
Published in Image Processing On Line on 2019–01–06.
Submitted on 2018–08–02, accepted on 2018–12–10.
ISSN 2105–1232 c© 2019 IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
https://doi.org/10.5201/ipol.2019.231

2
0
1
5
/
0
6
/
1
6

v
0
.5
.1

IP
O
L

a
rt
ic
le

c
la
ss

An Analysis and Implementation of the FFDNet Image

Denoising Method

Matias Tassano1,2, Julie Delon1, Thomas Veit2

1 MAP5, Université Paris Descartes, France
({matias.tassano, julie.delon}@parisdescartes.fr)

2 GoPro
(tveit@gopro.com)

Abstract

FFDNet is a recent image denoising method based on a convolutional neural network architec-
ture. In contrast to other existing neural network denoisers, FFDNet exhibits several desirable
properties such as faster execution time and smaller memory footprint, and the ability to handle
a wide range of noise levels with a single network model. The combination between its denois-
ing performance and lower computational load makes this algorithm attractive for practical
denoising applications. In this paper we propose an open-source implementation of the method
based on PyTorch, a popular machine learning library for Python. Code for the training of the
network is also provided. We also discuss the characteristics of the architecture of this algorithm
and we compare it to other similar methods.

Source Code

The Python implementation of the FFDNet image denoising algorithm has been peer-reviewed
and accepted by IPOL. The source code, its documentation, and the online demo are available
from the web page of this article1. Compilation and usage instructions are included in the
README.txt file of the archive.

Keywords: denoising; residual learning; neural networks; CNN

1 Introduction

1.1 Related Work

Recently, new image denoising methods based on deep learning techniques have drawn considerable
attention due to their outstanding performance. In particular, discriminative learning methods ex-
hibit relative fast inference times and very good denoising performance. Schmidt and Roth proposed
in [22] the cascade of shrinkage fields (CSF) method that unifies the random field-based model and

1https://doi.org/10.5201/ipol.2019.231

Matias Tassano, Julie Delon, Thomas Veit, An Analysis and Implementation of the FFDNet Image Denoising Method, Image Processing
On Line, 9 (2019), pp. 1–25. https://doi.org/10.5201/ipol.2019.231

https://doi.org/10.5201/ipol
https://doi.org/10.5201/ipol
http://creativecommons.org/licenses/by-nc-sa/3.0/
https://doi.org/10.5201/ipol.2019.231
https://doi.org/10.5201/ipol.2019.231
https://doi.org/10.5201/ipol.2019.231

Matias Tassano, Julie Delon, Thomas Veit

half-quadratic optimization into a single learning framework. Based on this method, Chen and Pock
proposed in [4] a trainable nonlinear reaction diffusion (TNRD) model. This model can be expressed
as a feed-forward deep network by concatenating a fixed number of gradient descent inference steps.
Methods such as these two attain denoising performances comparable to those of well-known al-
gorithms such as BM3D. Both CSF and TNRD have shown promising results to bridge the gap
between denoising quality and computational efficiency. However, their performance is restricted to
specific forms of prior. On top of that, many hand-tuned parameters are involved in the training
process. In [2], and later in [28], the multi-layer perceptron (MLP) was successfully applied for image
denoising. Nevertheless, a significant drawback of all these algorithms is that a specific model must
be trained for each noise level.

Another popular approach involves the use of convolutional neural networks (CNN), e.g. RBDN [21],
DnCNN [33], and FFDNet [34]. Their performance compares favorably to other state-of-the-art al-
gorithms, both quantitatively and visually. These methods are composed of a succession of convo-
lutional layers with nonlinear activation functions in between them. This type of architecture has
been applied to the problem of joint denoising and demosaicing of RGB and raw images by Gharbi
et al. in [7], while [23, 3] approach the same problem for low-light conditions. Contrary to other deep
learning denoising methods, one of the remarkable features that these CNN based methods present
is the ability of denoising several levels of noise with only one trained model.

Proposed by Zhang et al. in [33], DnCNN is an end-to-end trainable deep CNN for image denois-
ing. This method is able to denoise different noise levels (e.g. with standard deviation σ ∈ [0, 55])
with only one trained model. One of its main features is that it implements residual learning [8],
i.e. it estimates the noise existent in the input image rather than the denoised image. In a following
paper [34], Zhang et al. proposed FFDNet, which builds upon the work done for DnCNN. The main
difference of FFDNet with respect to DnCNN is the inclusion of preprocessing and postprocessing
layers before and after the same nonlinear mapping of DnCNN. The preprocessing layer reorganizes
the pixels of the input image into a quarter-resolution multi-channel image. Most of the computa-
tions are performed at this lower scale, thus reducing the global complexity of the algorithm. Overall,
FFDNet is about three times faster than DnCNN and more memory-friendly. Also, an extra channel
containing a noise map is concatenated to the input at the preprocessing layer. For spatially invari-
ant AWGN with noise level σ, the noise map is uniform with all its elements equal to σ. As for the
role of the noise map as input parameter, it can be conceived as a control of the trade-off between
noise reduction and detail preservation. Lastly, the postprocessing layer reshapes the output of the
nonlinear mapping back into the original input resolution. These characteristics make FFDNet an
appealing method, even for consumer applications, as it achieves an interesting balance between
denoising performance and complexity.

1.2 Definition of the Problem

The noise model in digital camera raw data is composed of two mutually independent parts, a
Poissonian signal-dependent component and a Gaussian signal-independent part [6]. The former
is mainly due to the photon-counting process, while the latter accounts for the signal-independent
errors such as electric and thermal noise. A question quickly arises: if we have that the main
source of noise in images follows a Poisson distribution, why is the additive Gaussian noise model
the one which is used in most publications about denoising? The use of this type of model is
justified as one can always apply a variance-stabilizing transformation to transform a random variable
with a Poisson distribution into one with an approximately standard Gaussian distribution. In this
context, the removal of the Poisson noise can be achieved in three steps. First, the noise variance
is stabilized by applying one of these transformations, producing a signal which can be considered
homoscedastic. Secondly, a conventional denoising method is applied to the transformed signal.

2

An Analysis and Implementation of the FFDNet Image Denoising Method

Finally, an inverse transformation is applied to the denoised signal. The most commonly used
example of such transforms is the Anscombe transform [1]. As for the inverse variance-stabilizing
transformation, care must be taken to choose an optimal form which minimizes bias. In [16], an
optimal unbiased inverse of the Anscombe transformation is introduced, while [15] proposes a closed-
form approximation of this inverse. The authors show that the use of this exact unbiased inverse
within the three-step process described above yields results which are competitive with some of the
best Poisson image denoising methods. A second reason for using an additive Gaussian noise model
is simplicity: it is a reasonable assumption and it makes the problem of denoising easier to approach.

