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Abstract

We present a method for computing approximate solutions of the piecewise affine-linear Mumford-
Shah model – PALMS Image Partitioning. The piecewise affine-linear Mumford-Shah model
is a variational approach to image partitioning. The underlying algorithm is based on a split-
ting approach using ADMM. The emerging subproblems are solved exactly and efficiently. We
detail the solver for these subproblems which is based on dynamic programming and incorpo-
rates an acceleration strategy. The subproblems are solved in parallel in our implementation
to provide an efficient overall algorithm. We conduct extended studies on the effects of the
algorithmic parameters. Thereby, the implemented algorithm is further optimized w.r.t. run-
time and efficiency. Finally, we underpin the efficiency of the algorithm by a comparison with
the state-of-the-art which shows that the presented algorithm has lower computation times and
yields lower mean functional values.

Source Code

The MATLAB and C++ source code for the presented algorithm is available at the associated
web page1. Compilation and usage instructions are included in a README.txt file.

Keywords: image partitioning; unsupervised segmentation; piecewise affine-linear Mumford-
Shah model; splitting approach; dynamic programming; parallelization

1 Introduction

Image partitioning is the task of dividing the domain of an image into regions of homogeneous image
characteristic [11, 12]. Variational methods have been successfully used for this task [15, 7, 5, 9].
Typically, they impose regularity on both the regions and the boundaries of the segments. More
precisely, the partition is modeled as the result of a minimization problem, where the corresponding
functional imposes penalties for rough boundaries and/or lacking smoothness. The piecewise constant
Mumford-Shah model is a particularly popular variational approach to image partitioning [7, 5, 16,
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(a) Input image (b) Piecewise constant model (c) Piecewise affine-linear model

Figure 1: Comparison of the classical piecewise constant and the piecewise affine-linear Mumford-Shah model. The piecewise
constant model oversegments the sky, while the right boundary of the cave is merged with the mountain. The piecewise
affine-linear model yields an improved partitioning. The scanline plots of the blue channel reveal that the piecewise constant
model produces spurious segments to account for the color gradient in the sky; the piecewise affine-linear model adjusts to
the color gradient.

21]. It partitions the image domain into segments of constant color intensity such that the total
boundary length is small and the corresponding piecewise constant image is close to the input image.

The restriction to piecewise constant results can be limiting. For instance, for images with color
gradients the piecewise constant model can produce extra (spurious) segments and the results become
oversegmented; see Figure 1. A natural way to allow for linear trends in an image is to consider a
model which allows for affine-linear segments. Taking this into account amounts to the piecewise
affine-linear Mumford-Shah model which, given an input image f , corresponds to the minimization
problem

argmin
u,P

∑

P∈P

{γ

2
length(∂P ) +

∫

P

|u(x)− f(x)|2 dx
}

,

subject to u|P is affine-linear for all P ∈ P .
(1)

The minimization takes place w.r.t. (non-rough) partitions P of the image domain Ω ⊂ R
2 and

the corresponding piecewise affine-linear functions u on Ω. A partition P of Ω is understood as a
set of pairwise disjoint connected subsets P , i.e., the segments of Ω whose union equals Ω. The
parameter γ > 0 controls the balance between closeness to the input image and total boundary
length of the segments; that is, for large γ only few segments are created. In particular, for γ →∞
the solution of (1) is the affine-linear approximation of f and for γ → 0 the input image is recovered.
In Figure 1, we compare the piecewise constant model and the piecewise affine-linear model for a
natural image with color gradient. While the piecewise constant model introduces spurious segments
to approximate steep color gradients, the piecewise affine-linear model provides an improved result.
In Figure 2, we illustrate different choices of the model parameter γ.

1https://doi.org/10.5201/ipol.2020.295
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(a) Input image (b) γ = 0.25 (c) γ = 0.5 (d) γ = 1

Figure 2: Effect of the model parameter γ. Large values of γ give few segments, while small choices lead to more segments
and closeness to the data. Furthermore, in the limit case γ → 0 the result reproduces the input image and for γ →∞ the
result corresponds to the affine-linear approximation of the input image, respectively.

1.1 Contributions

In this paper, we present an optimized implementation of the algorithmic approach to the piecewise
affine-linear Mumford-Shah derived by the authors in [13]. We elaborate on the employed solver of
the arising subproblems which is based on dynamic programming. Towards an optimized implemen-
tation we include a pruning strategy in the dynamic programming approach to the subproblems. In
extended numerical studies, we analyze the various algorithmic parameters. Furthermore, we study
the speedup by including parallelization. The improvements are illustrated by numerical experiments.
To sum up the contributions are as follows: (i)We give a detailed description of the dynamic program-
ming approach to the subproblems. (ii)We achieve an acceleration of the computations by including
a pruning strategy. (iii)We conduct extended studies on the effects of different choices of penalty
progression, neighborhood system, parallelization and initialization. (iv)As a result of (ii)-(iii), the
provided implementation is further optimized w.r.t. runtime and efficiency compared to [13].

1.2 Model

The authors’ approach in [13] is based on a reformulation of (1) in terms of Taylor jets and a
corresponding discretization. For the reader’s convenience we give a brief recap.

Basics on jets. The Taylor jet J u of order k of a function u : Ω → R is a field of Taylor
polynomials of order k. More precisely, J u : Ω→ Πk maps the domain Ω to the space of k-th order
bivariate polynomials and J u(x) is given by the k-th Taylor polynomial of u at x. We focus on the
case k = 2 which amounts to the first order Taylor jet. In this case J u(x) is the first order Taylor
polynomial whose pointwise evaluation is given by

J u(x)(z) = u(x) + ∂u(x)
∂x1

(z1 − x1) +
∂u(x)
∂x2

(z2 − x2), (2)

for z ∈ R
2. From (2) it follows immediately that the jet J u recovers the function u by u(x) =

J u(x)(x). Since we are only interested in the case k = 2 in this paper, we will refer to the first order
Taylor jet of a function u as the jet of u.

Jet formulation of the piecewise affine-linear Mumford-Shah model. It is straightforward
to see that a function u : Ω → R is piecewise affine-linear if and only if its jet J u is a piecewise
constant field. Therefore we may formulate (1) as

argmin
u,P

∑

P∈P

{γ

2
length(∂P ) +

∫

P

|u(x)− f(x)|2 dx
}

,

subject to J u|P is constant for all P ∈ P .
(3)
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Moreover, by denoting the length of the jump set of the jet J u by ‖∇J u‖0 we can formulate (3) in
terms of u only

u∗ = argmin
u

γ‖∇J u‖0 +
∫

Ω

|u(x)− f(x)|2 dx. (4)

(The factor 1/2 from (3) vanishes since we do not have to compensate for double counting the
boundaries anymore.) Solutions of (4) are piecewise affine-linear because ‖∇J u‖0 <∞ if and only
if the jet J u of u is piecewise constant. A basic but important observation is that there is a one-to-one
correspondence between piecewise constant (first order) polynomial fields and the jets of piecewise
affine-linear functions. First, let us denote by PC(Ω,Π1) the space of piecewise constant fields of
first order polynomials. For each J ∈ PC(Ω,Π1) there is the corresponding piecewise affine-linear
function u(x) = J(x)(x) such that J u = J . This allows us –instead of (4)– to consider the following
equivalent minimization problem over polynomial fields

J∗ = argmin
J∈PC(Ω,Π1)

γ‖∇J‖0 +
∫

Ω

|J(x)(x)− f(x)|2 dx. (5)

The connected components of the level sets of J correspond to the segments of the corresponding
partition P and u∗(x) = J∗(x)(x).

