondingly,
all other states Q are split up into states Q(r) and Q(c).

• the infected state I into two states depending on the severity of symptoms they will develop
upon infection (‘s’ for severe symptoms requiring ICU, ‘m’ for moderate symptoms). The
resulting states are denoted Im and Is. Correspondingly, all other states Q are split up into
states Qm and Qs.
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2.2 Key Parameters of the Epidemic Model

Standard epidemiological and additional behavioral parameters come into play in the model. Their
interaction with the main compartmental time-dependent variables is schematically shown in Fig-
ure 1.

Standard parameters. The usual parameters of the model are the rates of passage from a given
compartment to any other compartment which here read ε, σ, η, γm, γs and α. Recall that the inverse
of these variables represents the mean time spent in the associated compartment. The parameter β,
as is usual, represents the transmission rate.

All these parameters are hard-coded and the proposed values can be found in Table 1.

Additional behavioral parameters. Given an isolation policy based on the personalized risk prediction
score, the behavior of individuals is also determined by different levels of compliance to the policy,
which could potentially change according to the risk segment they belong to. We represent this
behavioral aspect by the two following variables δr and δc, with values in [0, 1]. They capture how
much released/confined individuals protect themselves from the disease, whether it is by stricter
hygiene, avoiding public transports, limiting outdoor excursions, etc. The user should always choose
δr < δc to reflect the modelling approach.

The closer the δ-variables are to 1, the stricter the protection. As a result, the usual quadratic
βIS term in SIR models, which in SEAIR models reads β(A+ I)S, becomes

(1− δi)βIeffS(i), i = r, c,

where, to shorten notations, we have defined

Ieff = (1− δr)(A(r) + I(r)) + (1− δc)(A(c) + I(c)).

These parameters are behavioral and depend on how people respond to policies regarding isolation.
One of the aims of the present work is to investigate the effect of their value on the success of
differentiated isolation policies.

2.3 A Simplified Version of the ODE System

For the reader’s convenience, a compact form of the ODE model used may be given. Here, Q̇ stands
for the time derivative of the variable Q. The corresponding equations are given below and Figure 1
provides a schematic view of the resulting ODE system, where the rate from one compartment to
another is indicated above the corresponding arrow.

Ṡ(r) = −(1− δr)βIeffS(r)

Ė(r) = (1− δr)βIeffS(r) − εE(r)

Ṡ(c) = −(1− δc)βIeffS(c)

Ė(c) = (1− δc)βIeffS(c) − εE(c)

Ȧ = εE − σA
İm = σAm − γmIm
İs = σAs − ηIs
U̇ = ηIs − (γs + α)U

Ṙ = γmIm + γsIs
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The number of deaths is computed with the relation:

Ḋ = αU.

A

E(r)

E(c)S(c)

S(r) Im

Is U

R

D

(1−δr)βIeff

(1−δc)βIeff

ε

ε

σ

σ

γm

η α

γs

Figure 1: A compact view of the dynamics of the SEAI(U)R model. S stands for susceptible, E for exposed, A for asymp-
tomatic, I for infectious, U for people in ICU, R for recovered, D for dead. Superscripts (r)/(c) indicate released/confined
people, subscripts m/s indicate moderate/severe symptoms. Values above arrows indicate the rate of passage from the
associated compartments (see Table 1 for more details), with Ieff = (1− δr)(A(r) + I(r)) + (1− δc)(A(c) + I(c)).

3 The Complete ODE System

3.1 Description of Compartments

In order to take into account the status of each state with respect to the risk prediction in the previous
model, each compartment is split according to the outcome of the binary decision for the segment
considered based on the personalized predictive risk score. Indeed, we assume that the decision cannot
be perfect and that errors will occur. Therefore, each binary decision leads to the segmentation of the
population into 4 segments which correspond to the 4 cases of the confusion matrix of a classification
rule: true positive (TP), false positive (FP), true negative (TN), false negative (FN). Hence, every
compartment Q ∈ {S,E,A, I, R} is divided into 4 compartments, whereas the compartment U is
divided only into two because only positive cases will fall into this one. Thus, the total number of
compartments equals 22. We recall that we use superscripts to mark the decision made in terms of
risk prediction, where ”r” indicates the low-risk segment (“r” for ”released”), while “c” refers to the
high-risk segment (”c” for confined). On the other hand, we use subscripts for the actual severity
status of the segment, where “s” corresponds to the segment of individuals who will develop severe
symptoms requiring ICU care, and “m” for the segment of individuals who will develop moderate
symptoms upon infection. For a generic compartment Q ∈ {S,E,A, I, R}, the following notations
are used to account for the four cases of the confusion matrix:

• Q(r)
s : number of individuals in Q with severe symptoms requiring ICU care upon infection,

categorized low-risk by the predictor, i.e., false negatives,

• Q(c)
s : number of individuals in Q with severe symptoms requiring ICU upon infection, catego-

rized high-risk by the predictor, i.e., true positives,
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• Q(r)
m : number of individuals in Q with moderate symptoms upon infection, categorized low-risk

by the predictor, i.e., true negatives,

• Q(c)
m : number of individuals in Q with moderate symptoms upon infection, categorized high-risk

by the predictor, i.e., false positives.

In addition, we will also use the cumulative count either with respect to risk prediction or severity
status for any Q ∈ {S,E,A, I, U,R}, and as already introduced with the compact view of the model,
this leads to

• Q(r) = Q
(r)
m +Q

(r)
s : number of individuals in Q categorized low-risk,

• Q(c) = Q
(c)
s +Q

(c)
m : number of individuals in Q categorized high-risk,

• Qs = Q
(c)
s +Q

(r)
s : number of individuals in Q who will develop severe symptoms requiring ICU

upon infection,

• Qm = Q
(r)
m + Q

(c)
m : number of individuals in Q who will develop moderate symptoms upon

infection,

• Q = Qm + Qs = Q(r) + Q(c): total count of the population on which the dynamics of the
epidemic is observed.

We consider one additional compartment, denoted by D, for the segment of individuals who die from
the disease. The number of people in this compartment does not participate in the dynamics of the
ODE but may be computed from it.
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3.2 ODE System: Complete Set of Equations

The ODE system reads

Ṡ(r)
m = −(1− δr)βIeffS(r)

m

Ė(r)
m = (1− δr)βIeffS(r)

m − εE(r)
m

Ȧ(r)
m = εE(r)

m − σA(r)
m

İ(r)
m = σA(r)

m − γmI(r)
m

Ṙ(r)
m = γmI

(r)
m

Ṡ(c)
m = −(1− δc)βIeffS(c)

m

Ė(c)
m = (1− δc)βIeffS(c)

m − εE(c)
m

Ȧ(c)
m = εE(c)

m − σA(c)
m

İ(c)
m = σA(c)

m − γmI(c)
m

Ṙ(c)
m = γmI

(c)
m

Ṡ(c)
s = −(1− δc)βIeffS(c)

s

Ė(c)
s = (1− δc)βIeffS(c)

s − εE(c)
s

Ȧ(c)
s = εE(c)

s − σA(c)
s

İ(c)
s = σA(c)

s − ηI(c)
s

U̇ (c) = ηI(c)
s − (γs + α)U (c)

Ṙ(c)
s = γsI

(c)
s

Ṡ(r)
s = −(1− δr)βIeffS(r)

s

Ė(r)
s = (1− δr)βIeffS(r)

s − εE(r)
s

Ȧ(r)
s = εE(r)

s − σA(r)
s

İ(r)
s = σA(r)

s − ηI(r)
s

U̇ (r) = ηI(r)
s − (γs + α)U (r)

Ṙ(r)
s = γsU

(r)
s ,

and the number of deaths are computed using the equation

Ḋ = α (U (c) + U (r)),

where the dot above each variable stands for a time derivative. A given simulation of a Cauchy
problem with the above ODE system requires an initial condition for the 23 compartments. We shall
formally denote ODE the function solving the ODE, requiring an initial condition and a time-interval
on which to solve the problem.

3.3 Generic Discretization Scheme for the ODE

The code fixes the time-discretization at 500 points per day. All plots and variables are to be
considered in days. ODEs are integrated using the Python function odeint from the Scipy package.
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4 ODE Integration with Time-dependent Policies

4.1 Computing Initial Conditions

For a given choice of number of individuals in each category, denoted by S0, E0, A0, I0, U0, R0, the
resulting initial numbers in each compartment may be computed by taking into account

• the proportion of people who will not require an ICU bed, denoted p ∈ [0, 1], for which estimates
are available in the literature [6],

• the proportion of people considered to be low-risk, denoted ρ ∈ [0, 1], which depends on a
choice made by the policy-makers,

• the risk-prediction model.