In this paper we will only focus on the problem of denoising images contaminated with additive
Gaussian noise. FFDNet is designed to work with RGB or grayscale images—and not other types
of data such as raw images. Let I be a noiseless image, while Ĩ is its noisy version corrupted by a
Gaussian white noise N, then

Ĩ = I + N . (1)

Observe that most experiments focus on the case of white additive Gaussian noise (AWGN), but
this algorithm can be potentially applied to other types of noise such as spatially varying noise.

The rest of the paper is organized as follows. In Section 2 we introduce the FFDNet architecture
and training details. The following sections are devoted to studying the key attributes of FFDNet.
In Section 3 we study the impact of residual learning and in Section 4 the impact of upscaling layers.
Section 5 analyzes the importance of the orthogonalization regularizer, while Section 6 presents a
study regarding the choice of the loss. Section 7 contains an experimental comparison with different
state of the art methods, and Section 8 concludes the paper.

2 FFDNet Architecture

A standard feed-forward network architecture is used to implement FFDNet, as shown in Figure 1.
The network is composed of D convolutional layers, which share the same structure. Each of these
has W outputs, and the spatial size of their kernels is K ×K.

Figure 1: Architecture of FFDNet.

Preprocessing layer The network first reorganizes the pixels of an nch×h×w input image I into
a lower resolution image of size 4nch × h/2× w/2. Layer F0 extracts 2× 2 patches and reorganizes
their pixels in the different channels of the output image according to

F 0[c, x, y] = I
[⌊ c

4

⌋
, 2x+ (c mod 2), 2y +

⌊ c
2

⌋]
, (2)

where 0 ≤ c < 4nch, 0 ≤ x < h, 0 ≤ y < w. The majority of the processing will be performed at
this reduced scale. An extra channel of the same resolution composed of an estimate of the noise

3

Matias Tassano, Julie Delon, Thomas Veit

map M is added to the input. This noise map controls the trade-off between denoising and detail
preservation. For spatially invariant Gaussian noise with standard deviation σ, the noise map is
uniform with all its elements equal to σ. Figure 2 shows a diagram of this layer.

I

Input

F0

Subimages and
noise map

Figure 2: Diagram of the downscaling layer.

Nonlinear mapping A nonlinear mapping composed of D convolutional layers (layers F1 . . .FD)
comes after the preprocessing layer F0 (see Figure 1). Each of these layers consists of W convolutional
filters of spatial size K ×K. The outputs of layers F1 to FD−1 are followed by point-wise ReLU [11]
activation functions ReLU(·) = max(·, 0). At training time, batch normalization layers (BN [9])
are placed between the convolutional and ReLU layers in F2 to FD−1. At evaluation time, the
batch normalization layers are removed, and replaced by an affine layer that applies the learned
normalization. Then, the c-th channel of the d-th layer, Fd

c can be written as

Fd
c = ReLU

(
D−1∑
c′=0

wd
cc′ ∗ Fd−1

c′

)
for c ∈ {0 . . .W − 1} , (3)

where wd
cc′ is a two-dimensional convolution kernel of size K ×K (the c-th three-dimensional filter

of layer Fd is the collection of the W two-dimensional filters wd
cc′). Summarizing the characteristics

of the D layers of the nonlinear mapping, we have

• Layer F1: Conv+ReLU. W filters of size (4nch + 1) × K × K generate W feature maps. A
point-wise ReLU activation function is used as nonlinearity.

• Layers F2 . . .FD−1: Conv+BN+ReLU. W filters of size W ×K×K are used. At training time,
batch normalization layers are placed between the convolutional and ReLU layers.

• Layer FD: Conv. 4nch filters of size W ×K ×K are used in this layer.

The input of each convolutional layer is zero-padded by K−1
2

so that the spatial size does not decrease
with depth. The stride is set to one in all cases.

Postprocessing layer Finally, layer FD+1 upsamples the low-resolution output of FD back into
the original resolution. That is, it repacks its input of dimension 4nch × h/2×w/2 into an image of
size nch×h×w by reversing Equation (2), as shown in Figure 3. The total number of layers is equal
to D+2, where D is the number of convolutional layers. The spatial size of the convolutional kernels
K is equal to 3. The depth D is set to 15 for grayscale denoising, and 12 for color denoising. As for

4

An Analysis and Implementation of the FFDNet Image Denoising Method

FD+1

Subimages

O

Full-resolution

output

Figure 3: Diagram of the upscaling layer.

the number of feature maps W , it is set to 64 and 96 for grayscale and color denoising, respectively.
These settings represent a good compromise between complexity and denoising performance. Note
that the network designed for color denoising is shallower (DRGB < Dgray) but wider (WRGB > Wgray)
than the grayscale denoising network. This increased width contributes to a better color consistency
in the results as the correlations between the color channels are better treated by the network. As
will be discussed in Section 7, FFDNet features remarkable chroma noise handling. In any case, the
global capacity of the color denoising network is larger than the grayscale network, as the number of
learnable parameters of the former is 8.5× 105 versus 5.6× 105 of the latter.

2.1 Comparison to DnCNN

DnCNN and FFDNet share several attributes. In particular, the architectures of their nonlinear
mappings are comparable—generally speaking, they are a collection of Conv+BN+ReLU layers with
filters of spatial size 3×3. Nevertheless, FFDNet implements additional techniques which render this
algorithm faster, more efficient, and more versatile than its predecessor. In terms of the design of the
architecture, the FFDNet network is wider but shallower than DnCNN, as shown in Table 1. However,
FFDNet features a larger receptive field. Contrary to DnCNN, FFDNet does not implement residual
learning, i.e. it estimates the latent image instead of the input noise. Regarding the training details
of each model, the amount of patches which compose the training set goes from 384000 for DnCNN
to 1024000 for FFDNet. The number of epochs is also increased. These parameters contribute to
an increase of performance in FFDNet, notably when dealing with strong noise as well as handling
chroma noise.

Other salient characteristics of FFDNet are:

• Regularization by orthogonalization of the convolutional filters.

• Use of downscaling and upscaling layers before and after the nonlinear mapping.

• Introduction of a noise map as an input channel.

See Figure 4 for a DnCNN diagram and Figure 1 for a FFDNet diagram.

In this paper, we are interested in exploring these differences more in detail to identify their
benefits. The techniques mentioned above will be discussed in the following sections.

5

Matias Tassano, Julie Delon, Thomas Veit

Figure 4: Architecture of DnCNN. Note that there are no down- and upscaling layers. The characteristics of the nonlinear
mapping are similar to those of FFDNet.

DnCNN FFDNet gray FFDNet RGB

Depth (conv layers) 20 15 12
Width (feature maps per layer) 64 64 96
Receptive field 41× 41 62× 62 50× 50
Learnable parameters 6.7× 105 5.6× 105 8.5× 105

Table 1: Comparison of characteristics of FFDNet and DnCNN.

