
Published in Image Processing On Line on 2019–03–12.
Submitted on 2018–12–15, accepted on 2019–02–14.
ISSN 2105–1232 c© 2019 IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
https://doi.org/10.5201/ipol.2019.243

2
0
1
5
/
0
6
/
1
6

v
0
.5
.1

IP
O
L

a
rt
ic
le

c
la
ss

Blind Image Deblurring using the ℓ0 Gradient Prior
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Abstract

Many blind image deblurring methods rely on unnatural image priors that are explicitly designed
to restore salient image structures, necessary to estimate the blur kernel. In this article, we
analyze the blur kernel estimation method introduced by Pan and Su in 2013 that uses an ℓ0
prior on the gradient image. We present deconvolution results using the estimated blur kernels.
Our experiments show the effectiveness of the method as well as some of its shortcomings.

Source Code

The C++ source code, the code documentation, and the online demo are accessible at the IPOL
web page1 of this article. Compilation and usage instruction are included in the README.txt

file of the archive.

Keywords: deblurring; blind deconvolution; blur kernel estimation

1 Introduction

Blind image deblurring is an ill-posed image restoration problem which aims to restore a sharp
image given a blurry one. Motion blur is a specific type of blur that occurs when there is relative
motion between the camera and the target scene during the exposure time. When the camera focal
length is large and there is no in-plane rotation, the image formation process can be expressed as
the convolution between the sharp image u and a latent blur kernel k leading to

v = u ∗ k + n, (1)

where ∗ denotes the convolution2, and n models acquisition noise. The goal of blind image deblur-
ring is to restore the image u without knowing k before-hand. Most methods propose a two step
restoration: first estimating the blur kernel k and then applying a non-blind deconvolution algo-
rithm [6, 5, 11, 15]. While many methods assuming a uniform blur can be extended to a non-uniform
model [27, 11, 9], this extension comes at the price of a non-negligible computational cost with, in
general, only a minor quality improvement [13, 12].

1https://doi.org/10.5201/ipol.2019.243
2As explained in the following, we model blur as circular convolution for numerical convenience.
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Blind Image Deblurring using the ℓ0 Gradient Prior

Notation. We use the discrete formalism for images. Let u be a digital image of size M×N defined
on the grid Ω = {0, . . . ,M − 1} × {0, . . . , N − 1}. The discrete Fourier transform of u, F(u) = û is
defined as

ûk,l =
M−1
∑

m=0

N−1
∑

n=0

um,ne
−2πi(mk

M
+nl

N ), (2)

for (k, l) ∈ Ω. The inverse discrete Fourier transform of û = F(u) is defined as

[

F−1(û)
]

m,n
=

1

MN

M−1
∑

k=0

N−1
∑

l=0

ûk,le
2πi(mk

M
+nl

N ). (3)

From these definitions, we have that F−1 ◦ F(u) = u, and denoting by ∗ the circular convolution
operator, we have the well-known convolution theorem: u ∗ k = F−1(F(u) · F(k)).

Discrete image gradients are denoted by ∇u = (∂xu, ∂yu) and are computed using forward differ-
ence discretization of the derivatives. Let d = [0,−1, 1], then, we have

∂xu = d ∗ u (4)

∂yu = dT ∗ u, (5)

where d and dT are considered 2D filters (horizontal and vertical respectively) for the convolution.
The discrete derivatives are defined on Ω by periodic extension. We note ∇cu the image gradient
defined on Ω with constant extension (constant padding) instead of periodic extension. In the
constant extension case we have, (∂c

xu)M−1,n = 0 and (∂c
yu)m,N−1 = 0 for any image u defined on Ω.

The divergence of a field ~w = (wx, wy) is defined as div ~w = −(∂∗
xwx + ∂∗

ywy) where ∂
∗
x and ∂∗

y are
defined by

∂∗
xu = d̆ ∗ u (6)

∂∗
yu = d̆T ∗ u, (7)

and d̆ = flip(d) = [1,−1, 0]. This definition of −∂∗
x corresponds to the backward difference, this leads

to a centered difference scheme when computing div∇u.