For a given risk-prediction model, ρ will uniquely determine the number of false positives and
false negatives, respectively denoted qFP , qFN . All these variables p, ρ, qFP , qFN are linked by the
equation

(1− qFP )p+ qFN(1− p) = ρ. (1)

This equation (which can be seen as a total probability formula) is readily obtained by counting
that ρ will be split up into the true negative and the true positive people. The former is obtained
by multiplying the true negative rate, i.e. qTN = 1− qFP , with the number of true negative p, while
the latter is taken by multiplying the false negative rate qFN with the number of true positive 1− p.

Let us denote Fs and Fm the cumulative distribution functions for the probability densities of
the people needing ICU and those having moderate symptoms upon infection, respectively. For a
choice of ρ and assuming continuous random variables, there is a unique threshold a which makes
the proportion of low-risk people exactly equal ρ, obtained by solving

pFm(a) + (1− p)Fs(a) = ρ.

The pseudo-code for how qFP , qFN are computed from ρ (through the function denoted compute qs),
is given in Algorithm 1.

Algorithm 1 Pseudo-code for computing false negative and false positive rates.

a← solve(pFm(a) + (1− p)Fs(a) = ρ) . Solves for the unique threshold
qFP ← 1− Fm(a)
qFN ← Fs(a)

The outcome is (qFP , qFN).

We will denote by compute init the function which, given a choice of S0, E0, A0, I0, U0, R0 on
the one hand, and of ρ on the other hand, computes the corresponding initial conditions. See the
pseudo-code given in Algorithm 2.

4.2 Updating the ODE System over Time

As a given policy makes ρ vary over time, the model must specify how to update the ODE whenever
the policy changes. More precisely, a policy is defined by the times at which restrictions are gradually
relaxed (thus augmenting the proportion of people labeled as low-risk), together with the actual
proportions of people who are in the low-risk group.

In mathematical terms, we are given
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Algorithm 2 Pseudo-code for computing an initial condition.

(qFP , qFN)← compute qs(ρ)
for Q ∈ {S,E,A, I, U,R} do

Q
(r)
m (0)← p (1− qFP )Q0

Q
(c)
m (0)← p qFPQ0

Q
(c)
s (0)← (1− p) (1− qFN)Q0

Q
(r)
s (0)← (1− p) qFNQ0

end for

The outcome is

(S(r)
m , E(r)

m ,A(r)
m , I(r)

m , R(r)
m , S(c)

m , E(c)
m , A(c)

m , I
(c)
m , R(c)

m ,

S(c)
s , E(c)

s , A(c)
s , I

(c)
s , U (c), R(c)

s , S
(r)
s , E(r)

s , A(r)
s , I(r)

s , U (r), R(r)
s )(0)

• a vector of proportions of releases

(ρ0, ρ1, . . . , ρN−1),

satisfying ρi−1 ≤ ρi, i = 1, . . . N − 1,

• the corresponding times at which the policy changes

(T0, T1, . . . TN−1, TN)

with T0 = 0 and T = TN a final horizon of interest.

Each ρi that says how many people will be predicted to be low risk, determines the number of
false positives and false negatives in agreement with (1) through

(1− qFPi )p+ qFNi (1− p) = ρi.

Assume that the solution at time Ti has been computed for a given i. Since the number of
individuals in the low-risk group changes at time Ti, the ODE must be integrated for a corrected
initial condition on the interval [Ti, Ti+1].

This initial condition is obtained from reallocating people depending on their new labeling, which
will both make the number of false negatives increase and the number of false positives decrease.

Let us explain how the changes are made at a given time Ti, by letting Q ∈ {S,E,A, I, R}.

Case of Qm. At Ti, the number of people in Q
(r)
m increases, while the number of people in Q

(c)
m

decreases. More precisely, a portion
qFP
i−1−qFP

i

qFP
i−1

of people previously in Q
(c)
m moves to compartment Q

(r)
m .

This ratio corresponds to the proportion of people considered low-risk with the policy defined by ρi,
conditioned on the fact that they were considered high-risk with the policy defined by ρi−1, among
people not requiring ICU upon infection.