2.2 Training Details

The training dataset is composed of pairs of input-output patches
{(

(̃Ij,Mj), Ij

)}m

j=0
which are

generated by adding AWG of σ ∈ [0, 75] to the clean patches Ij and building the corresponding noise
map Mj (which is in this case constant with all its elements equal to σ). A total of m = 128× 8000
patches are extracted from the Waterloo Exploration Database [14], where the mini-batch size is
128. The patch size is 64× 64 and 50× 50 for grayscale and color images, respectively. Patches are
randomly cropped from randomly sampled images of the training dataset. Data is augmented five
times by introducing rescaling by different scale factors and random flips2. In the cases in which
residual learning is used, the network outputs an estimation of the input noise

F(Ĩ) = N̂ . (4)

Then, the denoised image is computed by subtracting the output noise to the noisy input

Î = Ĩ−F(Ĩ) . (5)

In this case, the loss function is the following

Lres(θ) =
1

2m

m∑
j=1

∥∥∥F((̃Ij,Mj); θ)−Nj

∥∥∥2 , (6)

where θ is the collection of all learnable parameters.

2As a side note, a model with equivalent performance was trained by extracting overlapping patches from the
images of the database. This way only requires about one third of the amount of images in the Waterloo database to
extract the necessary amount of patches.

6

An Analysis and Implementation of the FFDNet Image Denoising Method

On the other hand, models without residual learning estimate the denoised image directly, i.e.

F(Ĩ) = Î , (7)

resulting in the following loss function

Lno−res(θ) =
1

2m

m∑
j=1

∥∥∥F((̃Ij,Mj); θ)− Ij

∥∥∥2 . (8)

In all cases, the ADAM algorithm [10] is applied to minimize the loss function, with all its hyper-
parameters set to their default values. The number of epochs is set to 80. The scheduling of the
learning rate is also common to all cases. It starts at 1e−3 for the first 50 epochs, then changes
to 1e−4 for the following 10 epochs, and finally switches to 1e−6 for the remaining of the training.
This scheduling strategy is in the same spirit as the one proposed by the authors of FFDNet. It is
implemented in the code provided with the use of the milestone parameters. During training, after
the number of epochs surpasses the first milestone, the learning rate is divided by 10, and is divided
again by 100 after the second milestone is surpassed. The actual values of the these parameters
have been chosen heuristically after observing the loss graphs of several trainings. In other words,
a learning rate step decay is used in conjunction with ADAM. The mix of learning rate decay and
adaptive rate methods has also been applied to other deep learning projects [29, 25, 26, 30], usually
with positive results.

Two datasets are used to evaluate the grayscale and color FFDNet denoisers. The BSD68 database
and Set12 databases are utilized for grayscale denoising, while the CBSD68 and the Kodak24 are
used for color denoising. The BSD68 is composed of 68 images of size 481 × 324 from the testing
set (testset for short) of the BSD database [17], while CBSD68 corresponds to the color version of
this image set. The Set12 dataset is a collection of standard test images of sizes either 256 × 256
or 512 × 512. Finally, the Kodak24 (Kodak Lossless True Color Image Suite3) is composed of 24
768 × 512 color images. As for validation during training, all the images from the Kodak24 suite
are used as the validation dataset for color denoising, while the Set12 database is used for grayscale
denoising. The open-source implementation of the FFDNet method provided with this paper is
based on PyTorch [18], a popular machine learning library for Python. Testing and training code is
available from the IPOL website.

Table 2 shows a comparison of PSNR on the two color datasets obtained with the code provided
by the authors and the code proposed in this paper. It can be observed that both versions perform
very similarly.

CBSD68 Ours Zhang et al. Kodak24 Ours Zhang et al.

σ = 15 33.76 33.80 34.53 34.55
σ = 25 31.18 31.18 32.12 32.11
σ = 35 29.58 29.57 30.59 30.56
σ = 45 28.45 28.42 29.49 29.45
σ = 55 27.58 27.55 28.63 28.58
σ = 70 26.57 26.52 27.61 27.55

Table 2: Comparison of PSNR obtained with our FFDNet implementation and the implementation
provided by the author. Both implementations perform similarly.

3http://r0k.us/graphics/kodak/.

7

http://r0k.us/graphics/kodak/

Matias Tassano, Julie Delon, Thomas Veit

3 Residual Learning

Residual networks were introduced by He et al. in [8] and have become since then state-of-the-
art in several CNN related fields. These networks feature “residual” or “skip” connections which
copy features from shallower layers directly to deeper ones by skipping intermediary layers. Skip
connections fast-forward the identity mapping through the network, thus allowing the later to learn
a residual instead of the absolute mapping. Propagating the identity through several nonlinear layers
is harder than through the skip connection. The use of skip connections thus eases the training
process. Residual architectures have also been successfully applied in the fields of image denoising
and restoration [7, 20, 23]. In particular, DnCNN implements residual learning as it estimates the
input noise instead of the latent image. Its authors argue that residual learning facilitates training
and improves the performance of the network, especially when used in combination with batch
normalization [33].

Despite the apparent advantages of residual learning in the case of DnCNN, FFDNet does not
apply this technique. In this section, we would like to investigate further into the possible benefits of
applying residual learning to plain CNN denoisers such as FFDNet. To this end, two different FFDNet
models were trained: one implementing residual learning and one without residual connections.
See Section 2.2 for more details about the training. Figure 5 shows the validation PSNR during
the training of both models. The validation set is the Kodak24 image suite. The noise added to
the images was of standard deviation σ = 25. The final PSNR values are 32.16dB for FFDNet
model with residual learning and 32.11dB for the model without residual learning. Although the
performance of both models is close, the PSNR curve for the residual model appears to be somehow
smoother and is always slightly above the curve of the model without residual connection in the
last 20 epochs of fine-tunning. Table 3 displays the average PSNR on two different color testsets.
In all cases, there are small to moderate differences in favor of the model with residual learning.
Notably, this differences are larger for smaller values of σ. Although improvements in performance
with residual learning are modest, it is clear that the use of this technique in plain CNN denoisers
such as FFDNet is advantageous, as there is virtually no increase in the overall complexity of the
algorithm. Therefore, the rest of the models for this paper implement residual learning.

CBSD68 testset With residual connection Without residual connection

σ = 15 33.76 33.53
σ = 25 31.18 31.05
σ = 35 29.58 29.50
σ = 45 28.45 28.39
σ = 55 27.58 27.53
σ = 70 26.57 26.53

Kodak24 testset With residual connection Without residual connection

σ = 15 34.53 34.26
σ = 25 32.12 31.98
σ = 35 30.59 30.50
σ = 45 29.49 29.42
σ = 55 28.63 28.57
σ = 70 27.61 27.58

Table 3: Comparison of PSNR obtained with FFDNet models with and without residual connec-
tions. Values shown are the average of three different trainings.