Method overview. In this paper, we describe and analyze the variational blind deconvolution
method introduced by Pan et al. [16] and later extended in [15, 17]. This method proposes to
estimate the blur kernel by iteratively solving the following variational problems

u(t+1) = argmin
u

‖u ∗ k(t) − v‖2 + λ‖∇u‖0 (8)

k(t+1) = argmin
k

‖∇u(t+1) ∗ k −∇v‖2 + γ‖k‖2, (9)

where

‖∇u‖0 = #
{

(m,n) ∈ Ω : |(∂xu)m,n|+ |(∂yu)m,n| > 0
}

(10)

is the ℓ0 norm of the gradient of u. The first step estimates a sharp image u given a previous
estimation of the kernel k, using an ℓ0 gradient prior on the image u. The second step estimates the
blur kernel given the sharp and blurry images.

The ℓ0 gradient prior guides the estimation towards an unnaturally sharp image, similarly to Xu
et al. [31], and relates to the notion of unnatural image representation that is essential for blind
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Method Image prior Sharp prediction Kernel estimation Structure map Upscale

Fast L0 [16] ‖∇u‖0 ADM Fourier Yes
Text L0 [15] ‖∇u‖0 + ‖u‖0 Quadratic penalty Conjugate gradient No Kernel∗

Dark L0 [17] ‖∇u‖0 + ‖D(u)‖0 Quadratic penalty Conjugate gradient No Kernel∗

Our method ‖∇u‖0 Quadratic penalty Fourier No Image

Table 1: Comparison of methods based on the ℓ0 gradient prior. (∗) In [15] and [17], authors indicate that the upsampling
from one scale to the next one is performed by upsampling the image. However, careful analysis of the source code indicates
that it is the kernel that is upscaled.

deblurring methods. The unnaturalness comes from the fact that natural images contain textures.
Hence, their gradient is not sparse and has a heavy tailed (typically Laplacian) distribution. In
Section 2.2, we will show that the ℓ0 prior includes an explicit gradient thresholding step resulting
directly from the variational formulation, thus making a link to previous kernel estimation methods [5,
29] that required an edge selection heuristic. Table 1 offers a comparison of the ingredients present
in the various kernel estimation methods based on the ℓ0 gradient prior.

Paper organization. Section 2 contains a description of the method along with a discussion of
modeling choices and the effect of its most relevant parameters. In Section 3, we experimentally
explore the performance of the method with respect to different levels of noise and in real and
synthetic setups. We conclude in Section 4.

2 Method

The alternate minimization described in (8) and (9) iterates between sharp image prediction and
kernel estimation. In order to estimate large kernels, a multi-scale scheme is employed. Furthermore,
at the start of the minimization the regularization weight λ is set to a high value in order to ensure
restoration of the main edges and the removal of details. This allows to estimate a coarse kernel,
which is then refined by lowering λ throughout the iterations similarly to Cho et al. [5] until the
value λmin is reached.

Algorithm 1 describes the general steps of the method. The method takes the blurry image as
input, as well as the kernel size ks as parameter. This size specifies an upper bound for the size of
the actual blur kernel. At each scale, u and k are refined through Niter = 5 iterations.

2.1 Preprocessing

Before iterating, the blurry image is preprocessed with three steps to increase speed and reduce
artifacts:

1. First, the input image is converted to grayscale by averaging channels. Since we assume that
the blur kernel is identical for each channel of the image, working in grayscale allows to reduce
the noise by a factor

√
3 and reduces the computational cost.

2. The image is then cropped to an optimized size for the Fast Fourier Transform3. We observed
that the removal of a few rows and/or columns of pixels can lead to a significant speed-up over
the whole estimation. Note that since this crop is only applied at the finest scale, the optimality

3Optimized sizes are powers of 2, 3, 5 or 7 [24].
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Algorithm 1: MultiscaleKernelEstimation

input : blurry image v, kernel size ks, weights λ (= 4 · 10−3), λmin (= 10−4) and γ (= 20)
output: estimated kernel k
v = preprocess(v) grayscale conversion, crop, edgetaper, normalize

for s from Nscales − 1 to 0 do
v(s) = downscale v to scale s
if s == Nscales − 1 then

u(s,0) = v
for t from 1 to Niter do

k(y) = KernelEstimation(v(s), u(s,t−1), ks, γ) Algorithm 3

u(s,t) = SharpPrediction(v(s), k(t), λ) Algorithm 2

λ = max( λ
1.1

, λmin) λ decay

if s > 0 then
u(s−1,0) = upscale the sharp image u(s) to scale s− 1

of the size might not be respected for coarser scales. Cho et al. [5] also use optimized sizes for
the Fast Fourier Transform but by padding the image instead of cropping, which implies the
introduction of invalid data.