The discrete problem. Let Ω′ = {1, . . . ,m} × {1, . . . , n} be the discrete image domain. In the
discrete setting, the arguments to optimize for are fields J : Ω′ → Π1 of affine-linear polynomials on
the discrete domain Ω′. We discretize the functional in (5) as follows. A common discretization of
the length penalty term in (5) is given by (see [6, 3, 21])

‖∇J‖0 =
S
∑

s=1

ωs‖∇dsJ‖0. (6)

(Please note that we use the same symbol for both the length term in the discrete and the continuous
case.) Here, J is a field on the discrete domain Ω′ as above and the right hand side amounts to the
number of changes of the field J in the direction ds ∈ Z

2,

‖∇dsJ‖0 = #
{

x ∈ Ω′ : J(x) 6= J(x+ ds), x+ ds ∈ Ω′}. (7)

The directions ds form a neighborhood system {d1, . . . , dS}, S ≥ 2. The simplest choice is the
system of unit vectors {e1, e2} with the weights ω1,2 = 1. To reduce anisotropy effects, we focus on
the more isotropic discretization {e1, e2, e1+ e2, e1− e2} together with the weights ω1,2 =

√
2− 1 and

ω3,4 = 1 −
√
2
2

used in [21] which coincide up to normalization with those of [6, 3]. Altogether, the
discretized problem is given by

argmin
J :Ω′→Π1

γ
S
∑

s=1

ωs‖∇dsJ‖0 +
∑

x∈Ω
|J(x)(x)− f(x)|2. (8)

The first term in (8) makes the problem nonsmooth, nonconvex and even NP-hard [22, 5]. We use a
splitting method based on the ADMM to approach (8). The arising subproblems are solved exactly
and efficiently by a tailored dynamic programming scheme. Furthermore, those subproblems are
highly parallelizable. Note that in the following we use the symbol Ω to denote the discrete domain.
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2 Algorithmic Approach

We present the algorithmic approach to the piecewise affine-linear Mumford-Shah model (8) as
developed by the authors in [13]. That is, we employ a splitting approach based on ADMM. (We note
that ADMM approaches often work well for various nonconvex problems; see, e.g., [23, 25, 8, 20].) To
this end, we reformulate the original unconstrained problem (8) as an equivalent constrained problem
with additional splitting variables. It turns out that the subproblems arising in the ADMM scheme
for this constrained problem can be solved exactly and efficiently. In addition to [13], we give a more
detailed description of the solver of these subproblems. We further incorporate a pruning strategy
to speed up computations. Finally, we give more details about the extension to multichannel images
briefly described in [13]. In particular, we illustrate the advantages over its channelwise counterpart
in terms of quality and runtime.

2.1 Splitting Approach based on ADMM

In order to access the discrete length term (6) more directly, we reformulate (8) as a constrained
problem. To this end, we introduce splitting jet variables Js for each direction ds subject to the
constraint that they are equal

argmin
J1,...,JS

S
∑

s=1

{

γωs‖∇dsJ
s‖0 +

∑

x∈Ω

1

S
|Js(x)(x)− f(x)|2

}

,

subject to J1 = J2 = . . . = JS.

(9)

Note that due to the equality constraints, (9) is equivalent to the original problem (8). To improve
readability we introduce abbreviations for the offset values Js(x)(x) and the slopes in coordinate
directions of Js, respectively. (The first order polynomials Js(x) are uniquely defined by these.) In
particular, we define for the coordinate directions e1 = (1, 0)T and e2 = (0, 1)T ,

us(x) := Js(x)(x), the function value of Js(x) at x, (10)

as(x) := Js(x)(x+ e1)− J(x)(x), the horizontal slope of Js(x), (11)

bs(x) := Js(x)(x+ e2)− J(x)(x), the vertical slope of Js(x). (12)

We treat us, as, bs as (m × n)-matrices whose entries are given by us(x), as(x), bs(x), x ∈ Ω and
denote by ‖ · ‖ the Frobenius norm, i.e., ‖u‖2 = ∑

x∈Ω u(x)2. By using this notation the constrained
problem (9) can be written as

argmin
J1,...,JS

S
∑

s=1

γωs‖∇dsJ
s‖0 +

1

S

∑

x∈Ω
|us(x)− f(x)|2,

subject to us(x) = ut(x), as(x) = at(x), bs(x) = bt(x), 1 ≤ s < t ≤ S, for all x ∈ Ω.

(13)

We implicitly used the fact that two affine-linear polynomials are equal if and only if their slopes are
equal and their evaluation coincides in one point.

We utilize ADMM to decompose the constrained problem (13) into coupled subproblems. ADMM
performs iterative block-coordinate-wise minimization on the augmented Lagrangian associated with (13)
and a gradient ascent on the Lagrange multipliers corresponding to the constraints. The augmented
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Lagrangian of (13) is given by

Lµ,ν({Js}, {λs,t}, {τ s,t}, {ρs,t})

=
S
∑

s=1

{

ωsγ‖∇dsJ
s‖0 +

1

S
‖us − f‖2 +

S
∑

t=s+1

(

µ

2

∥

∥us − (ut − λs,t

µ
)
∥

∥

2 − 1
2µ
‖λs,t‖2

+ ν
2

∥

∥as − (at − τs,t

ν
)
∥

∥

2 − 1
2ν
‖τ s,t‖2 + ν

2

∥

∥bs − (bt − ρs,t

ν
)
∥

∥

2 − 1
2ν
‖ρs,t‖2

)}

.

(14)

The hard constraints in (13) are now part of the functional in the form of soft constraints, i.e., the
squared Frobenius norms of the differences of the splitting variables. The corresponding Lagrange
multipliers are denoted by λs,t, ρs,t, τ s,t ∈ R

m×n. The coupling parameters µ, ν determine how strong
deviations between the splitting variables are penalized.

In each iteration, we minimize Lµ,ν w.r.t. each Js and perform a gradient ascent on the Lagrange
multipliers. Next, we consider the subproblem in the (j + 1)-th iteration for a fixed s. By dropping
all terms in Lµ,ν that do not depend on Js (those terms are irrelevant when minimizing w.r.t. Js),
the subproblem for (Js)j+1 is given by

(Js)j+1 =

argmin
J

{

ωsγ‖∇dsJ‖0 + 1
S
‖u− f‖2

+
S
∑

t=s+1

(

µ

2
‖u−

(

(ut)j − (λs,t)j

µj

)

‖2 + νj
2
‖a−

(

(at)j − (τs,t)j

νj

)

‖2 + νj
2
‖b−

(

(bt)j − (ρs,t)j

νj

)

‖2
)

(15)

+
s−1
∑

r=1

(

µj

2
‖u−

(

(ur)j+1 + (λr,s)j+1

µj

)

‖2 + νj
2
‖a−

(

(ar)j+1 + (τr,s)j+1

νj

)

‖2 + νj
2
‖b−

(

(br)j+1 + (ρr,s)j+1

νj

)

‖2
)}

.