8

An Analysis and Implementation of the FFDNet Image Denoising Method

0 10 20 30 40 50 60 70 80
Epoch

20

22

24

26

28

30

32

PN
SR

 (d
B)

PSNR - Validation set
Residual connection
No residual connection

Figure 5: Validation PSNR during training with and without residual learning. The validation set is the Kodak24 image
suite. The noise added to the images was of standard deviation σ = 25. The final PSNR values of these two representative
trainings are 32.16dB for FFDNet model with residual learning and 32.11dB for the model without residual learning.

4 Examining the Downscaling and Upscaling Layers

As discussed in Section 2, FFDNet first reorganizes the pixels of the nch×h×w input image I into a
lower resolution image of size 4nch × h/2× w/2. An extra channel of the same resolution composed
of an estimate of the noise map M is added to the input. The main advantage of this technique
is that processing the subimages instead of the full resolution input leads to sensible reductions in
running times and memory requirements, without sacrificing denoising performance [7, 34].

Another advantage is that downscaling the image effectively doubles the receptive field. The
receptive field of a CNN with a similar nonlinear mapping and without downsampling is D(K−1)+1.
It would take twice as many convolutional layers (D′ = 2D) to attain the same size of receptive field in
this case. Such increase of depth would have a huge impact on the final complexity of the algorithm.
FFDNet features a receptive field of 62× 62 for the grayscale denoising network and 50× 50 for the
color denoising network, which is comparable to receptive fields of other state-of-the-art algorithms.

A similar technique was previously proposed by Gharbi et al. in [7]. Their algorithm rearranges the
four color channels of the Bayer input mosaic in a lower-resolution multi-channel image. An estimate
of the noise level is also concatenated to the input as an additional channel. In their case, subscaling
the input image appears as a natural step, as it is equivalent to repacking the Bayer mosaic in four
individual color channels. On the contrary, the reason to apply this downsampling technique in the
case of RGB or grayscale images does not appear as straightforward. The advantages of working
with the downsampled subimages instead of the full resolution input image are clear. However, what
does not appear obvious at first glance is how the pixels are handled in this process in the first layers
of the network. To better understand this procedure, the rest of this section will further explore it.

As can be seen in Figure 6, reorganizing the input into a quarter-resolution image with four times
as many channels and applying a 3 × 3 convolution (layers F0 and F1) is similar to convolving the
input image with 6× 6 kernels and stride equal to two. Let us call this new convolutional layer F∗,
and let us consider all non-overlapping 2×2 patches of the grayscale input image I. The first channel

9

Matias Tassano, Julie Delon, Thomas Veit

of the output of F0 is composed of all the top-left pixels of these patches. The 3 × 3 kernels of F1

will only be centered on these pixels. Thus, one out of two pixels will have to be skipped in F∗.

+

+

+

I

Input

F0

Subimages

F1

Feature

maps

Figure 6: Downscaling process in FFDNet. The pixel in gray in the output feature map in F1 is the result of convolving the
pixels in light gray in F0. These pixels covered by the 3× 3 kernels in F0 span over a 6× 6 window in the input image I.

Figure 7 displays the evolution of validation PSNR during two representative trainings of a
regular FFDNet model and an equivalent model without the downscaling layer. In the latter, layers
F0 and F1 were replaced by the equivalent convolutional layer F∗ with kernels of size 6 × 6 and
stride 2. A full resolution three-channel noise map is concatenated to the input at this layer. The
validation set is the Kodak24 image suite. The noise added to the images was of standard deviation
σ = 25. The final PSNR values are 32.11dB for the FFDNet model with the downscaling layer and
32.10dB for the equivalent model without the downscaling layer. Table 4 displays the PSNR of the
denoised Kodak24 and CBSD68 testsets. Values shown are the average of three different trainings.
The differences between results of both models are negligible. It can thus be concluded that both
techniques lead to equivalent models. There is however a difference in running times: the model with
larger convolutional kernels takes about 40% longer to run.

As for the upscaling process, FFDNet implements a repacking of the pixels, as introduced by Shi
et al. in [24]—note that a similar technique was also proposed by Gharbi et al. in [7]. An alternative
way to perform the upscaling of the sub-images in FD+1 would be to use dilated convolutions [31].
However, dilated convolutions are less effective than sub-pixel convolutions and tend to create arti-
facts such as “gridding” [33, 32].

In conclusion, the combination of the described downscaling and upscaling methods implemented
by FFDNet is a clever way of doubling the receptive field, that sensibly reduces runtimes and memory
requirements while maintaining the denoising performance. In addition, this strategy does not suffer
from artifacts like other alternatives such as dilated convolutions.

10

An Analysis and Implementation of the FFDNet Image Denoising Method

0 10 20 30 40 50 60 70 80
Epoch

28.5

29.0

29.5

30.0

30.5

31.0

31.5

32.0

PN
SR

 (d
B)

PSNR - Validation set
With downscaling layer
No downscaling layer

Figure 7: Validation PSNR during training with and without downscaling layers. The validation set is the Kodak24 image
suite. The noise added to the images was of standard deviation σ = 25. The final PSNR values of these two representative
trainings are 32.11dB for the FFDNet model with the downscaling layer and 32.10dB for the equivalent model without the
downscaling layer. Orthogonalization was disabled in both cases.

CBSD68 testset Without downscaling layer With downscaling layer

σ = 15 33.71 33.72
σ = 25 31.12 31.14
σ = 35 29.54 29.56
σ = 45 28.41 28.43
σ = 55 27.54 27.56
σ = 70 26.53 26.56

Kodak24 testset Without downscaling layer With downscaling layer

σ = 15 34.53 34.49
σ = 25 32.12 32.09
σ = 35 30.59 30.56
σ = 45 29.49 29.45
σ = 55 28.63 28.59
σ = 70 27.61 27.59

Table 4: Comparison of PSNR obtained with FFDNet models with and without downscaling layers.
Values shown are the average of three different trainings. No orthogonalization was applied.

11

Matias Tassano, Julie Delon, Thomas Veit

5 Examining the Noise Map and Orthogonalization

In a similar fashion as done by Burger et al. [2] and Gharbi et al. [7], FFDNet incorporates the
estimate of the noise level σ as additional information into the convolutional architecture. As shown
in Figure 2, the noise level is spatially replicated to match the input dimensions of layer F0 and
is concatenated as an extra channel. The noise map M can be composed of multiple channels to
represent the noise existent in the R, G, and B channels of color images. In principle, M can be non-
uniform to represent spatially variant noises. The inclusion of the noise map M as input facilitates
the handling of a variety of noise levels with a single CNN model.