Case of Qs. At Ti, the number of people in Q
(r)
s increases, while the number of people in Q

(c)
s

decreases. More precisely, a portion
qFN
i −qFN

i−1

1−qFN
i−1

of people previously in Q
(c)
s moves to compartment

Q
(r)
s . This ratio corresponds to the proportion of people considered low-risk with the policy defined

by ρi, conditioned on the fact that they were considered high-risk with the policy defined by ρi−1,
among people requiring ICU upon infection.
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More compactly, denoting yold and ynew the value of y(Ti) before and after relabeling, the new
value is given as a function of the previous one by

ynew
j = yold

j +
qFPi−1 − qFPi

qFPi−1

yold
j+5, j = 1, . . . , 5

ynew
j+5 = yold

j+5 −
qFPi−1 − qFPi

qFPi−1

yold
j+5, j = 1, . . . , 5

ynew
j = yold

j −
qFNi − qFNi−1

1− qFNi−1

yold
j , j = 11, . . . , 16

ynew
j+6 = yold

j+6 +
qFNi − qFNi−1

1− qFNi−1

yold
j , j = 11, . . . , 16.

We shall denote change policy the function which given yold and ρi, ρi−1, computes ynew.
With the above rule, the corresponding solution

y = (S(r)
m , E(r)

m ,A(r)
m , I(r)

m , R(r)
m , S(c)

m , E(c)
m , A(c)

m , I
(c)
m , R(c)

m ,

S(c)
s , E(c)

s , A(c)
s , I

(c)
s , U (c), R(c)

s , S
(r)
s , E(r)

s , A(r)
s , I(r)

s , U (r), R(r)
s )

is computed up until the final time T .

Effect of a change of policy. Note that a change in policy induces discontinuities for the different
variables, but continuity is restored at the level of the total number of people in a given category Qm

or Qs.

4.3 Pseudo-code for Time-dependent Policies

Algorithm 3 provides a pseudo-code outlining how, given a policy, the ODE is integrated. In other
words, all other parameters being fixed and for a choice of S0, E0, A0, I0, U0, R0, (ρ0, ρ1, . . . , ρN−1),
(T0, T1, . . . TN−1, TN), the algorithm writes as follows.

Algorithm 3 Pseudo-code for integrating the ODE along time-dependent policies.

y0 ← compute init(S0, E0, A0, I0, U0, R0, ρ0)
for i← 1, . . . , N do

soli ← ODE(yi−1, [Ti−1, Ti]) . Solves the ODE over [Ti−1, Ti]
yold ← soli(Ti) . Gets value of solution at time Ti
yi ← change policy(yold, ρi−1, ρi) . Updates numbers with the new policy

end for

The outcome is the concatenation of soli, i = 1, . . . , N .

5 Experimental Design and Value Recommendations for Key

Parameters

In order to run an experiment, the user can select the following parameters:

• disease-related parameters,

• a risk-prediction model,
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• behavioral parameters δr and δc,

• a set of initial conditions,

• a policy regarding high-risk and low-risk people over time.

5.1 Disease-related Parameters

Disease-related parameters are hard-coded but may be changed by the user. They are summarized
in Table 1.

Symbol Description Value(s) Reference

p proportion with moderate symptoms 0.993 [6]
β transmission rate computed [3]
R0 basic reproduction number 2.9 [2]
ε waiting rate to viral shedding 1/3.7 day−1 [2]
σ waiting rate to symptom onset 1/1.5 day−1 [2]
η waiting rate from symptom onset to ICU 1/7 day−1 [6]
γm recovery rate from moderate symptoms 1/2.3 day−1 [2]
γs recovery rate for people in ICU 1/17 day−1 [6]
α mortality rate for people in ICU 1/11.7 day−1 [6]

Table 1: Disease-related parameters used.

The parameter β may be computed as in [3] by stability analysis. Denoting R0 the basic repro-
duction number, as estimated without lockdown (i.e., for δr = δc = 0), the formula writes

β =
R0

Sinit

1

p(σ−1 + γ−1
m ) + (1− p)(σ−1 + η−1)

,

where Sinit is the initial number of susceptible people for the period during which R0 has been
estimated.

Since all estimates for R0 have been obtained for the period prior to lockdown, we choose Sinit =
N0 where N0 is the total number of people in the population of interest.

5.2 Choosing a Risk-prediction Model

For the sake of illustration, the simulation may run with a synthetic risk-prediction model which uses
Beta distributions to represent class-conditional distributions (with respect to severity of symptoms).
We denote αp, βp, the parameters of the Beta-distribution for the score of positive (severe symptoms)
and αn, βn, for the score of negative (moderate symptoms).