Note that J1, . . . , Js−1 in (15) were already updated. The final subproblems in the ADMM scheme
are derived from (15) by algebraic manipulations which make use of properties of the inner product.
This was accomplished in [13]. For the reader’s convenience we also provide this derivation in the
appendix of this paper. Ultimately, we obtain the following iterative scheme

(Js)j+1 = argmin
J

2ωsγ

(S−1)νj
‖∇dsJ‖0 + 2+µjS(S−1)

S(S−1)νj
‖u− (us)j‖2 + ‖a− (as)j‖2 + ‖b− (b

s
)j‖2,

∀s = 1, . . . , S

(λs,t)j+1 = (λs,t)j + µj((u
s)j+1 − (ut)j+1) ∀1 ≤ s < t ≤ S,

(τ s,t)j+1 = (τ s,t)j + νj((a
s)j+1 − (at)j+1) ∀1 ≤ s < t ≤ S,

(ρs,t)j+1 = (ρs,t)j + νj((b
s)j+1 − (bt)j+1) ∀1 ≤ s < t ≤ S

(16)

for the abbrevations given by

(us)j =

2f + µjS

(

S
∑

t=s+1

(

(ut)j − (λs,t)j

µj

)

+
s−1
∑

r=1

(

(ur)j+1 + (λr,s)j+1

µj

)

)

2 + µjS(S − 1)
, (17)

(as)j =
1

S − 1

S
∑

t=s+1

(

(at)j − (τs,t)j

νj

)

+
1

S − 1

s−1
∑

r=1

(

(ar)j+1 + (τr,s)j+1

νj

)

, (18)

(b
s
)j =

1

S − 1

S
∑

t=s+1

(

(bt)j − (ρs,t)j

νj

)

+
1

S − 1

s−1
∑

r=1

(

(br)j+1 + (ρr,s)j+1

νj

)

. (19)
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(a) (b) (c) (d)

Figure 3: Decomposition of the ADMM subproblems into univariate segmented jet problems along pixel scanlines. The
specific scanlines depend on the directions used for discretizing the gradient. (a)-(b): anisotropic discretization. (a)-(d):
near-isotropic discretization.

As it is common when dealing with nonconvex problems, we increase the coupling parameters µ, ν
after each iteration. Thus, the splitting variables can evolve rather independently in the beginning
and become closer in the course of the iterations. We stop the iterations when the splitting variables
become equal up to the set tolerance. Please note that we return the mean values to avoid accentu-
ating a particular set of splitting variables. We provide a pseudocode for the algorithmic scheme (16)
in Algorithm 1.

2.2 Dynamic Programming Approach to the Subproblems

The expensive part in the algorithmic scheme (16) consists in solving the S nonconvex optimization
problems given by the first line of (16). The crucial observation is that by (7) these subproblems
decompose into mutually independent one-dimensional partitioning problems along the paths in Ω
induced by the direction ds. We observe that they can further be solved in parallel. We give an
illustration of these paths in Figure 3 for the compass and diagonal directions. In the following, we
describe an exact and efficient solver for the one-dimensional partitioning problems.

We utilize a minimization strategy based on dynamic programming inspired by the approach for
one-dimensional Mumford-Shah problems developed in [19]. We explain the computational scheme
and adapt it to the present problems. We consider exemplarily the first subproblem in (16) and note
that solving the others can be done analogously in principle. (Further details are elaborated in a
subsequent paragraph.) Let u, a, b ∈ R

n denote the data for the functional values and the data for
the slopes, respectively. Then by using the jet notation (10)-(12), the univariate problems we have
to solve have the generic form

J∗ = argmin
u,a,b∈Rn

γ′‖∇J‖0 + η2‖u− u‖2 + ‖a− a‖2 + ‖b− b‖2. (20)

Recall that for the one-dimensional domain {1, . . . , n}, we have ‖∇J‖0 = |{i ∈ 1, . . . , n− 1} : Ji 6=
Ji+1}| and hence (20) amounts to a one-dimensional segmented least squares problem on {1, . . . , n}.
Solving it consists of two steps. First, we compute an optimal partition of {1, . . . n}. After an
optimal partition has been found, we obtain the minimizer J∗ of (20) by solving the corresponding
least squares problems for each segment.

Regarding the first step, we reformulate (20) in terms of partitions. A partition I of {1, . . . , n} is a
set of pairwise disjoint discrete intervals of the form I = {l, l+1, . . . , r} such that {1, . . . , n} = ⋃

I∈I I.
For convenience we use the MATLAB type notation I = l : r. The formulation in terms of partitions
is now given by

I∗ = argmin
I partition of 1:n

∑

I∈I

(

EI + γ′), (21)
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Algorithm 1: ADMM strategy to the piecewise affine-linear Mumford-Shah model

Input: Image f ∈ R
m×n; edge penalty γ > 0; directions {ds}Ss=1

Output: Piecewise affine-linear approximation u ∈ R
m×n;

corresponding piecewise constant jet a, b, c ∈ R
m×n

/* Initialization */

1 us ← u0, a
s ← a0, b

s ← b0 for all s = 1, . . . , S /* splitting variables */

2 λs,t, τ s,t, ρs,t ← 0 for all 1 ≤ s < t ≤ S /* Lagrange multipliers */

3 µ← µ0, ν ← ν0 /* initial coupling penalties */

/* ADMM iterations */

4 repeat

5 for s = 1, . . . , S do

/* Collect data for one-dimensional subproblems */

6 us ←
2f+µS

(

S∑

t=s+1

(

ut−λs,t

µ

)

+
s−1∑

r=1

(

ur+
λr,s

µ

)

)

2+µS(S−1) ;

7 as ← 1
S−1

∑S
t=s+1

(

at − τs,t

ν

)

+ 1
S−1

∑s−1
r=1

(

ar + τr,s

ν

)

;

8 b
s ← 1

S−1

∑S
t=s+1

(

bt − ρs,t

ν

)

+ 1
S−1

∑s−1
r=1

(

br + ρr,s

ν

)

;

/* Solve one-dimensional subproblems along the paths induced by ds with Algorithm 2 */

9 (us, as, bs)← argmin
J

2ωsγ
(S−1)ν ‖∇dsJ‖0 + 2+µS(S−1)

S(S−1)ν ‖u− us‖2 + ‖a− as‖2 + ‖b− b
s‖2;

10 end

/* Update Lagrange multipliers */

11 for 1 ≤ s < t ≤ S do

12 λs,t ← λs,t + µ(us − ut);
13 τ s,t ← τ s,t + ν(as − at);
14 ρs,t ← ρs,t + ν(bs − bt);

15 end

/* Update coupling penalties */

16 µ← ϕµ; ν ← ϕν;

17 until max
i,j

{

|qs(i,j)−qs+1(i,j)|
|qs(i,j)|+|qs+1(i,j)|

}

≤ ηstop for all s = 1, . . . , S − 1, q ∈ {u, a, b}

/* Take averages of splitting variables */

18 u← 1
S

∑S
s=1 u

s; a← 1
S

∑S
s=1 a

s; b← 1
S

∑S
s=1 b

s;

/* Compute offsets in origin c from u, a, b */

19 for i = 1 . . .m do

20 for j = 1, . . . , n do

21 c(i, j)← u(i, j)− ia(i, j)− jb(i, j);
22 end

23 end

24 return u, a, b, c;
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where EI denotes the (optimal) jet approximation error on the segment I in the sense of

EI = min
α,β,δ∈R

∑

i∈I
η2|δ + iα− ui|2 + |α− ai|2 + |β − bi|2. (22)

Regarding the second step, the corresponding optimal jet J∗ is recovered from the optimal partition
by solving the least squares objective (22) w.r.t. u, a, b for each segment I ∈ I separately.