The noise map M can also be seen as a control of the trade-off between noise reduction and
detail preservation. In effect, if one wanted to further denoise an image, the values of M could be
increased to augment the noise reduction at the expense of smoothing the result and loosing detail.
In order to guarantee the role of M as a control of said trade-off, the authors of FFDNet propose to
regularize the convolution filters by orthogonalization during training. This regularization method
is explained in the following. Let us suppose a given convolutional layer is composed of Cout kernels
of size Cin × K × K. These filters are first reshaped into a two-dimensional matrix Wker of size
(K×K×Cin)×Cout. A singular value decomposition (SV D) is then performed on the matrix Wker,
i.e. (U, S, V) = SV D(Wker), where Wker = U S VT, S is a diagonal matrix of singular values,
and U and V are two orthogonal matrices. The orthogonality between the kernels of the layer is
enforced by setting the singular values of S to 1. At training time, this orthogonalization procedure is
performed only every T iterations. Once the learning rate becomes small (learning rate ≤ 1× 10−6)
the regularization process is abandoned. Algorithm 1 summarizes the procedure.

Algorithm 1: Orthogonal Regularization

input : Cout kernels of size Cin ×K ×K of a given convolutional layer
output: new orthogonal kernels

while learning rate > 1× 10−6 do
if iteration mod T = 0 Perform every T iterations.

then
Build a matrix Wker by placing the kernels as columns of this matrix
(U, S, V) = SV D(Wker)
Set singular values of S to 1
W′

ker = U S VT

Replace the old kernels with the columns of the new matrix W′
ker

Figure 8 shows the validation PSNR during two representative trainings with and without reg-
ularization by orthogonalization of the kernels of each layer. Here, the same FFDNet model was
trained twice: once by applying the procedure described in Algorithm 1 as regularization method,
and once without regularization at all. The validation set is the Kodak24 image suite. The noise
added to the images was of standard deviation σ = 25. The final values of PSNR are 32.16dB
for the training with regularization and 32.12dB for the training without regularization. It can be
observed that this type of regularization slows down the convergence rate and the evolution of the
model performance, as the validation PSNR of the regularized model stays well under that of the
model with no regularization for most of the training duration. The learning rate is set to 1× 10−6

at epoch 60 and regularization is not used anymore. It is at this point that the performance of the
regularized model recovers to the level of performance of the model with no regularization. This
point indicates that while orthogonal initialization may be beneficial, maintaining the orthogonality

12

An Analysis and Implementation of the FFDNet Image Denoising Method

constraint during all the training procedure can be detrimental. These observations are in line with
the findings of [27].

0 10 20 30 40 50 60 70 80
Epoch

26

27

28

29

30

31

32
PS

NR
 (d

B)
with orthogonalization
without orthogonalization

10 6

10 5

10 4

10 3

Le
ar

ni
ng

 ra
te

PSNR - Validation set

Figure 8: Validation PSNR during two representative trainings with and without regularization by orthogonalization of the
kernels of each layer. The validation set is the Kodak24 image suite. The noise added to the images was of standard
deviation σ = 25. Regularization is abandoned when the learning rate becomes 1× 10−6. The final values of PSNR are
32.16dB for the training with regularization and 32.12dB for the training without regularization.

The regularization by orthogonalization of the convolutional filters has been proposed by the
authors of FFDNet as a means of avoiding visual artifacts in the event of mismatch between the
noise level σM indicated in the noise map and the actual noise in the input σ, particularly in the case
in which the noise level in the noise map is higher than the latter (σM > σ). However, it is clear than
in such case the output of the network would be overly-smooth, as can be observed in Figure 9. Visual
artifacts are not likely to appear in these conditions. The regularized model performs marginally
better than the one without regularization as it recovers slightly more structures. Table 5 compares
the PSNR of the denoised Kodak24 and CBSD68 testsets of the models trained with and without
regularization.

6 Training with the L2 Error Function Versus the L1 Error

Function

Recently, a number of related image restoration methods have proposed the use of different loss
functions to train their networks [3, 35, 23]. In the same spirit, we compare in this section the results
of FFDNet when trained with the L2 error versus the L1 error in the loss function. In the latter, the
error in the loss function shown in Equation (6) is replaced by the L1 error.

Figure 10 displays the evolution of the PSNR of the validation imageset during training. The
validation set is the Kodak24 image suite. It can be observed that the PSNR evolves similarly in
both cases, with a slight advantage to the L2 loss function (32.09 versus 32.16dB). Table 6 compares
the PSNR of the denoised Kodak24 and CBSD68 testsets.

Figure 11 presents a visual comparison of results of both cases. The image on the top was
contaminated with AWGN of σ = 40 (PSNR = 16.09dB). The middle column shows the results

13

Matias Tassano, Julie Delon, Thomas Veit

(a) Clean image (b) Noisy σ = 25

(c) σM = 30, PSNR = 34.79dB (d) σM = 30, PSNR = 34.73dB

(e) σM = 35, PSNR = 34.07dB (f) σM = 35, PSNR = 34.02dB

(g) σM = 40, PSNR = 33.44dB (h) σM = 40, PSNR = 33.36dB

Figure 9: Comparison of models with and without orthogonalization in case of noise mismatch. Left: regularized model.
Right: model with no regularization. The noise level σM indicated in the noise map mismatches the actual noise in the
input σ. The regularized model performs marginally better than the one without regularization as it recovers slightly more
details and structures.

14

An Analysis and Implementation of the FFDNet Image Denoising Method

CBSD68 testset With orthogonalization Without orthogonalization

σ = 15 33.75 33.71
σ = 25 31.17 31.14
σ = 35 29.57 29.55
σ = 45 28.45 28.42
σ = 55 27.58 27.56
σ = 70 26.57 26.55

Kodak24 testset With orthogonalization Without orthogonalization

σ = 15 34.52 34.49
σ = 25 32.13 32.08
σ = 35 30.59 30.55
σ = 45 29.49 29.44
σ = 55 28.63 28.60
σ = 70 27.60 27.58

Table 5: Comparison of PSNR obtained with FFDNet models trained with and without regular-
ization by orthogonalization of the convolution kernels. Values shown are mean values among three
different trainings.

of the model trained with the L2 error (PSNR = 32.08dB), while the column on the right displays
the results of the model trained with the L1 error (PSNR = 32.06dB). The L1 error renders flat
areas smoother, as less low-frequency noise can be observed in this case. Generally speaking, this
fact accounts for results which are more visually appealing. On the other hand, detail information
is better preserved with the L2 error, while dappled artifacts can be observed in flat areas. This is
due to increased L2 penalization on large errors and relative tolerance to small errors, regardless the
structure of the image.