The quality of a test can be summarized by the so-called AUC (Area under the Curve) from
the corresponding ROC (Receiver Operating Characteristic) curve. The AUC has value 0.5 for a
dummy risk-prediction model (the class-conditional distributions are equal), and 1 for a perfect risk-
prediction model (the supports of class-conditional distributions are disjoint). Some preliminary
work developing risk-prediction models on Covid-19 using age, BMI (body mass index), lab values,
and some comorbidity factors reach an AUC ranging between 0.83 and 0.92 (see https://www.

covidanalytics.io/infection_calculator).
Let us denote AUC(αp, βp, αn, βn) the AUC associated to a given choice of (αp, βp, αn, βn).
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Such an AUC is obtained by computing false positive and true positive rates on a grid for
thresholds, and then using the built-in function metrics.auc of Scikit-learn [5], which takes false
positive and true positive rates as an input and solves for the corresponding AUC. The default
parameter for the grid size ngrid is 500, see the pseudo-code Algorithm 4.

Algorithm 4 Pseudo-code for computing AUC.

a← uniform grid([0, 1], ngrid)
qFP ← 1− Fm(a)
qTP ← 1− Fs(a) . Computes false positive and true positive rates.

The outcome is metrics.auc(qFP , qTP ).

We let the user choose an AUC between 0.5 and 1 by choosing symmetric distributions, i.e.,
βp = αn and βn = αp. Choosing βp = αn = 2 as a default value and for a given choice z ∈ [0.5, 1] of
AUC given by the user, we solve for x the equation

AUC(x, 2, 2, x) = z.

This equation is uniquely solvable when z ∈ [0.5, 1[. For z = 1, the solution is formally given by
x = +∞, in which case we set it to x = 1000.

5.3 Behavioral Parameters

The user can also select values for δc, δr. Note that these variables may be linked to the so-called
reduction of contact rates. Denoting reduction of contact rates with the letter c, the equation for the
susceptible individuals write Ṡ = −(1− c)βIS in the standard SIR model.

With this in mind, and given that in our case the number of individuals that fall in the low-risk
or in the high-risk group depends on the parameter ρ, reduction of contact rates for populations in
these two groups may correspondingly be defined by the relation

1− ci = (1− δi) ((1− δr)ρ+ (1− δc)(1− ρ)) , i ∈ {r, c}.

For a given choice of δr, δc, a plot displaying the evolution of cr and cc according to ρ is provided to
the user. As an example, the reduction in contact rates has been estimated to range from 70% to
80% during lockdown in France (that is, c = 0.7 to c = 0.8).

5.4 Initial Conditions

Initial conditions should be chosen depending on the country/region. More precisely, we let the user
choose

• N0: total number of individuals in the population,

• E0 + A0 + I0: number of individuals who were carrying the disease at time 0,

• U0: number of individuals in ICU at time 0,

• R0: number of individuals who recovered from the disease at time 0,

The initial number of susceptible individuals is then computed by

S0 = N0 − (E0 + A0 + I0 + U0 +R0).
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We do not explicitly require the user to choose E0, A0 and I0, as it is already difficult to have
an estimate for these. Instead, for a given choice of E0 + A0 + I0, we choose to compute E0, A0, I0

relative to the mean time spent in each of these categories for the majority type, namely individuals
not needing ICU upon infection. Denoting

x :=
1

1 + ε
(

1
σ

+ 1
γm

) ,
this leads to the formulae

E0 = x(E0 + A0 + I0),

A0 =
ε

σ
x(E0 + A0 + I0),

I0 =
ε

γm
x(E0 + A0 + I0).

Finally, the user may choose a value (which is not required for computations but is then displayed
when plotting ICU occupation over time), representing a hospital capacity in ICU beds, denoted Imax.

We provide an example of these parameters for France at the end of lockdown (May 11) in Table 2,
using some currently available estimates for the total number who were infected at that date, namely
E0 + A0 + I0 +R0:

Symbol Description Value(s) Reference

N0 total initial number of people in the population 6.7 107

E0 + A0 + I0 +R0 total initial number of people who had been infected 5.7 106 [6]
Imax hospital capacity for COVID-19 ICU beds 10 000 assumed

Table 2: Example in France for May 11.