Coming back to the first step, the partitioning problem (21) can be solved efficiently by dynamic
programming [10, 24] which we describe in the following. For this purpose, we denote the objective
in (21) by B, i.e.,

B(I) =
∑

I∈I

(

EI + γ′
)

. (23)

On the reduced domain 1 : r, r < n we denote its minimal value by

B∗
r = min

I partition on 1:r
B(I). (24)

We observe that the minimal value B∗
r on the domain 1 : r satisfies the Bellman equation

B∗
r = min

l=1,...,r

{

E l:r + γ′ +B∗
l−1

}

, (25)

where we set B∗
0 = −γ′. Thus, the dynamic programming principle [2] allows us to compute

B∗
1 , B

∗
2 , . . . until we reach B∗

n. Since we are interested in an optimal partition rather than the optimal
value, we keep track of an optimal partition I∗ by storing at step r the minimizing argument l′

of (25) as the value Lr so that L encodes the boundaries of an optimal partition of 1 : n after B∗
n

has been found.
In order to solve (21), we have to solve O(n2) of the least squares problems (22). Each least

squares problem has an approximation error EI . Using a standard least squares solver to compute EI
requires O(n) for each interval I which would sum up to an O(n3) algorithm. (One reason for this is
that after such a solver has computed optimal values α∗, β∗, δ∗ in (22), we still have to compute the
optimal functional value from α∗, β∗, δ∗ which costs O(n).) Instead, we utilize an update strategy
based on Givens rotations which was first developed in [19] for solving (higher order) one-dimensional
Mumford-Shah models. In contrast to the problems considered in [19], the problems here are given in
terms of discrete jets instead of discrete functional values only. However, as described in [13] a similar
update strategy allows to compute the jet approximation errors EI in O(1) which in turn yields an
overall algorithm which has O(n2) worst time complexity. In practice, the runtime is significantly
sped-up by utilizing a pruning strategy which we describe in a subsequent paragraph.

We provide a derivation of the update scheme. To this end, we reformulate (22) to

E l:r = min
α,β,δ
‖Aq

(

α, β, δ
)T − gl:r‖2, (26)

where q = r − l + 1 denotes the length of the interval I = l : r and the system matrix Aq ∈ R
3q×3

and the data vector gl:r ∈ R
3q are given by

Aq =























η 0 η
1 0 0
0 1 0
...

...
...

qη 0 η
1 0 0
0 1 0























, and gl:r =























ηul

al
bl
...

ηur

ar
br























, (27)
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respectively. Please note that by the definition of Aq we implicitly shifted the base point of the
approximating univariate affine-linear polynomial given by p(i) = δi+ iαi from 0 to the left boundary
of I, i.e., to l − 1. We point out that the approximation errors E l:r in (22) and (26) are equal.

We now explain the adaption of the scheme in [19] necessary to compute the approximation
errors in (26) in a fast and stable way. The approximation errors E l:r+1 are obtained from E l:r by
(precomputable) recurrence relations without having to compute the minimizer of the underlying least
squares problem (26) explicitly. To keep things focused we consider the prototype interval I = 1 : r.
The approach for general left interval borders l is analogous. We use the symbols Qr and Rr to

denote the QR decomposition of the matrix Ar, that is, Ar = Qr

(

Rr

0

)

for the orthogonal matrix Qr

and an upper triangular matrix Rr. We make the well-known basic but important observation that
after applying (Qr)T to (26), the approximation error E1:r is given by

E1:r = min
α,β,δ

∥

∥

∥

∥

(

Rr

0

)

(

α β δ
)T − (Qr)T g1:r

∥

∥

∥

∥

2

= ‖((Qr)T g1:r)4:3r‖2, (28)

where we used the invariance of the ℓ2-norm to multiplication with orthogonal matrices and that the
upper linear system induced by Rr can be solved exactly. Note that the approximation error E1:r is
explicitly given by the right-hand side of (28).

We now assume that we have computed the QR decomposition Qr, Rr of Ar, and elaborate on
how to obtain a QR decomposition for the system matrix corresponding to the extended interval
1 : r + 1, i.e., how to obtain a QR decomposition Qr+1, Rr+1 of Ar+1 from Qr, Rr. We begin by
defining the auxiliary matrix W r given by

W r =

(

Rr

V r

)

, where V r =





(r + 1)η 0 η
1 0 0
0 1 0



 . (29)

Note that V r is given by the rows of An corresponding to the (r + 1)-th data points, i.e., V r =
(An)3r+1:3r+3. We want to transform W r into upper triangular form without altering zeros already
present. To this end, we employ Givens rotations since a Givens rotation operates exclusively on
two rows of W r. Then, by the structure of W r the present zeros are not destroyed. (Note that
Householder transformations would not preserve the zeros.)

Recall that a Givens rotation for a rotation angle θ is represented by the matrix G = G(j,m, θ)
which is an identity matrix with the 2×2 submatrix (Gjj, Gji;Gij, Gii) replaced by a planar rotation

G(j, i, θ) =

























1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · cos(θ) · · · sin(θ) · · · 0
...

...
. . .

...
...

0 · · · − sin(θ) · · · cos(θ) · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1

























. (30)

To eliminate the matrix entry An
ij by the pivot element An

jj we use the left multiplication by the
Givens rotation G(j,m,Θij). The parameters of G(j, i,Θij) are given by

cos(Θij) = An
jj/ρ, sin(Θij) = An

ij/ρ, (31)

where ρ = sign(An
ij)
√

(An
jj)

2 + (An
ij)

2. We denote for i = 1, . . . , 3n, j = 1, 2, 3 the terms in (31) by

Cij = cos(Θij), Sij = sin(Θij). (32)
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γ No pruning With pruning Factor

0.25 90.7 sec 37.3 sec 2.4

0.50 57.5 sec 29.0 sec 2.0

1.00 49.2 sec 27.0 sec 1.8

Table 1: Runtime improvements by pruning the subproblems. The runtimes correspond to the results of Figure 2. The
pruning strategy accelerates the computations roughly by a factor 2.