CBSD68 L2 error L1 error Kodak24 L2 error L1 error

σ = 15 33.76 33.72 34.53 34.46
σ = 25 31.18 31.11 32.12 32.05
σ = 35 29.58 29.51 30.59 30.51
σ = 45 28.45 28.38 29.49 29.41
σ = 55 27.58 27.52 28.63 28.55
σ = 70 26.57 26.51 27.61 27.54

Table 6: Comparison of PSNR obtained with FFDNet models trained with the L2 and the L1

error.

7 Benchmarking

This section presents the results of FFDNet on noisy images corrupted with AWGN. We compare
FFDNet with other state-of-the-art methods. First, three non-local patch-based methods were se-
lected: BM3D [5, 12], Non-local dual image denoising (NLDD [19]), and Non-local Bayes (NLB [13]).
The respective code of each of these algorithms was downloaded from IPOL. Additionally, we tested

15

Matias Tassano, Julie Delon, Thomas Veit

0 10 20 30 40 50 60 70 80
Epoch

26

27

28

29

30

31

32

PN
SR

 (d
B)

PSNR - Validation set
L2 loss function
L1 loss function

Figure 10: Validation PSNR for FFDNet trained with the L2 error and the L1 error in the loss function. The validation set
is the Kodak24 image suite. The noise added to the images was of standard deviation σ = 25. The final values of PSNR
of these two representative trainings are 32.09dB for the L1 error and 32.16dB for the L2 error.

DnCNN [33], and also TNRD [4] on the grayscale testsets. The code of these algorithms was down-
loaded from the website of their respective authors4. When running DnCNN, its “blind” model
was used—that is, one model trained for values of σ ∈ [0, 55]. As for TNRD, this method must be
run with one specific model for each value of σ. The rest of the algorithms were run with default
parameter values.

Table 7 shows average PSNRs on four testsets: two color testsets, CBSD68 and Kodak24, and
two grayscale testsets, BSD68 and Set12. It can be seen that DnCNN and FFDNet surpass all
the other methods, usually by a large margin. Overall, FFDNet averages a margin of 0.51dB over
NLDD, 0.69dB over NLB, and 0.61dB over BM3D. DnCNN is a close competitor of FFDNet, and
even slightly surpasses the latter in some cases (σ ≤ 25 in CBSD68 and σ = 15 in BSD68). FFDNet
has a larger receptive field than DnCNN, which favors the removal of higher values of noise.

Figures 12 and 13 present two examples for visual comparison of color denoising results of the
aforementioned methods. It can be observed that BM3D shows artifacts related to wavelet filters,
i.e. ringing, while NLB presents artifacts associated with non-local patch-based methods, such as
staircasing artifacts on smooth regions. Even if NLDD is also a non-local method, its second denois-
ing stage based on dual-domain denoising is able to reduce the artifacts associated with non-local
methods. In general, these methods tend to smooth details and textures, especially for strong values
of noise. In comparison, FFDNet is able to preserve and recover more details, while keeping flat areas
smooth. The strong color consistency of FFDNet results can be observed, particularly in Figure 12,
where chroma noise remains in the results of methods such as BM3D or NLB. Figure 14 shows a
grayscale denoising example containing self-similar structures. It can be observed that TNRD cre-
ates artifacts in flat areas. In this example, both DnCNN and FFDNet are surpassed by the three
non-local patch-based methods: repetitive structures as the ones found in this picture are better
handled by methods which exploit the non-local similarity prior. On the other hand, CNN based

4TNRD: http://www.escience.cn/people/chenyunjin/RelatedCodes.html. DnCNN: https://github.com/
cszn/DnCNN .

16

http://www.escience.cn/people/chenyunjin/RelatedCodes.html
https://github.com/cszn/DnCNN
https://github.com/cszn/DnCNN

An Analysis and Implementation of the FFDNet Image Denoising Method

Figure 11: Comparison of results with L2 and L1 loss functions. Left to right: noisy image (σ = 40, PSNR = 16.09dB),
result of a model trained with the L2 loss (PSNR = 32.08dB), result of a model trained with the L1 loss (PSNR =
32.06dB). The image on the top is the original image. Flat areas appear smoother for the L1 loss. There is however a loss
of detail information with respect to the L2 loss result.

17

Matias Tassano, Julie Delon, Thomas Veit

methods handle non repetitive textures very well. Generally speaking, FFDNet has arguably the
most appealing perceptual quality among the presented methods.

CBSD68 testset NLDD NLB BM3D DnCNN FFDNet

σ = 15 33.16 33.14 33.45 33.89 33.76
σ = 25 30.72 30.55 30.65 31.23 31.18
σ = 35 29.08 28.77 28.95 29.58 29.58
σ = 45 27.91 27.46 27.70 28.40 28.45
σ = 55 27.06 26.95 26.66 27.47 27.58
σ = 70 25.86 25.79 25.86 - 26.57

Kodak24 testset NLDD NLB BM3D DnCNN FFDNet

σ = 15 33.93 33.84 34.19 34.48 34.53
σ = 25 31.65 31.41 31.59 32.03 32.12
σ = 35 30.04 29.64 29.98 30.46 30.59
σ = 45 28.87 28.35 28.76 29.32 29.49
σ = 55 28.02 27.89 27.78 28.39 28.63
σ = 70 26.86 26.76 26.91 - 27.61

BSD68 NLDD NLB BM3D TNRD DnCNN FFDNet

σ = 15 31.16 31.15 31.09 31.41 31.61 31.60
σ = 25 28.73 28.69 28.61 28.91 29.16 29.19
σ = 35 27.28 27.19 27.11 - 27.68 27.73
σ = 45 26.20 26.11 26.09 - 26.65 26.72
σ = 55 25.39 25.28 25.33 - 25.82 25.95
σ = 70 24.49 24.32 24.45 - - 25.06

Set12 NLDD NLB BM3D TNRD DnCNN FFDNet

σ = 15 32.31 32.25 32.29 32.49 32.68 32.73
σ = 25 29.99 29.90 29.90 30.03 30.36 30.46
σ = 35 28.49 28.30 28.31 - 28.83 28.94
σ = 45 27.35 27.12 27.13 - 27.69 27.83
σ = 55 26.41 26.14 26.24 - 26.71 26.93
σ = 70 25.20 24.90 25.13 - - 25.82

Table 7: Comparison of PSNR(dB) for different state-of-the-art denoising algorithms. CBSD68
and Kodak24 (top) are color testsets, while BSD68 and Set12 (bottom) are grayscale testsets.

8 Conclusions

In this paper, we analyzed FFDNet, a CNN denoising algorithm. An open-source implementation
and online demo of this algorithm are available on IPOL. Its design characteristics, along with its
differences with its predecessor DnCNN, were discussed. Compared to the latter, FFDNet is faster,
more effective, and more versatile. These improvements are attained thanks to the use of diverse
techniques, which were discussed in detail. The most salient of such techniques is the denoising
performed on the downscaled sub-images, which yields a remarkable reduction of running times

18

An Analysis and Implementation of the FFDNet Image Denoising Method

(a) Clean image (b) Noisy image, σnoise = 55

(c) DnCNN, PSNR 28.82dB (d) BM3D, PSNR 28.21dB

(e) NLB, PSNR 28.26dB (f) NLDD, PSNR 28.56dB

(g) FFDNet, PSNR 29.08dB

Figure 12: Comparison of color denoising results.

