
Published in Image Processing On Line on 2019–02–24.
Submitted on 2018–04–25, accepted on 2019–02–11.
ISSN 2105–1232 c© 2019 IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
https://doi.org/10.5201/ipol.2019.227

2
0
1
5
/
0
6
/
1
6

v
0
.5
.1

IP
O
L

a
rt
ic
le

c
la
ss

Hamiltonian Fast Marching: A Numerical Solver for

Anisotropic and Non-Holonomic Eikonal PDEs

Jean-Marie Mirebeau1, Jorg Portegies2

1 University Paris-Sud, CNRS, University Paris-Saclay, 91405, Orsay, France
jean-marie.mirebeau@math.u-psud.fr

2 Department of Mathematics and Computer Science, CASA, Eindhoven University of Technology, Netherlands
j.m.portegies@tue.nl

Abstract

We introduce a generalized Fast-Marching algorithm, able to compute paths globally minimizing
a measure of length, defined with respect to a variety of metrics in dimension two to five. Our
method applies in particular to arbitrary Riemannian metrics, and implements features such as
second order accuracy, sensitivity analysis, and various stopping criteria. We also address the
singular metrics associated with several non-holonomic control models, related with curvature
penalization, such as the Reeds-Shepp’s car with or without reverse gear, the Euler-Mumford
elastica curves, and the Dubins car. Applications to image processing and to motion planning
are demonstrated.

Source Code

This paper is related to the HamiltonFastMarching code, designed to solve various classes of
eikonal equations, and extract the related minimal paths. The software is written in C++, but
comes with interfaces for the scripting languages Python, Matlab R© and Mathematica R©. The
codes are available at the web page of the article1.

Supplementary Material

A series of notebooks2 written in the Python language, present a hands on usage of the code pro-
vided in this paper, and allow to reproduce the numerical experiments. Additional notebooks3

by the second author are written in the Mathematica R© language.

Keywords: eikonal equation; geodesic; elastica curve; image segmentation; motion planning

1https://doi.org/10.5201/ipol.2019.227
2http://nbviewer.jupyter.org/github/Mirebeau/HFM_Python_Notebooks/blob/master/Summary.ipynb
3https://github.com/Mirebeau/HFM_Mathematica_Notebooks

Jean-Marie Mirebeau, Jorg Portegies, Hamiltonian Fast Marching: A Numerical Solver for Anisotropic and Non-Holonomic Eikonal PDEs,
Image Processing On Line, 9 (2019), pp. 47–93. https://doi.org/10.5201/ipol.2019.227

https://doi.org/10.5201/ipol
https://doi.org/10.5201/ipol
http://creativecommons.org/licenses/by-nc-sa/3.0/
https://doi.org/10.5201/ipol.2019.227
https://doi.org/10.5201/ipol.2019.227
http://nbviewer.jupyter.org/github/Mirebeau/HFM_Python_Notebooks/blob/master/Summary.ipynb
https://github.com/Mirebeau/HFM_Mathematica_Notebooks
https://doi.org/10.5201/ipol.2019.227
http://nbviewer.jupyter.org/github/Mirebeau/HFM_Python_Notebooks/blob/master/Summary.ipynb
https://github.com/Mirebeau/HFM_Mathematica_Notebooks

Jean-Marie Mirebeau, Jorg Portegies

1 Introduction

In this paper we provide the numerical details involved in a generalized fast marching solver, able to
compute the distance from a point within a domain, and the related paths of minimal length, which
by design are globally optimal. Path length is measured with respect to a given metric which may
take a variety of forms and involve data-driven parameters. For instance the metric may be Isotropic
(locally proportional to the Euclidean norm), or Riemannian. Combining a dimension lifting trick
with the choice of an adequate singular metric, we are also able to penalize path curvature, according
to the Reeds-Shepp [50, 22], Euler-Mumford [43], or Dubins [19] models. Our software is referred
to as the Hamiltonian Fast Marching (HFM) library4, because it relies on an original and specific
representation of the Hamiltonian of the addressed problems (14), and uses the fast marching method
(a generalization of Dijkstra’s algorithm) to solve eikonal-type equations in a single pass.