3. Finally, an edge tapering procedure [21] is applied in order to reduce artifacts due to the image
boundary discontinuities that arise since the circular boundary condition is not valid on real
images. This tapering is performed by circularly blurring the image using a uniform kernel ku
and blending the result with the original image v, keeping the original image in the central
part of the image domain and the re-blurred image ku ∗ v near the boundary.

Additionally, the input image is normalized between 0 and 1.

2.2 Sharp Image Prediction

The sharp image prediction step consists in deconvolving the blurry image using the kernel k es-
timated from the previous iteration. Since the kernel contains errors, a non-blind deconvolution
algorithm designed to match with natural image statistics is not adapted [28] and a specific regular-
ization is needed so that the recovery of edges is favored against a blurry image. This is typically
achieved using a gradient sparsifying prior (see Herley and Rickard [10] for a study on measures of
sparsity).

Several kernel estimation methods, such as the classical work by Chan and Wong [4], use Total
Variation (TV) to enforce a sparse gradient prior on the latent sharp image. Yet, Levin et al. [14], and
Wipf et al. [28] have shown that an ℓp norm with p close to 0 is required in the case of deblurring in
order to avoid the trivial solution (u = v and k = δ), as shown in Figure 1. Perrone and Favaro [20], in
a careful and rigorous analysis of Chan and Wong TV deconvolution algorithm [4], revealed that the
successfulness of this TV based algorithm lies in the original specific implementation. In fact, Perrone
and Favaro show that if all the constrains are imposed simultaneously the TV blind deconvolution
algorithm would never leave the no-blur trivial solution. This is due to the two opposing effects of
blur: it reduces the gradient sparsity (which increases ‖∇ · ‖pp) but also reduces the variance of the
image (which decreases ‖∇ · ‖pp). Hence, it is desirable that the image prior used during the sharp
image prediction is less sensitive to the image variance and more sensitive to its sparsity, as is the
case with the ℓ0 norm. Note that the ℓ0 gradient prior was originally introduced for image smoothing
by Xu et al. [30].
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Figure 1: Illustration from Wipf and Zhang [28] with permission by the authors. The top row displays three 1D signals with
sharp and blurry versions. The bottom row indicates the value of the cost function minx

1

λ
‖k ∗ x − y‖2

2
+
∑

i |xi|p as a
function of p.

Having chosen an image prior adapted for deblurring, we can model the sharp image prediction
as the following variational problem

argmin
u

‖u ∗ k − v‖2 + λ‖∇u‖0. (11)

Following Xu et al. [30], we introduce a splitting variable ~g and obtain the equivalent energy as
β tends to infinity

argmin
u,~g

‖u ∗ k − v‖2 + β‖∇u− ~g‖2 + λ‖~g‖0. (12)

Equation (12) can be solved using an iterative continuation scheme, increasing β at each iteration

~g(t+1) = argmin
g

β‖∇u(t) − ~g‖2 + λ‖~g‖0 (13)

= T√
λ/β

(∇u(t)), (14)

u(t+1) = argmin
u

‖u ∗ k − v‖2 + β‖∇u− ~g(t+1)‖2 (15)

= F−1

(

F(k)F(v) + βF(−div~g(t+1))

|F(k)|2 + β(|F(d)|2 + |F(dT )|2)

)

, (16)

where x denotes the complex conjugate of x and Tα is the hard-thresholding operator defined for a
vector field ~w as

Tα(~w)m,n =

{

(0, 0) if |~wm,n| < α,

~wm,n otherwise.
(17)

Proof of the u update. We denote by E(u) the cost function minimized in Equation (15)

E(u) = ‖k ∗ u− v‖2 + β‖∇u− ~g‖2. (18)
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Algorithm 2: SharpPrediction

input : blurry image v, kernel k, regularization weight λ
output: estimated sharp image u
β = 2λ
u(0) = v
t = 1
while β < 105 do

~g(t) = T√
λ/β

(∇u(t−1)) Equation (14)

u(t) = F−1
(

F(k)F(v)+βF(−div~g(t))
|F(k)|2+β(|F(d)|2+|F(dT )|2)