19

Matias Tassano, Julie Delon, Thomas Veit

(a) Clean image (b) Noisy image, σnoise = 55 (c) FFDNet, PSNR 28.52dB

(d) DnCNN, PSNR 28.32dB (e) BM3D, PSNR 27.31dB

(f) NLB, PSNR 27.79dB (g) NLDD, PSNR 27.92dB

Figure 13: Comparison of color denoising results.

20

An Analysis and Implementation of the FFDNet Image Denoising Method

(a) Clean image (b) Noisy image, σnoise = 25

(c) TNRD, PSNR 29.32dB (d) BM3D, PSNR 30.52dB

(e) NLB, PSNR 30.37dB (f) NLDD, PSNR 30.42dB

(g) DnCNN, PSNR 29.69dB (h) FFDNet, PSNR 30.05dB

Figure 14: Comparison of grayscale denoising results.

21

Matias Tassano, Julie Delon, Thomas Veit

and memory footprint without sacrificing performance. This fact also accounts for doubling the
receptive field without the need of increasing the depth of the network. The proposed downscaling
layer is equivalent to a convolutional layer with filters of double spatial size and stride equal to 2.
Lastly, we observed that the orthogonal regularization during training leads to a modest increase in
performance.

Image Credits

GoPro

Kodak Image Suite

Standard test image

BSD dataset

References

[1] F.J. Anscombe, The transformation of Poisson, binomial and negative-binomial data,
Biometrika, 35 (1948), pp. 246–254. https://dx.doi.org/10.2307/2332343.

[2] H.C. Burger, C.J. Schuler, and S. Harmeling, Image denoising: Can plain neural net-
works compete with BM3D?, Proceedings of the IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR), (2012), pp. 2392–2399. https://dx.doi.org/

10.1109/CVPR.2012.6247952.

[3] C. Chen, Q. Chen, J. Xu, and V. Koltun, Learning to See in the Dark, in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018. http:

//arxiv.org/abs/1805.01934.

[4] Y. Chen and T. Pock, Trainable Nonlinear Reaction Diffusion: A Flexible Framework for
Fast and Effective Image Restoration, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 39 (2017), pp. 1256–1272. https://dx.doi.org/10.1109/TPAMI.2016.2596743.

[5] K. Dabov, A. Foi, and V. Katkovnik, Image denoising by sparse 3D transformation-
domain collaborative filtering, IEEE Transactions on Image Processing, 16 (2007), pp. 1–16.
https://dx.doi.org/10.1109/TIP.2007.901238.

[6] A. Foi, M. Trimeche, V. Katkovnik, and K. Egiazarian, Practical Poissonian-Gaussian
noise modeling and fitting for single-image raw-data, IEEE Transactions on Image Processing,
17 (2008), pp. 1737–1754. https://dx.doi.org/10.1109/TIP.2008.2001399.

[7] M. Gharbi, G. Chaurasia, S. Paris, and F. Durand, Deep joint demosaicking and de-
noising, ACM Transactions on Graphics, 35 (2016), pp. 1–12. https://dx.doi.org/10.1145/
2980179.2982399.

[8] K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image Recognition, in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016, pp. 770–778. https://dx.doi.org/10.1109/CVPR.2016.90.

22

https://dx.doi.org/10.2307/2332343
https://dx.doi.org/10.1109/CVPR.2012.6247952
https://dx.doi.org/10.1109/CVPR.2012.6247952
http://arxiv.org/abs/1805.01934
http://arxiv.org/abs/1805.01934
https://dx.doi.org/10.1109/TPAMI.2016.2596743
https://dx.doi.org/10.1109/TIP.2007.901238
https://dx.doi.org/10.1109/TIP.2008.2001399
https://dx.doi.org/10.1145/2980179.2982399
https://dx.doi.org/10.1145/2980179.2982399
https://dx.doi.org/10.1109/CVPR.2016.90

An Analysis and Implementation of the FFDNet Image Denoising Method

[9] S. Ioffe and C. Szegedy, Batch Normalization: Accelerating Deep Network Training by Re-
ducing Internal Covariate Shift, in Proceedings of the 32nd International Conference on Machine
Learning, JMLR.org, 2015, pp. 448–456. http://arxiv.org/abs/1502.03167.

[10] D.P. Kingma and J.L. Ba, ADAM: a Method for Stochastic Optimization, Proceedings of the
International Conference on Learning Representations 2015, (2015), pp. 1–15. https://arxiv.
org/abs/1412.6980.

[11] A. Krizhevsky, I. Sutskever, and G.E. Hinton, ImageNet Classification with Deep Con-
volutional Neural Networks, Advances In Neural Information Processing Systems, (2012), pp. 1–
9. http://dl.acm.org/citation.cfm?id=2999134.2999257.

[12] M. Lebrun, An Analysis and Implementation of the BM3D Image Denoising Method, Image
Processing On Line, 2 (2012), pp. 175–213. https://dx.doi.org/10.5201/ipol.2012.l-bm3d.

[13] M. Lebrun, A. Buades, and J-M. Morel, Implementation of the Non-Local Bayes (NL-
Bayes) Image Denoising Algorithm, Imae Processing On Line, 3 (2013), pp. 1–42. https:

//dx.doi.org/10.5201/ipol.2013.16.

[14] K. Ma, Z. Duanmu, Q. Wu, Z. Wang, H. Yong, H. Li, and L. Zhang, Waterloo Ex-
ploration Database: New Challenges for Image Quality Assessment Models, IEEE Transactions
on Image Processing, 26 (2017), pp. 1004–1016. https://dx.doi.org/10.1109/TIP.2016.

2631888.

[15] M. Makitalo and A. Foi, A closed-form approximation of the exact unbiased inverse of
the Anscombe variance-stabilizing transformation, IEEE Transactions on Image Processing, 20
(2011), pp. 2697–2698. https://dx.doi.org/10.1109/TIP.2011.2121085.

[16] , Optimal inversion of the Anscombe transformation in low-count Poisson image denoising,
IEEE Transactions on Image Processing, 20 (2011), pp. 99–109. https://dx.doi.org/10.

1109/TIP.2012.2202675.

[17] D. Martin, C. Fowlkes, D. Tal, and J. Malik, A database of human segmented natu-
ral images and its application to evaluating segmentation algorithms and measuring ecological
statistics, Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2
(2001), pp. 416–423. https://dx.doi.org/10.1109/ICCV.2001.937655.