By eliminating the last three rows of W r (given by V r = (An)3r+1:3r+3) with Givens rotations
we obtain Rr+1. Thus, we can recursively obtain Rr+1 from Rr and the recursion coefficients are
given by C,S in (32). Consequently, in view of (28) and assuming that we have already computed
yr = (Qr)T gr, we have the recurrence relation

yr+1 = Gr+1
(

yr ηur+1 ar+1 br+1

)T
. (33)

Here, Gr+1 denotes the composition of the Givens rotations which eliminate the last three rows of
W r. As Gr+1 only operates on the first three entries and the last three entries of the vector on the
right hand side of (33), we obtain ‖yr+1

4:3r+3‖2 = ‖yr4:3r‖2 +
∑3

i=1(y
r+1
3r+i)

2, that is, the squared norm of
the rotated data plus the squared norm of the last three entries of the new data points after applying
the Givens rotations Gr+1 encoded by the coefficients in C,S. Thus, in view of (28), the error update
E1:r → E1:r+1 is given by

E1:r+1 = E1:r +
3

∑

i=1

(yr+1
3r+i)

2, (34)

that is, the error update consists of computing yr+1 by (33) and updating E1:r+1 by (34).
Recall that the application of Gr+1 is given by the recursion coefficients C,S. We note that the

recurrence coefficients do not depend on the data and we have to compute them only once for An

and then use them for computing all E l:r. Also note that the Givens rotation matrices Gr+1 never
have to be computed explicitly. As a consequence, the error updates have O(1) computational costs;
see also [19].

Acceleration by pruning strategy. To further speed up the computations we prune the search
space with the strategy developed in [20]. The pruning is motivated by the observation that the
approximation errors satisfy E l:r ≤ E l′:r for all l′ ≤ l. Hence, if the current value Br for B∗

r satisfies
Br < E l:r + γ′, we can skip all l′ < l, i.e., we do not have to compute E l′:r and we set B∗

r = Br.
Besides the theoretical quadratic runtime guarantee which also applies to the worst case scenario
(see [19]), we observe in our experiments, that the runtime is significantly reduced when additionally
using the aforementioned pruning strategy. We sum up the approach to the univariate subproblems
in Algorithm 2. Table 1 illustrates the acceleration effect on the overall algorithm which roughly
halves the runtimes (Intel XeonE5- 2620v4, 2.10GHz, 16 cores, 256 GB RAM).

Adaption to other directions. We described a fast and stable approach to solve the first ADMM
subproblem (corresponding to the direction d1). Now we consider the other ADMM subproblems
in (16), i.e., the subproblems for ds, s = 2, 3, 4, and describe the necessary adaptions. For s = 2 the
roles of a and b in (20) are simply interchanged and we can proceed as for s = 1. By linearity, for
s = 3 the role of a in (21) is taken by a(x) + b(x) and the role of b by a(x) − b(x) (and vice-versa
for s = 4). Thus, the input for the slope data a, b in (20) and the computed slopes have to be
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Algorithm 2: Solver for the univariate subproblems

Input: Offset and slope data u, a, b ∈ R
n, model parameter γ′ ≥ 0

Output: Optimal jet J∗ = (u∗, a∗, b∗) of the univariate segmented jet problem (20)

1 Row-wise transform the matrix An from (27) to upper triangular form using successive Givens rotations;
2 Store the recurrence coefficients (32) in C,S
3 Compute E1:r for all r = 1, . . . , n with C,S
4 L1 ← 1; B∗

1
← 0;

5 for r = 2, . . . , n do

6 Lr ← 1; B∗
r ← E1:r;

7 for l = r − 1 . . . , 2 do

8 Compute E l:r from E l:r−1 with the recurrence (33)-(34) using C,S
9 b← B∗

l−1
+ γ′ + E l:r;

10 if b ≤ B∗
r then

11 B∗
r ← b; Lr ← l;

12 end

/* Pruning */

13 if E l:r + γ′ > B∗
r then

14 break;
15 end

16 end

17 end

/* Recover the optimal partition I∗ from L */
18 r ← n, I∗ ← ∅
19 while r > 0 do

20 l← Lr, I∗ ← I∗ ∪ {(l : r)}, r ← l − 1;
21 end

/* Recover the optimal jet J∗ on each segment I ∈ I∗ */
22 for I ∈ I∗ do

23 Solve (u∗, a∗, b∗)I = argminv,w,z ‖A|I|
(

v1, w1, z1, . . . , v|I|, w|I|, z|I|
)T − gI‖2 for A, g from (27)

24 end

25 return u∗, a∗, b∗

transformed accordingly. As a consequence, the recurrence coefficients (32) have to be computed
only once in each ADMM iteration and can be used for all S subproblems.

2.3 Multichannel Images

In this section, we extend the description in [13] of adapting the method to vector-valued images
f : Ω → R

L with L channels. In particular, we illustrate its practical benefits compared with its
channelwise counterpart. To this end, we consider the first order Taylor jet of a function u : Ω→ R

L

which is given by the Taylor jets of its component functions, i.e.,

J u(x) =
(

J u1(x), . . . ,J uL(x)
)T

. (35)

The multichannel version of the jet formulation of the piecewise affine-linear Mumford-Shah model (5)
is then given by

J∗ = argmin
J∈PC(Ω,ΠL

1 )

γ‖∇J‖0 +
L
∑

l=1

∫

Ω

|Jl(x)(x)− fl(x)|2 dx. (36)
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(a) Input image (b) Channelwise approach (68.0 sec) (c) Multichannel approach (26.9 sec)

Figure 4: Comparison of channelwise and multichannel approach for the input image (a). The channelwise approach (b)
suffers from color artifacts (see, e.g., the face of the right boy or the ears of the left boy). (c) The multichannel approach
yields a more reasonable image approximation and an improved partition. Furthermore, it needs less computation time.

Towards the discrete version of (36), the discrete length term reads

‖∇dsJ‖0 = #
{

x ∈ Ω : Jl(x) 6= Jl(x+ ds) for at least one component l = 1, . . . , L, x+ ds ∈ Ω
}

.
(37)

In particular, the segment boundaries are aligned across channels and a jump of J in one component
has the same cost as a jump in all components. Altogether, the discrete problem reads

argmin
J :Ω→ΠL

1

S
∑

s=1

γωs‖∇dsJ‖0 +
L
∑

l=1

∑

x∈Ω
|Jl(x)(x)− fl(x)|2. (38)

After introducing the splitting jets J1, . . . , JS we obtain

argmin
J1,...,Js

S
∑

s=1

{

γωs‖∇dsJ
s‖0 +

1

S

L
∑

l=1

∑

x∈Ω
|Js

l (x)(x)− f(x)|2
}

,

subject to J1
l = J2

l = . . . = JS
l for all l = 1, . . . , L.

(39)

In view of the notation (10)-(12), we denote u, a, b ∈ R
m×n×L and the Lagrangian of (39) is understood

w.r.t. the Lagrange multipliers λs,t, τ s,t, ρs,t ∈ R
m×n×L. Then the derivation of the ADMM scheme is

analogous to the single channel case.
Concerning the univariate subproblems, the jet approximation errors EI in the dynamic pro-

gramming scheme are given by the channelwise sum EI = ∑L

l=1 EIl . Consequently, the error update
strategy based on Givens rotations from Section 2.2 can be used by simply updating the approxima-
tion errors channelwise. For this we can use the same system matrix Aq from (27) for all channels
and the recurrence coefficients (32) have to be computed only once for all channels.