)

Equation (16)

β = 2β
t = t+ 1

Taking the gradient of E with respect to u, we obtain

∂E

∂u
= 2k̆ ∗ (k ∗ u− v) + 2β

(

∂∗
x(∂xu− ~gx) + ∂∗

y(∂yu− ~gy)
)

(19)

= 2k̆ ∗ k ∗ u− 2k̆ ∗ v + 2β(∂∗
x∂xu+ ∂∗

y∂yu) + 2βdiv g. (20)

Since E is quadratic, its minimum is attained when ∂E
∂u

= 0. Thus we have
(

k̆ ∗ k + β(d̆ ∗ d+ d̆T ∗ dT )
)

∗ u = k̆ ∗ v − βdiv g. (21)

Since the convolution with k and the gradients assume circular boundary conditions, the linear
system (21) can be expressed in the Fourier domain

(

|F(k)|2 + β(|F(d)|2 + |F(dT )|2)
)

· F(u) = F(k) · F(v)− βF(div g). (22)

Thus we have

F(u) =
F(k) · F(v)− βF(div g)

|F(k)|2 + β(|F(d)|2 + |F(dT )|2) . (23)

=⇒ u = F−1

(

F(k) · F(v)− βF(div g)

|F(k)|2 + β(|F(d)|2 + |F(dT )|2)

)

. (24)

Proof of the ~g update [30]. Since the subproblem for ~g can be solved pixel-wise, the following prob-
lems are equivalent and the minimization reduces to an 1D optimization,

(

argmin
~g

‖∇u− ~g‖22 +
λ

β
‖~g‖0

)

i

= argmin
~gi

|∇ui − ~gi|2 +
λ

β
|~gi|0. (25)

This non-convex energy has two local minima: ~gi = (0, 0) and ~gi = ∇ui. Comparing the energy of
both minima, we take the solution ~gi = (0, 0) when

|∇ui − (0, 0)|2 + |(0, 0)|0 < |∇ui −∇ui|2 +
λ

β
|∇ui|0. (26)

That is, whenever

|∇ui|2 <
λ

β
. (27)

Otherwise, we take ~gi = ∇u, hence the energy minimizer is ~g = T√
λ/β

(∇u).
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Jérémy Anger, Gabriele Facciolo, Mauricio Delbracio

In
p
u
t

σ = 2% σ = 5% σ = 8%
λ
=

10
−
3

λ
=

3
·1
0−

3

Figure 2: Sharp image prediction using the ground-truth kernel.

Algorithm 2 describes the iterative sharp image prediction procedure. Note that problem (11) is
non-convex. Hence, we cannot expect to find a global minimum. Similarly, since the second step of
this iterative prediction is the least square image reconstruction, it is unlikely that the gradients of
the reconstructed image are still sparse in the sense of ℓ0, since small slopes can be introduced by
solving the linear system. However, the solution of these iterations can be sufficient to retrieve sharp
edges for the kernel estimation.

Note that Equation (16) assumes circular boundary conditions for both the convolution and
the gradient operator so that the system can be solved efficiently in the Fourier domain. A more
accurate model would be to use unknown boundary conditions as in Almeida et al. [1]. However,
we experimentally found that preprocessing the blurry image with an edgetaper step as explained in
Section 2.1 was sufficient to avoid ringing at the boundaries while maintaining a fast convergence. As
the goal of this step is to predict a sharp image, there is no need for a high quality image restoration.

Regularization weight λ. As shown by Equation (14) the parameter λ has an influence over the
thresholding of the gradients. Depending on λ, details and noise can be removed, leaving only the
most contrasted edges. If set too low, the ℓ0 gradient prior will introduce spikes during the image
prediction since they will have a small ℓ0 cost while reducing the data-term, as shown in the central
image in Figure 2. As λ is increased, more and more details are lost and the prediction becomes less
noisy, as shown on the bottom row of the figure.