5.5 Gradual Relaxation Policy

Finally, the user has to choose a policy regarding who is considered to be low-risk and subsequently
in a less strict isolation. This is done by choosing an array of proportions of people in low-risk

(ρ0, ρ1, . . . , ρN−1),

together with the times at which the policy changes

(T1, . . . TN−1, TN)

with TN a final horizon of interest.
For instance, if the user chooses:

• For proportions of people in low-risk : (ρ0 = 0.3, ρ1 = 0.7, ρ2 = 1),

• For policy change times : (T1 = 50, T2 = 120, T3 = 200)

Then, this means that :

1. 30% of people are in low isolation from the beginning of the simulation and for 50 days,

2. Then 70% people are in low isolation (that is, 40% people more) during the next 120−50 = 70
days,

3. Finally after 120 days there are no more people recommended to be in strict isolation.

The ODE is integrated up until day 200.
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5.6 Example

In this section, we present the graphical outputs produced by a simulation run. In order to do so,
we have to set the parameters involved in the model and presented above.

5.6.1 Population Classification and Accuracy of Risk Prediction Score

For the discriminative capacity of the risk score classifier to differentiate people, we choose for instance
AUC = 0.96. As we assume that the underlying population probability densities are symmetric Beta
distributions with αn = βp = 2, it then translates into the following Beta distribution parameters:

• Probability density of people with severe symptoms upon infection, as a function of the risk
score

– αp = 4.5

– βp = 2

• Probability density of people with severe symptoms upon infection, as a function of the risk
score

– αn = 2

– βn = 4.5

5.6.2 Population Contact behavior

Let us consider the following behavioral parameters:

• δr = 0.1

• δc = 0.6

5.6.3 Gradual Relaxation Policy

Let us keep the gradual relaxation policy introduced above. In other words, we choose

• times at which the policy changes: (T1 = 50, T2 = 120, T3 = 200)

• proportion ratios of people in the low-risk segment over time: (ρ0 = 0.3, ρ1 = 0.7, ρ2 = 1),

5.6.4 Population Characteristics

We choose the following parameters for the

• Initial population size = 67 000 000,

• Population with moderate symptoms p = 99.5%,

• ICU capacity = 10 000 beds

5.6.5 Initial Conditions for the Virus Spread

As for the initial conditions of the virus spread, we choose the following parameters:

• Initially immune population = 5 690 000

• Initially infected population = 10 000

• Initial number of people in ICU = 4 000
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5.6.6 Simulation Graphical Outputs

All the model parameters have now been chosen. A simulation run then outputs the following
figures2.

Figure 2: Example of population distributions as a function of the personalized risk prediction score.

Figure 3: Contact rates as a function of the proportion of the population released ρ, with the choice δr = 0.1, δc = 0.6.

• Figure 2 shows probability densities for both populations with severe and moderate symptoms
according to the personalized risk prediction score,

• Figure 3 shows, given the choice for δr, δc, how contact rates for released and confined popu-
lations evolve as a function of ρ,

2Please find the notebook used to generate the figures for the current example here: https://reine.cmla.

ens-cachan.fr/boulant/seair/blob/paper_ipol/SIR_Score_Final_parameters.ipynb
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Figure 4: Example response for number of deaths.

Figure 5: Example response for number of severe infections.

• Figure 4 shows the number of deaths over time,

• Figure 5 shows the number of severe infections output by the model over time. On this graph,
one can see severe infections from people identified as high risk (blue) as well as from people
identified as low risk (orange). Y-axis is stacked, meaning for instance that at time 100 days
from simulation start (when 70% of the population is in low isolation), the vast majority of
severe infections come from people identified as high risk,

• Figure 6 shows the number of people in ICU over time. The horizontal line of the ICU capacity
shows the chosen ICU capacity Imax. Then are displayed the number of patients in ICU from
people identified as high risk (blue), as well as from people identified as low risk (orange).
Y-axis is stacked,

• Figure 7 shows the ratio between the number of recovered people with moderate infections to the
total population size. Recovered people with moderate infection from high risk are displayed in
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Figure 6: Example response for number of ICU admissions.

Figure 7: Example response for number of recovered people with moderate infections.

blue, whereas recovered people with moderate infection from low risk are displayed in orange.
For instance, at time 75 days from simulation start (when 70% of the population is in low
isolation), ∼10% of the total population has recovered from moderate infection (infected by
the disease with moderate symptoms, survived and are now immune),

• Figure 8 shows the ratio between the number of recovered people with severe infections to the
total population size. Recovered people with severe infection from high risk are displayed in
blue, whereas recovered people with severe infection from low risk are displayed in orange. For
instance, at time 75 days from simulation start (when 70% of the population is in low isolation),
∼0.005% of the total population has recovered from severe infection (infected by the disease
with moderate symptoms, survived and are now immune).
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Figure 8: Example response for number of recovered people with severe infections.
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