In Figure 4 we illustrate the benefits of the multichannel approach compared to its channelwise
counterpart.

3 Implementation Details

Our profiling of Algorithm 1 revealed that the bulk of computation time is spent on solving the
univariate subproblems (more than 90%). As a consequence, we implemented this time critical part
in the C++ programming language to provide high performance code. The remaining parts of Al-
gorithm 1 –which are not time-critical– are implemented in the MATLAB programming language.
Thus, PALMS calls its procedures in MATLAB for which the C++ routines are made accessible by
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(a) Input image (b) Fast progression,
ϕ = 1.7, 37 iterations,

E = 2899.9

(c) Medium progression,
ϕ = 1.3, 65 iterations

E = 2821.7

(d) Slow progression,
ϕ = 1.05, 285 iterations

E = 2796.0

Figure 5: Effect of progression parameter. Small progression parameters ϕ yield improved partitions and lower energy values
E, but more iterations are needed. As a good compromise of runtime and quality we find the medium choice ϕ = 1.3.

using MEX-files. The parts which are implemented in C++ use the Armadillo library [17, 18] –a com-
mon library for linear algebra– and the OpenMP library which is a standard choice for parallelization
on multi-core CPUs. We will see that parallelization with OpenMP speeds up computations by a
factor 8-9.

In the following, we discuss the different algorithmic parameters in Algorithm 1. In particular,
we motivate the default values used in PALMS experimentally. Further, we illustrate the effect of
parallelization. Afterwards, we describe how to obtain the partition corresponding to the computed
piecewise constant polynomial field in an efficient way.

Progression choice. As pointed out in Section 2.1 we use the coupling parameters µ, ν to penalize
deviations between the splitting variables and increase them after each iteration. More precisely, we
initialize the values with small parameters µ0, ν0 and increase them by a factor ϕ > 0, that is,
we employ the geometric progressions given by µj = ϕjµ0, νj = ϕjν0. This strategy has turned
out to work well in practice. Recall that we use different initial values µ0 and ν0 since offsets and
slopes typically live on different scales. Naturally, if the progression parameter ϕ is chosen small,
the coupling parameters grow slowly and more iterations are needed until the S splitting variables
(us, as, bs) become equal. However, a slower progression typically improves the result. In Figure 5 we
compare different choices of ϕ. We obtain the best quality when using the small parameter ϕ = 1.05
and the least number of iterations for the large parameter ϕ = 1.7. The medium parameter ϕ = 1.3
yields satisfying results which are comparable to the results produced with the small parameter
ϕ = 1.05, while needing considerably fewer iterations. (Typically the progression parameter ϕ = 1.05
needs 225-290 iterations and the progression parameter ϕ = 1.3 needs 55-70 iterations, respectively.)
Hence, PALMS uses the progression parameter ϕ = 1.3 as default. On the one hand, towards faster
runtimes the user can instead choose a larger value in PALMS. On the other hand, for higher quality
the user can use a smaller value.

Neighborhood system. We compare the anisotropic discretization and the near-isotropic dis-
cretization of the length penalty term in (5). Recall that the anisotropic discretization corresponds
to a 4-neighborhood system using the compass directions d1 = e1, d2 = e2 and the isotropic dis-
cretization corresponds to an 8-neighborhood system which also includes diagonal directions, that is,
d1 = e1, d2 = e2, d3 = e1 + e2, d4 = e1− e2. The results in Figure 6 illustrate the benefit of employing
the 8-neighborhood system. It produces smoother boundaries with reduced anisotropy effects. The
algorithm has to solve roughly twice as many univariate subproblems when using the 8-neighborhood
system (see Figure 3). However, the practical runtimes increase only by roughly 40% (Intel XeonE5-
2620v4, 2.10GHz, 16 cores, 256 GB RAM) since less iterations are needed than for the anisotropic
discretization. This might be attributed to the tighter coupling of splitting variables. (Recall that
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(a) Input image (b) Anisotropic discretization,

(16.0 sec)

(c) Near-isotropic discretization,

(24.9 sec)

Figure 6: The near-isotropic discretization produces smoother boundaries at the cost of about 50% higher computation
time since it needs to solve more univariate subproblems in each iteration; see Figure 3 and Algorithm 1.

each splitting variable is coupled with all the others.) Because of the improved quality and moderate
runtime increase, PALMS uses the 8-neighborhood system as default. If runtime is more critical than
quality, PALMS allows the user to switch to the 4-neighborhood system instead.

Parallelization. We compare the runtimes of the single-core and the multi-core implementation
of Algorithm 1. More precisely, we compare solving the univariate partitioning problems of the
form (21) arising in the ADMM subproblems (16) sequentially and in parallel. (Note that up to the
maximum number of image rows and columns max{m,n} problems can be approached in parallel.)
To this end, we consider the runtimes for the input image and model parameters depicted in Figure 2.
The respective runtimes are shown in Table 2. We observe that parallelization roughly accelerates
the computation times by factor 8 on a 16 core CPU which illustrates the benefit of the multi-core
implementation (Intel XeonE5- 2620v4, 2.10GHz, 16 cores, 256 GB RAM). Consequently, PALMS
makes use of a multi-core CPU parallelization with OpenMP.

γ Single-core Multi-core Factor

0.25 266.4 sec 37.6 sec 7.9

0.50 232.0 sec 29.1 sec 8.0

1.00 228.4 sec 27.2 sec 8.4

Table 2: Comparison of runtimes of single-core and multi-core implementation for the results of Figure 2. The multi-core
implementation provides a significant speedup compared with its single-core counterpart.

Initialization. The splitting variables us, as, bs of the ADMM splitting approach (16) are initialized
by u0, a0, b0 before the iterations start. The simplest choice amounts to an all-zero initialization.
Alternatively, the initial image values could be chosen as the input image u0 = f . Since the method
produces piecewise affine-linear approximations, another reasonable choice amounts to the affine-
linear least-squares approximation of the input image. Furthermore, the slopes a0 and b0 may be set
to the horizontal and vertical forward differences∇1f,∇2f of f , respectively. In Figure 7, we compare
the different initializations. We observe that the results produced when using u0 = a0 = b0 = 0,
u0 = f or the affine-linear approximation are very similar and the respective energy values are very
close. For the initialization with forward differences we see that the results show some clutter and
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(a) Input image (b) u0 = a0 = b0 = 0,

E = 10258.7

(c) u0 = f , a0 = b0 = 0,

E = 10237.2

(d) u0, a0, b0 affine-linear approx. of f ,

E = 10250.0

(e) u0 = f , a0 = ∇1f, b0 = ∇2f ,

E = 14208.7

(f) u0 = 0, a0 = ∇1f, b0 = ∇2f ,

E = 14210.0

Figure 7: Results of different initializations for the input image (a) and γ = 1.3. We report the energy values E of the
results below the images. Initializing with zeros (b), with the input image (c) and with the affine-linear approximation (d)
give very similar results. Using the forward difference to initialize the slopes (e)-(f) produces clutter and yields larger energy
values. Due to this and its slightly lower energy value, we use initialization (c).

the energy values become larger. Due to its simplicity and the slightly lower energy value, PALMS
employs u0 = f, a0 = b0 = 0 as the default initialization. Alternatively, the user can also employ
different initializations.