Implementation details. In our implementation of Algorithm 2, F(k), F(d) and F(dT ) are
computed by zero-padding the corresponding filter up to the image size. Since k is fixed for a given
estimation of u, F(k)F(v) and |F(k)|2 can be precomputed before iterating. Furthermore, F(v) and
|F(d)|2 + |F(dT )|2 can be precomputed for a given scale. Using these precomputations, the sharp
image prediction only requires two FFTs per iteration.
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2.3 Kernel Estimation

Once a sharp image has been estimated, it is possible to estimate the blur kernel by solving the linear
problem

argmin
k

‖∇u ∗ k −∇v‖2 + γ‖k‖2. (28)

Using a data term in a filtered domain, here the gradients in Equation (28), was observed to
achieve better results than performing the estimation on intensities when considering circular bound-
ary conditions for the convolution [5, 18, 19]. This fact can be explained by two observations: first,
iterative solvers such as conjugate gradient descent benefit from working in a filtered domain since
it allows a better conditioning of the system; indeed, Cho et al. [5] observed slower convergence
rate when including the intensities in the data-term. Second, the errors that arise from the circular
boundary condition for the convolution can be high since intensities on one side of the image can
be very different from the other side. However this is not the case when working in the filtered
domain where gradients have similar magnitude everywhere in the image [25]. This last point is
true only if the filtered domain itself does not assume a circular boundary condition; hence to solve
Equation (28) we use the gradients ∇c with constant extension. Since the kernel is usually much
smaller than the blurry image, the boundaries represent a small fraction of the data used to estimate
the kernel. Thus, the errors introduced by the invalid boundary condition are small.

Assuming circular convolution, the variational problem (28) can be solved by a direct method
using the discrete Fourier transform

k = F−1

(

F(∂c
xu)F(∂c

xv) + F(∂c
yu)F(∂c

yv)

|F(∂c
xu)|2 + |F(∂c

yu)|2 + γ

)

. (29)

For this step, the kernel size parameter is used in order to retrieve only the part of the kernel we
are interested in, thus discarding the noise in the rest of the estimation support.

Moreover, after solving (28) by (29), negative values of the kernel are set to zero and the kernel
is normalized so that its values sum to one. Additionally, values below 5% of the maximum value of
the kernel are set to 0 and connected components of the support of k with low intensity are filtered
out. A connected component C is removed if

∑

(m,n)∈C km,n < 0.1. The kernel is then centered and
renormalized.

Algorithm 3 describes the kernel estimation with these additional post-processing steps. The
function crop center extracts the central part of the image according to the kernel size ks; for an
image of size M ×N , this central part corresponds to {M−ks

2
, . . . , M+ks

2
− 1}× {N−ks

2
, . . . , N+ks

2
− 1}.

The function center kernel shifts the kernel so that its center of mass, rounded to the nearest integer,
is at the center of its support.

Regularization weight γ. The parameter γ penalizes large Fourier coefficients and tends to
smooth kernels. If set too low, the estimation will be strongly affected by the noise in u. If set
too high, the solution will be too smooth and kernel details will not be recovered. Figure 3 shows the
kernel estimation step with different noise levels and γ values. The kernels were estimated between
the blurry and noisy image and the ideal sharp image, computed using the ℓ0 prediction step between
the noise-less blurry image and the ground-truth kernel with λ = 4 · 10−3. For a given γ, as the noise
increases, the estimation also gets noisier. If γ is increased, the estimation is less affected by noise
but tends to be smoother. By default in our implementation, we set γ = 20.

Implementation detail. In Algorithm 3, since the blurry image does not change for a given scale,
F(∂xv) and F(∂yv) can be precomputed so that only three FFTs are required per kernel estimation
step.

131
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Algorithm 3: KernelEstimation

input : blurry image v, estimated sharp image u, kernel size ks, regularization weight γ
output: estimated kernel k

k = F−1
(

F(∂c
xu)F(∂c

xv)+F(∂c
yu)F(∂c

yv)

|F(∂c
xu)|

2+|F(∂c
yu)|

2+γ

)

Equation (29)

k = crop center(k, ks) Impose support

km,n = max(km,n, 0), ∀(m,n) Impose positivity

threshold = 0.05 ·maxm,n km,n

k = Tthreshold(k) Remove low intensities

C = compute the set of the connected components of the support of k
forall the c ∈ C do

if
∑

(m,n)∈c km,n < 0.1 then

forall the (m,n) ∈ c do
km,n = 0

k = center kernel(k)
km,n = km,n/

∑

m′,n′ km′,n′ , ∀(m,n) Normalize

In
p
u
t

σ = 1% σ = 5% σ = 7%

γ
=

2
γ
=

2
00

Figure 3: Kernel estimation results with different noise levels and γ values. The kernels were estimated between the blurry
and noisy image (top row) and the ideal sharp image, obtained using the ℓ0 prediction step between the noise-less blurry
image and the ground-truth kernel with λ = 4 · 10−3.
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(a) Scale 1. (b) Scale 2. (c) Scale 3.