[18] A. Paszke, G. Chanan, Z. Lin, S. Gross, E. Yang, L. Antiga, and Z. Devito,
Automatic differentiation in PyTorch, Advances in Neural Information Processing Systems 30,
(2017), pp. 1–4. https://openreview.net/forum?id=BJJsrmfCZ.

[19] N. Pierazzo, M. Lebrun, M. E. Rais, J. M. Morel, and G. Facciolo, Non-local dual
image denoising, Proceedings of the IEEE International Conference on Image Processing (ICIP),
(2014), pp. 813–817. https://dx.doi.org/10.1109/ICIP.2014.7025163.

[20] T. Remez, O. Litany, R. Giryes, and A.M. Bronstein, Deep Class Aware Denoising, in
Proceedings of the International Conference on Sampling Theory and Applications (SampTA),
IEEE, 2017. https://dx.doi.org/10.1109/SAMPTA.2017.8024474.

[21] V. Santhanam, V.I. Morariu, and L.S. Davis, Generalized Deep Image to Image Re-
gression, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016. https://dx.doi.org/10.1109/CVPR.2017.573.

23

http://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
http://dl.acm.org/citation.cfm?id=2999134.2999257
https://dx.doi.org/10.5201/ipol.2012.l-bm3d
https://dx.doi.org/10.5201/ipol.2013.16
https://dx.doi.org/10.5201/ipol.2013.16
https://dx.doi.org/10.1109/TIP.2016.2631888
https://dx.doi.org/10.1109/TIP.2016.2631888
https://dx.doi.org/10.1109/TIP.2011.2121085
https://dx.doi.org/10.1109/TIP.2012.2202675
https://dx.doi.org/10.1109/TIP.2012.2202675
https://dx.doi.org/10.1109/ICCV.2001.937655
https://openreview.net/forum?id=BJJsrmfCZ
https://dx.doi.org/10.1109/ICIP.2014.7025163
https://dx.doi.org/10.1109/SAMPTA.2017.8024474
https://dx.doi.org/10.1109/CVPR.2017.573

Matias Tassano, Julie Delon, Thomas Veit

[22] U. Schmidt and S. Roth, Shrinkage fields for effective image restoration, Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR),
(2014), pp. 2774–2781. https://dx.doi.org/10.1109/CVPR.2014.349.

[23] E. Schwartz, R. Giryes, and A.M. Bronstein, DeepISP: Learning End-to-End Image
Processing Pipeline, (2018). http://arxiv.org/abs/1801.06724.

[24] W. Shi, J. Caballero, F. Huszar, J. Totz, A.P. Aitken, R. Bishop, D. Rueckert,
and Z. Wang, Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-
Pixel Convolutional Neural Network, in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016, pp. 1874–1883. https://dx.doi.org/10.1109/CVPR.
2016.207.

[25] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, Rethinking the In-
ception Architecture for Computer Vision, Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), (2015), pp. 2818–2826. http://doi.org/10.1109/

CVPR.2016.308.

[26] Dustin Tran, Alp Kucukelbir, Adji B. Dieng, Maja Rudolph, Dawen Liang, and
David M. Blei, Edward: A library for probabilistic modeling, inference, and criticism, (2016).

[27] E. Vorontsov, C. Trabelsi, S. Kadoury, and C. Pal, On orthogonality and learning
recurrent networks with long term dependencies, (2017). http://arxiv.org/abs/1702.00071.

[28] Y-Q. Wang, Small neural networks can denoise image textures well : a useful complement to
BM3D Image denoising neural networks, Image Processing On Line, 6 (2016), pp. 1–7. https:
//doi.org/10.5201/ipol.2016.150.

[29] A.C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht, The marginal value of
adaptive gradient methods in machine learning, in Advances in Neural Information Processing
Systems, 2017, pp. 4148–4158. https://arxiv.org/abs/1705.08292.

[30] Y. Wu, M. Schuster, Z. Chen, Q.V. Le, M. Norouzi, W. Macherey, M. Krikun,
Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu,
 L. Kaiser, S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens, G. Kurian,
N. Patil, W. Wang, C. Young, J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. Cor-
rado, M. Hughes, and J. Dean, Google’s Neural Machine Translation System: Bridging the
Gap between Human and Machine Translation, (2016).

[31] F. Yu and V. Koltun, Multi-Scale Context Aggregation by Dilated Convolutions, in Proceed-
ings of the International Conference on Learning Representations, 2016. http://arxiv.org/

abs/1511.07122.

[32] F. Yu, V. Koltun, and T. Funkhouser, Dilated residual networks, in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2017-Janua, 2017,
pp. 636–644. https://dx.doi.org/10.1109/CVPR.2017.75.

[33] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, Beyond a Gaussian denoiser:
Residual learning of deep CNN for image denoising, IEEE Transactions on Image Processing,
26 (2017), pp. 3142–3155. https://dx.doi.org/10.1109/TIP.2017.2662206.

24

https://dx.doi.org/10.1109/CVPR.2014.349
http://arxiv.org/abs/1801.06724
https://dx.doi.org/10.1109/CVPR.2016.207
https://dx.doi.org/10.1109/CVPR.2016.207
http://doi.org/10.1109/CVPR.2016.308
http://doi.org/10.1109/CVPR.2016.308
http://arxiv.org/abs/1702.00071
https://doi.org/10.5201/ipol.2016.150
https://doi.org/10.5201/ipol.2016.150
https://arxiv.org/abs/1705.08292
http://arxiv.org/abs/1511.07122
http://arxiv.org/abs/1511.07122
https://dx.doi.org/10.1109/CVPR.2017.75
https://dx.doi.org/10.1109/TIP.2017.2662206

An Analysis and Implementation of the FFDNet Image Denoising Method

[34] K. Zhang, W. Zuo, and L. Zhang, FFDNet: Toward a Fast and Flexible Solution for CNN
based Image Denoising, IEEE Transactions on Image Processing, 27 (2018), pp. 4608–4622.
http://doi.org/10.1109/TIP.2018.2839891.

[35] H. Zhao, O. Gallo, I. Frosio, and J. Kautz, Loss Functions for Image Restoration
with Neural Networks, IEEE Transactions on Computational Imaging, 3 (2017), pp. 47–57.
https://doi.org/10.1109/TCI.2016.2644865.

25

http://doi.org/10.1109/TIP.2018.2839891
https://doi.org/10.1109/TCI.2016.2644865

	Introduction
	Related Work
	Definition of the Problem

	FFDNet Architecture
	Comparison to DnCNN
	Training Details

	Residual Learning
	Examining the Downscaling and Upscaling Layers
	Examining the Noise Map and Orthogonalization
	Training with the L2 Error Function Versus the L1 Error Function
	Benchmarking
	Conclusions