The search for optimal paths appears in many applications, such as motion planning and image
analysis, see the numerical section of this paper and e.g. [57, 48]. The numerical approach chosen in
this paper is to first compute a distance map, which is the viscosity solution to a Partial Differential
Equation (PDE) of eikonal type [2], and then extract the minimal paths, which obey an Ordinary
Differential Equation (ODE) defined in terms of the distance map. In the case of isotropic metrics,
the first task is essentially a solved problem [51, 61], however it becomes challenging when considering
(strongly) anisotropic metrics [29, 58, 8, 1, 35, 36]. For that purpose, we rely on an original Eulerian
and causal discretization of the eikonal equation [40, 39]. Two robust geodesic backtracking methods
are provided for minimal path extraction. The HFM software is made available as an open-source
C++ library with interfaces to Python R©, Matlab R©, and Mathematica R©. It is fast (albeit single-
threaded by nature), built for extensibility (for introducing additional classes of metrics, stopping
criteria, interfaces with other programming languages, etc), features uncommon but useful methods
such as reverse mode sensitivity analysis, and comes with a thorough series of introductory notebooks,
see also the numerical sections 4 and 5.

1.1 Curve Optimization Via Eikonal PDEs

In order to make our contributions clear and to relate them to the literature, we need to formally
state the addressed mathematical problem. The objects discussed in this section - the metric, the
distance map, the geodesic flow, and the optimal paths - are illustrated in Figure 1.

Let E = Rd be the ambient space, and let Ω ⊂ E be a domain5. The geometry of the domain
is described using a quasi-metric F : Ω × E → [0,∞], which specific form is discussed later. This
object defines a measure of path length LF : Γ→ [0,∞], where Γ := Lip([0, 1],Ω) is the set of locally
Lipschitz paths, and a related quasi-distance dF : Ω × Ω → [0,∞], as follows. For any path γ ∈ Γ,
and any points p,q ∈ Ω

LF(γ) :=

∫ 1

0

Fγ(t)(γ̇(t))dt, dF(p,q) := inf{LF(γ); γ ∈ Γ, γ(0) = p, γ(1) = q}. (1)

Depending on the choice of quasi-metric F the quasi-distance dF may or may not satisfy dF(p,q) =
dF(q,p) (symmetry), dF(p,q) <∞ (global controllability), or dF(p,q)→ 0 as p→ q (local control-
lability). For readability we choose to drop in the following the prefix “quasi-”, used conventionally
to emphasize that a metric or a distance may lack symmetry. Note that we reserve the word metric
for functions F measuring the length Fp(ṗ) of a tangent vector ṗ at a given point p, as in (1, left),

4github.com/mirebeau/HamiltonFastMarching
5Our numerical method requires Ω to be a bounded box, but allows to introduce obstacles in the domain, and to

equip it with various kinds of periodic boundary conditions.

48

github.com/mirebeau/HamiltonFastMarching

Hamiltonian Fast Marching: A Numerical Solver for Anisotropic and Non-Holonomic Eikonal PDEs

Figure 1: The four steps of minimal path computation. (I) Define a metric, here of Riemannian type and visualized as
a family of ellipsoids. (II) Compute of a distance map, here from the center point, by solving the eikonal PDE (3). (III)
Compute the geodesic flow direction p ∈ Ω 7→ dF∗

p(du(p)). (IV) Backtrack the minimal geodesics, by solving the ODE (5).

and the word distance for functions such as dF measuring the minimal path length between two
points, as in (1, right).

Our objective is to compute the distance map u : Ω→]−∞,∞] from the domain boundary ∂Ω,
which can be characterized as follows

∀p ∈ Ω, u(p) = inf
q∈∂Ω

u(q) + dF(q,p), ∀p ∈ ∂Ω, u(p) = σ(p), (2)

where σ : Ω→]−∞,∞] is a given initial delay. Note that we could merge (2) into a single equation,
namely u(p) = inf{σ(q) + dF(q,p); q ∈ ∂Ω} for all p ∈ Ω. We prefer however to formally separate
the boundary condition (2, right), from the self consistency property (2, left) of the distance map
u, which gives rise to the eikonal PDE stated below (3, left). The distance from e.g. a single point
of interest q∗ ∈ ∂Ω is obtained by setting σ(q∗) = 0 and σ ≡ ∞ on ∂Ω \ {q∗}. Under suitable
assumptions, the function u is known to be the unique viscosity solution to the (generalized) eikonal
PDE

∀p ∈ Ω, F∗p(du(p)) = 1, ∀p ∈ ∂Ω, u(p) = σ(p), (3)

where “d” denotes the differentiation operator. We refer to [2] for this theory, including the concept of
discontinuous solutions to eikonal equations, which is required for some of our problem instances [39]
but is out of the scope of this paper. The eikonal PDE (3) involves the dual metric F∗ : Ω× E∗ →
[0,∞[, defined by

F∗p(p̂) := sup{〈p̂, ṗ〉; ṗ ∈ E, Fp(ṗ) ≤ 1}, (4)

for any given p ∈ Ω and p̂ ∈ E∗. Here and below, points p ∈ Ω are denoted with bold letters,
tangent vectors ṗ ∈ E are distinguished with dots, and co-vectors p̂ ∈ E∗ are decorated with hats.
We emphasize that the supremum in (4) is taken among all tangent vectors ṗ with length Fp(ṗ)
smaller or equal to 1, as measured by the (primal) metric F at the given base point p.