Figure 4: Sharp image prediction and estimated kernel at the last iteration of each scale during the multiscale optimization.

2.4 Multiscale Procedure

Large kernels cannot be estimated by directly solving (8) and (9) at the finest scale without proper
initialization of either the kernel k or the sharp image u. Indeed, at the finest scale, if the kernel
is large the ℓ0 gradient prior might not collapse blurry edges into a single sharp one. This issue is
solved by starting the minimization at coarser scales before carrying on to finer scales, as described
in Algorithm 1. A scaling ratio of 2 is used and the blurry image is downsampled until the kernel
size is 3 × 3. For implementation convenience, at each scale, the kernel size is rounded to the next
odd integer.

Once the kernel and the sharp image have been estimated at a low resolution scale, one of them
needs to be up-sampled for the next scale. In Pan et al. [15], going from one scale to another is done
by up-sampling the kernel. However, since motion blur kernels are non-smooth signals, up-sampling
a kernel is not a well defined procedure. As images are smoother signals than kernels, the up-scaling
of the sharp image is less problematic. Hence, we use the bicubic interpolation to up-sample the
predicted sharp image to the next scale.

At each scale, the observed image v is down-scaled by a factor 2 using a Gaussian filtering with
σ = 0.8 [22]. Figure 4 shows the sharp image prediction and kernel estimation at the end of each
scale.

2.5 Non-Blind Deconvolution

As for most blind deblurring methods, the final deconvolution does not use the sharp image esti-
mations since the image prior typically produces unnatural images. In the final step, the kernel
is assumed to have been well estimated and a more natural prior is used. The well-known total
variation prior is used [23], leading to the minimization problem

argmin
u

α

2
‖u ∗ k − v‖2 + ‖∇u‖1. (30)

In our implementation, this energy is minimized using the split Bregman algorithm [7]. The default
value for the parameter α is 3000. Before deconvolution, the image is padded with symmetric
extension and an edge taper is applied to reduce image boundary artifacts.

3 Experiments

In this section we evaluate the method under different conditions. We show results on a real image,
on uniform and non-uniform synthetic datasets and on a very noisy case.
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Figure 5: Kernel estimation depending on the image size and kernel support.

Figure 6: Result of the method on a real image.

Image and kernel size. Figure 5 shows the influence of the image size and the kernel support
size for the estimation. If the image size is significantly larger than the kernel size, the estimation
is accurate even if the kernel size is far from the ground-truth size. However, as the image size
decreases, the kernel estimation becomes more ill-posed and an inaccurate kernel size leads to a
noisier estimation.

Real image. Figure 6 shows the results of the method on a real image taken with a DxO ONE
camera. While the deconvolution contains some color artifacts, the kernel is well estimated and
allows to restore details. Kernel estimation and deconvolution were performed in linear space (before
applying a gamma tonemap) and we set the TV regularization parameter to α = 1000.

Uniform synthetic dataset. Figure 7 shows the kernel estimation and deconvolution results for
a synthetic dataset with white Gaussian noise of standard deviation σ = 1%. The third column
shows the image deblurred using the ground-truth kernel while the last column shows the deblurring
result using the estimated kernel. One can see that although the kernel estimation is not perfect,
it is sufficient to deconvolve the image with a quality comparable to the one obtained by using the
exact kernel.
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Figure 7: From left to right: original image, blurred image with Gaussian noise of standard deviation σ = 1% , deblurred
image with ground truth kernel, and deblurred image with estimated kernel. For the non-blind deconvolution, we set
α = 1000.
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1 2

3 4

5 6

7 8

9 10

11 12

Figure 8: Results on the non-uniform dataset of Köhler et al. [12]. Each pair shows the blurry image with the deblurred
one and the estimated kernel. We set all parameters to their default values except for the kernel size where images 1 to 7
and 12 are estimated with ks = 31; images 8 to 11 with ks = 131.
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Figure 9: Blind deblurring under severe noise σ = 10%. The regularization weight α for non-blind deconvolution was set to
50.