Recovering the partition from the jet. The proposed algorithm computes a piecewise affine-
linear approximation u of the input image together with the corresponding (piecewise constant) jet,
i.e., the slopes a, b and the offsets in matrix origin c, respectively. Consequently, the jet encodes the
associated partition of the input image in the sense that two neighboring pixels x and x+ ds belong
to the same segment if and only if the jet takes the same values in x and x+ ds. Algorithmically, we
exploit this relation to obtain the adjacency matrix of the graph corresponding to the partition and
compute its connected components to obtain the partition corresponding to a, b, c as a label image
L : Ω→ N. The computation of the connected components is efficiently carried out by the MATLAB
function conncomp.

Default parameters of the algorithm. In Table 3 we summarize the default parameters of the
provided implementation. In particular, we give the standard values for initialization, progression and
initial values of the penalty parameters, the threshold for the stopping criterion and the discretization
of the gradient.
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Parameter Meaning Default value

u0, a0, b0 Initialization u0 = f , a0 = b0 = 0
µ0 Initial offset progression value 10−3

ν0 Initial slopes progression value min(450γµ0, 1)
ϕ Progression parameter 1.3

ηstop Stopping parameter 10−2

{ds} Directions of discretized gradient Figure 3 (a)-(d)

Table 3: Summary of default parameters. The results for other choices of u0, a0, b0 are shown in Figure 7. The choices of
ϕ and {ds} are justified in Figure 5 and Figure 6, respectively.

4 Experiments

In this section, we first illustrate the outputs of Algorithm 1 by means of a synthetic image. To give
an impression of the runtimes for different image sizes we then report the runtimes for the same image
at different resolutions. Afterwards, we give a quantitative comparison of the proposed method with
iterative application of graph cuts. All experiments were conducted on a workstation (Intel XeonE5-
2620v4, 2.10GHz, 16 cores, 256 GB RAM).

Illustration of the outputs. In addition to the piecewise affine-linear approximation u of the
input image, Algorithm 1 computes the corresponding piecewise constant field of first order polyno-
mials in terms of their coefficients a, b, c. In Figure 8, we apply the proposed algorithm to a synthetic
image and illustrate the corresponding jet by 3D-plots. Indeed, while u is piecewise affine-linear,
the corresponding field of first order polynomials is piecewise constant and encodes the partition
associated with u.

Runtime and image size. We study the dependency of the runtime of the provided implementa-
tion on the image size. To this end, we consider the same image at various resolutions and check the
runtimes. In order to obtain comparable results for all resolutions, we adapt the model parameter
γ accordingly, i.e., we chose γ = 0.75 for the lowest resolution and increased it proportionally w.r.t.
the number of pixel rows. In Figure 9 we report the runtimes of the partitioning results in Figure 10.
The considered image sizes range from 320× 222 to 1024× 712. (Please note that we obtained the
image data for 400×279 and 480×334 by downsampling.) In particular, we observe that the runtime
is about two minutes for image size 800× 556.

Acceleration with down-scaled images. In Figure 10, we observe that the results on the low-
resolution images are remarkably close to the results at finer scales. This motivates the following
basic acceleration strategy. As a first step, the input image is scaled down by a factor which can
be chosen as 2 or 4 (surplus rows and columns are cut off). As a result, the total number of pixels
is reduced by factor 4 and 16, respectively. (This step is accomplished by the MATLAB function
imresize.) To account for the smaller image size, the algorithm is then run with the adapted jump
penalty γ/2 and γ/4, respectively. Next, the resulting partition is scaled up to the original image size
without any interpolation. (Here we use the MATLAB function imresize with the option ‘nearest’.)
In order to obtain smoother segment boundaries, we perform morphological opening on this up-scaled
partition using a disk shaped structuring element of size 2 or 4, respectively. (We use the MATLAB
function imopen with the option ‘disk’ and we favor larger segments in this step.) Then we obtain
the corresponding jet a′, b′c′ by repeating the values of a, b, c on the up-scaled partition. Finally, the
corresponding piecewise affine-linear image of original image size u′ is computed from a′, b′, c′ so that
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(a) Input image (b) Piecewise affine-linear

approximation u

(c) Partition corresponding to (b)

(shown as label image)
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(d) 3D-plot of (b)
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(f) Vertical slopes b
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Figure 8: Illustration of the computed outputs. While the reconstruction u is piecewise affine-linear (b),(d), the correspond-
ing first order polynomial field (i.e., the affine-linear coefficients) (e)-(g) is piecewise constant and induces the associated
partition (c).
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Image size Runtime

320× 222 11.7 sec.

400× 279 20.4 sec.

480× 334 28.6 sec.

640× 445 69.7 sec.

800× 556 123.4 sec.

1024× 712 256.1 sec.

Figure 9: Plot and table of the runtimes for different resolutions of the parrot image depicted in Figure 10. In particular,
for the image size 800× 556 the runtime of the proposed implementation is roughly 2 minutes.

u′ is not blurred over segment boundaries. In PALMS, the user can employ the described strategy
optionally. In Figure 11, we compare the results for the unaltered input image with the results for the
down-scaled input images (the latter were scaled up to the original image size as described above).
We observe that applying this basic strategy reduces the runtimes at the expense of quality (the
segment boundaries are less smooth); yet, the resulting partitions are reasonable and comparable
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(a) Image size 320× 222 (b) Comp. time 11.7 sec (c) Image size 400× 279 (d) Comp. time 20.4 sec

(e) Image size 480× 334 (f) Comp. time 28.6 sec (g) Image size 640× 445 (h) Comp. time 69.7 sec

(i) Image size 800× 556 (j) Comp. time 123.4 sec (k) Image size 1024× 712 (l) Comp. time 256.1 sec

Figure 10: The results and runtimes of Table 9. The partitioning results are comparable throughout the increasing image
sizes by adapting the model parameter accordingly. For image size 800× 556 the proposed implementation requires about
2 minutes.

(a) Input image (b) Result for original image

size, 26.0 sec

(c) Result for half image

size, 5.8 sec

(d) Result for quarter image

size, 1.3 sec

Figure 11: Acceleration by a basic down-scale strategy. The computation times for large input images can be improved for
the cost of a slight quality loss (the boundaries of the partition become less smooth). The images displayed in (c) and (d)
are obtained by applying the proposed method on a down-scaled image and the results were scaled up afterwards (using the
jet representation as described in Section 4).
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with the result for the original image size.

Comparison with iterative graph cuts. We compare the proposed algorithm to an iterative
label-based repartitioning scheme based on graph cuts which we will call GC in the following. We
used the α-expansion algorithm of the toolbox GCO v3.0 [5, 4, 14]. The scheme is given as follows:

1. Choose an initial partition P0.

2. Iterate until convergence:

a. for all P ∈ P t, and l = 1, . . . , L, compute the optimal affine coefficients,

(a∗, b∗, c∗) = argmin
a,b,c

∑

(i,j)∈P
(ai+ bj + c− fL(i, j))

2;

b. compute a partition P t+1 which is (approximately) optimal for the determined set of affine
coefficients with the α-expansion algorithm.