Once u is known, the minimal path joining a given q ∈ Ω from the corresponding optimal p ∈ ∂Ω
is extracted by solving (backwards in time) the following Ordinary Differential Equation (ODE)

∀t ∈ [T−, T+], γ̇(t) = dF∗γ(t)(du(γ(t))), γ(T+) = q, (5)

where T− := σ(p) and T+ := u(q). The parametrization interval [T−, T+] used here for the path γ
differs in general from the one [0, 1] appearing in the definition of path length (1), but this is not an
issue since path length is invariant under non-decreasing reparametrization. We denoted by dF∗p(p̂)
the differential of p̂ ∈ E∗ 7→ F∗p(p̂), see [22] Appendix C.

We discuss in Section 1.2 possible choices of metric F that can be addressed with the HFM
library, and in particular the singular metrics used to encode curvature penalization. The design

49

Jean-Marie Mirebeau, Jorg Portegies

choices underlying our numerical method for solving the PDE (3) are then presented in Section 1.3.
Applications of minimal path methods to image processing and motion planning are briefly surveyed
in Section 1.4, where we also present the outline of the paper.

1.2 Isotropic, Anisotropic and Non-Holonomic Metrics

In the applications for which our software is intended, such as image processing and motion planning,
the metric F encoding the geometry of the domain is usually data driven and spatially inhomoge-
neous. The specific structure of the expression of the metric is in principle dictated by the application,
but it must also be compatible with the numerical method used for minimal path computation. We
present in the following the metric models that can be addressed using our software, distinguishing
three general classes: Isotropic, Anisotropic, and Non-Holonomic, which are illustrated in Figure 2.
In each case, we provide the generic expression of the primal metric, as well as the dual metric which
is defined by (4) and appears in the eikonal equation (3) and the geodesic backtracking ODE (5).

Isotropic metrics are locally proportional to the Euclidean norm, which is defined as usual on the
embedding space E := Rd ⊇ Ω. The dual metric turns out to be proportional to the Euclidean norm
as well, but with an inverse ratio. For any point p ∈ Ω, any vector ṗ ∈ E and any co-vector p̂ ∈ E∗

Fp(ṗ) := c(p)‖ṗ‖, F∗p(p̂) = ‖p̂‖/c(p). (6)

The cost function c : Ω →]0,∞[, appearing in these expressions, is given by the user and usually
data driven. It is homogeneous to the inverse of a speed, and assumed to be continuous. The HFM
software uses the classical discretization scheme [51] to numerically solve isotropic eikonal equations
on Cartesian grids of arbitrary dimension.

Anisotropic metrics define, at any given point, different norms for unit Euclidean vectors in
different directions. Riemannian metrics are the simplest and most common instance of anisotropic
metrics. They are determined by a field M : Ω → S++(E) of positive definite tensors, and take the
form

Fp(ṗ) := ‖ṗ‖M(p), F∗p(p̂) = ‖p̂‖D(p), (7)

where ‖ṗ‖M :=
√
〈M ṗ, ṗ〉, and where D(p) := M(p)−1 denotes the dual tensor field. The HFM

software uses the recently developed FM-VR1 numerical scheme [40], to solve Riemannian eikonal
equations, in dimension d ∈ {2, 3}. Finsler metrics [64, 13], i.e. non-Riemannian anisotropic metrics,
are presently not supported by the HFM software. For these we refer to the earlier open source
library [37], due to the first author, which implements the (two-dimensional) FM-ASR scheme [35].

Non-Holonomic control models forbid, at some points in space p ∈ Ω, some directions of motion
ṗ ∈ E. The corresponding metrics are singular, in that they associate infinite costs Fp(ṗ) = +∞
to these forbidden directions. Sub-Riemannian metrics are the simplest instances of non-holonomic
metrics, and can be regarded as generalized Riemannian metrics having some infinite eigenvalues.
The HFM software is able to handle strongly anisotropic Riemannian metrics, with condition numbers
& 10, which can approximate sub-Riemannian metrics convincingly enough for many applications.
We implement in particular the Reeds-Shepp car model, defined on the configuration space R2 × S1

of positions and orientations, which is adequate for modeling wheelchair-like vehicles [50] but is
also fundamental in image vision [47]. Several generalisations, defined on the 5-dimensional domain
R3 × S2, see [22, 40], are also present.