Non-uniform dataset. Figure 8 shows the pairs of input and deconvolution result on the non-
uniform dataset of Köhler et al. [12]. We observe that large kernels are not well recovered. However,
as noted in Lai et al. [13], the ℓ0 gradient prior-based kernel estimation is quite robust to some degree
of kernel non-uniformity, even if the non-blind deconvolution produces ringing near edges.

High noise level. Under high noise conditions (σ between 5% and 10%), kernel estimation becomes
a very challenging problem [33, 26]. For the sharp image prediction step, the parameter λmin allows
to limit the decay of the ℓ0 regularization weight and must be adjusted as the noise level increases.
Similarly, the kernel estimation step can be adjusted through the regularization weight γ. We added
white Gaussian noise of standard deviation σ = 10% to a synthetic blurry image and show the
results in Figure 9 when varying the parameters λmin and γ. We also reduced the data-term weight
of the final non-blind deconvolution to α = 50. We observe that both parameters λmin and γ should
be adjusted carefully to get a good result. Indeed increasing both simultaneously can lead to a
performance decay, as shown in Figure 9.

Failure case. Figure 10 shows the result of the method on a real image that does not contain any
prevalent edges, taken from Xu et al. [29]. The method was not able to correctly estimate the blur
kernel since it is too large compared to the contrasted structures of the image.

Comparison with Goldstein et al. [8]. Goldstein et al. [8] propose the Spectral Irregularities
kernel estimation (SP), which models natural images by a characteristic spectral decay corresponding
to the spectral decay of edges. This model is violated when the image is blurry, allowing to estimate
the modulus of the Fourier transform of the kernel. The spatial kernel is then recovered using a
phase retrieval step. Conversely, the ℓ0 gradient prior restores edges, hence both the modulus and
the phase of the blurry image are used during the estimation. In short, for SP the latent sharp
image needs not to contain any edges as long as the spectral decay model is respected. On the other
hand, the ℓ0 gradient prior assumes a similar model (since edges have the same spectral decay), but
requires to have sparse gradients and be contrasted, thus edges to be in-phase.

To validate this hypothesis, we blurred two sharp images: the first one is a natural one, while
the second is a random phase noise of the first one, thus its spectral decay is preserved but edges are
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Figure 10: Failure case of the method on an image from Xu et al. [29]. Note that the described method was not able to
correctly estimate the blur kernel since it is too large compared to the contrasted structures of the image.

not. We used the implementation from Anger et al. [2] to compare the method with the ℓ0 kernel
estimation. Figure 11 shows the estimated kernels and deconvolution results. We observe that ℓ0 is
more precise than Spectral Irregularities for a natural image but only recovers a coarse shape of the
kernel for the random phase noise image. We also note that the method is more robust to noise,
as shown in the middle row of Figure 11 where synthetic noise of standard deviation σ = 1% was
added. Overall, the ℓ0 gradient prior allows more precise kernel estimations for natural images than
the Goldstein and Fattal method [8]. An interesting future research direction would be to combine
the ℓ0 and the power-spectrum decay priors into a single method [32].

Figure 11: Comparison with the Goldstein and Fattal method [8]. From left to right: blurry image, deblurring results of
Goldstein and Fattal, results of ℓ0 gradient prior. The top row corresponds to a natural image with noise level σ = 0% and
the middle row is the same but noise level σ = 1%. The bottom row corresponds to a random phase noise of the latent
sharp image of the top row.
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4 Conclusion

In this paper we described a blind deblurring method based on the ℓ0 gradient prior. The first step
of the method is to estimate the blur kernel by alternating between a sharp image prediction using ℓ0
and a kernel estimation. Once the kernel is estimated, a standard non-blind deconvolution method
is used to obtain the deblurred image. This blur kernel estimation is carried out in a multi-scale
manner.

While the method does not have convergence guarantees, we performed extensive experiments
showing state-of-art performance for spatially uniform blur. Our results on a non-uniform dataset,
on a synthetic example with severe noise and on real world images confirm the good performance of
the method.

As a future work, we would like to extend this variational method to more realistic degradation
scenarios commonly present in the image acquisition pipeline [3]. In particular, we would like to
study if the kernel estimation step can benefit from a more accurate image formation model that
incorporates saturation, quantization noise and a non-linear camera response function.
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