The initial partition P0 is obtained by a piecewise constant partitioning of the input image using a
subset of K color values as labels. We proceeded with the iterative repartitioning until the relative
improvement of the energy was less than 10−3 or after a maximum number of 10 iterations was
reached.

We compare Algorithm 1 to GC using 64 and 256 initial labels for the 200 test images (481× 321
RGB) of the Berkeley segmentation data set [1]. We report the average model energies and the average
runtimes in Figure 12. We observe that the proposed scheme achieves lower mean energies and faster
computation times than GC which illustrates the effectiveness of the algorithm. In particular for
small model parameter γ, the proposed scheme is notably faster. In Figure 13 we give a comparison
of the proposed method with GC (with 256 initial labels) for example images from the Berkeley test
set. Further examples of the proposed method for fixed model parameter are provided in Figure 14.
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GC (256 labels)

GC (64 labels)

Proposed

γ GC (64 labels) GC (256 labels) Proposed

0.05 1802.2 1802.1 1772.3

0.15 3180.3 3178.2 3146.0

0.50 5484.8 5480.7 5418.2

1.00 7324.7 7317.5 7202.7

2.00 9551.5 9526.4 9356.7

Figure 12: Left: Average runtimes for the Berkeley test set. The proposed method has significantly lower mean computation
times than the iterative graph cuts method (≈ 28 sec. for any γ). Right: Mean energies over the Berkeley test set and the
parameters γ in the left column. The proposed algorithm gives the lowest mean energies.

143



Lukas Kiefer, Martin Storath, Andreas Weinmann
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E = 1908.5; 52.1s E = 3029.4; 22.7s E = 4946.1; 23.9s E = 6628.5; 25.7s E = 9297.0; 25.7s

Figure 13: Comparison to GC for examples from Berkeley test images. As a tendency, the proposed algorithm produces
slightly more segments than GC (see, e.g., the man’s hat in the first image for γ = 0.5 or the background of the second
image for γ = 1). Further, the proposed algorithm gives lower energies E and faster runtimes.
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Input image Pcw. affine-linear approx. Corresponding partitioning

Figure 14: Example results for the Berkeley data set. From left to right: Input image, piecewise affine-linear approximation
and the corresponding partitioning. The model parameter is γ = 0.5.
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5 Conclusion

In this paper, we detailed the PALMS image partitioning which implements an algorithm for the
piecewise affine-linear Mumford-Shah model, which is a variational approach to image partitioning.
The algorithm is based on the authors’ ADMM approach in [13]. In particular, we gave an in-
depth description of the exact and efficient solver for the arising subproblems. These subproblems
correspond to univariate partitioning problems and the solver is based on dynamic programming. We
accelerated these computations by incorporating a pruning strategy. We illustrated the advantages
of using the multichannel approach compared to its channelwise counterpart. Furthermore, we
discussed the effect of different choices of penalty progressions. Likewise, we illustrated the benefits
of employing an 8-neighborhood discretization compared with a 4-neighborhood discretization. In
particular, despite the fact that twice as many subproblems had to be solved, the runtime increased
by only 50%. The subproblems can be approached in parallel. We studied the speedup when
using a parallelized implementation compared with a sequential implementation and observed a
speedup by factor 8 for a multi-core CPU with 16 cores. We further compared different choices
for the initialization. As a result of these improvements and studies, we obtain a further optimized
algorithm. Subsequently, we experimentally tested the image sizes our implementation can efficiently
handle and found that images of size 800 × 556 are processed in roughly two minutes. Finally,
we compared the algorithm to iterative application of graph cuts using α-expansion moves on the
Berkeley segmentation test set. This showed the efficiency of the implementation which yields lower
mean energies and faster runtimes.

A Derivation of the ADMM Subproblems

We here derive the jet subproblems (16) from (15). To this end, we will repeatedly use the fact that

∑N

i=1
xi(p− ti)

2 =
(

∑N

i=1
xi

)(

p−
∑N

i=1 tixi
∑N

i=1 xi

)2
+ C (40)

holds for p, t1, . . . , tN ∈ R and x1, . . . , xN > 0 and a constant C that does not depend on p. Initially,
this allows us to rewrite the summands in (15) and we get

argmin
J

{

ωsγ‖∇dsJ‖0 + 1
S
‖u− f‖2

+ (S−s)µ
2

∥

∥

∥
u−

∑S

t=s+1(u
t − λs,t

µ
)

(S − s)

∥

∥

∥

2

+ (s−1)µ
2

∥

∥

∥
u−

∑s−1
r=1(u

r + λr,s

µ
)

(s− 1)

∥

∥

∥

2

+ (S−s)ν
2

∥

∥

∥
a−

∑S

t=s+1(a
t − τs,t

ν
)

(S − s)

∥

∥

∥

2

+ (s−1)ν
2

∥

∥

∥
a−

∑s−1
r=1(a

r + τr,s

ν
)

(s− 1)

∥

∥

∥

2

+ (S−s)ν
2

∥

∥

∥
b−

∑S

t=s+1(b
t − ρs,t

ν
)

(S − s)

∥

∥

∥

2

+ (s−1)ν
2

∥

∥

∥
b−

∑s−1
r=1(b

r + ρr,s

ν
)

(s− 1)

∥

∥

∥

2
}

.

(41)

We dropped terms that do not depend on J . For readability we use abbreviations for the sums
in (41) which are given by

Λ =
∑S

t=s+1
(ut − λs,t/µ), Ψ =

∑S

t=s+1
(at − τ s,t/ν), ∆ =

∑S

t=s+1
(bt − ρs,t/ν),

Γ =
∑s−1

r=1
(ur + λr,s/µ), Φ =

∑s−1

r=1
(ar + τ r,s/ν), Θ =

∑s−1

r=1
(br + ρr,s/ν).
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After applying (40) to all but the first line of (41) we obtain

argmin
J

ωsγ‖∇dsJ‖0 + 1
S
‖u− f‖2 + (S−1)µ

2

∥

∥u− Λ+Γ
S−1

∥

∥

2
+ (S−1)ν

2

∥

∥a− Ψ+Φ
S−1

∥

∥

2
+ (S−1)ν

2

∥

∥b− ∆+Θ
S−1

∥

∥

2
.

(42)

A final application of (40) to both remaining terms depending on u in (42) leads to

argmin
J

ωsγ‖∇dsJ‖0 + 2+µS(S−1)
2S

∥

∥u− 2f+µS

(

Λ+Γ
)

2+µS(S−1)

∥

∥

2
+ (S−1)ν

2

∥

∥a− Ψ+Φ
S−1

∥

∥

2
+ (S−1)ν

2

∥

∥b− ∆+Θ
S−1

∥

∥

2
. (43)

Finally, multiplying (43) by 2
(S−1)ν

, we obtain

argmin
J

2ωsγ

(S−1)ν
‖∇dsJ‖0 + 2+µS(S−1)

S(S−1)ν

∥

∥u− 2f+µS

(

Λ+Γ
)

2+µS(S−1)

∥

∥

2
+
∥

∥a− Ψ+Φ
S−1

∥

∥

2
+
∥

∥b− ∆+Θ
S−1

∥

∥

2
(44)

which yields (16).
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