We address the computation of planar paths globally minimizing several curvature dependent
energies, following [39], which we now briefly review. For that purpose, consider again the three-
dimensional state space M := R2 × S1 of positions and orientations, which points are denoted p =
(x, θ). A singular quasi-metric F is introduced, involving a data-driven cost function c : M→]0,∞[

50

Hamiltonian Fast Marching: A Numerical Solver for Anisotropic and Non-Holonomic Eikonal PDEs

Figure 2: A metric F associates to each point p a gauge Fp, i.e. a generalized norm which may be non-symmetrical and
may take infinite values. The three first figures display unit balls (also referred to as Tissot’s indicatrix) of the gauges of
successively: (i) an Isotropic metric, (ii) an Anisotropic Riemannian metric, (iii) and the non-holonomic sub-Riemannian
metric associated with the Reeds-Shepp model on R2 × S1. In the later case, the admissible directions of motion depend
on the angular coordinate θ (vertical axis in (iii) and (iv)), reflecting the fact that a car cannot move sideways.

and a curvature penalty C : R→]0,∞]. For any tangent vector ṗ = (ẋ, θ̇), with unit physical velocity
‖ẋ‖ = 1 and arbitrary angular velocity θ̇, and any co-tangent vector (x̂, θ̂), one has

F(x,θ)(ẋ, θ̇) := c(x, θ) ·

{
C(θ̇) if ẋ = n(θ),

+∞ otherwise.
F∗(x,θ)(x̂, θ̂) = c(x, θ)−1 sup

θ̇∈R

〈x̂,n(θ)〉+ θ̂θ̇

C(θ̇)
. (8)

We denoted n(θ) := (cos θ, sin θ), and adopted the convention that S1 := R/(2πZ) has tangent space
R. The quasi-metric F is extended by positive 1-homogeneity to the case ‖ẋ‖ 6= 1, and the dual metric
expression follows from (4), see also Appendix A. Consider a path η : [0, T] → R2, parametrized at
unit Euclidean speed, and abusively identify the unit vector η̇(s) with the corresponding direction in
S1. Then the length of the orientation-lifted path (η, η̇) measured w.r.t. the above metric F equals
the following curvature penalized energy

LF((η, η̇)) =

∫ L

0

c(η(s), η̇(s)) C(η̈(s)) ds, (9)

In addition, by construction of the metric F , any orientation lifting (η, η̃) : [0, T] → R2 × S1 of the
physical path η, distinct from the canonical one (η, η̇), satisfies LF((η, η̃)) = +∞. By minimizing
the length (1, right) among arbitrary paths γ = (η, η̃), one thus automatically selects pairs of the
form γ = (η, η̇), and optimizes the curvature dependent energy (9).

The state dependent cost c(x, θ) appearing in the metric definition (8) is arbitrary and user de-
fined, but the curvature cost C(θ̇) must presently be chosen among the following instances, related to
the Reeds-Shepp car without reverse gear [22], the Euler-Mumford elastica curves [43], and Dubins’s
car [19]. For any κ ∈ R, standing for the path curvature θ̇

CRS(κ) :=
√

1 + (ξκ)2, CEM(κ) := 1 + (ξκ)2, CD(κ) :=

{
1 if |ξκ| ≤ 1,

+∞ else,
(10)

where the parameter ξ > 0 modulates the amount of curvature penalization and has the dimension
of a turning radius. Note that the metric (8) associated with (10, left) defines a model, referred
to as the Reeds-Shepp forward model, which distinguishes itself from the original sub-Riemannian
Reeds-Shepp model [50, 47] discussed in the previous paragraph by the absence of reverse gear, see
the discussion in [22]. Finally, we also provide the more parametrizable models defined by the metrics
of the form

F(x,θ)(ẋ, θ̇) = c(x, θ) C
(
ξ(x, θ)(θ̇ − κ(x, θ))

)
if ẋ = n(θ). (11)

As before, the metric is extended 1-homogeneously to the case where x is positively collinear with
n(θ), and set to +∞ otherwise. The fields ξ : M →]0,∞[and κ : M → R, provided by the user,
locally modulate the turning radius and the imbalance of the car. See Figure 17.

51

Jean-Marie Mirebeau, Jorg Portegies

Figure 3: The stencil of a PDE discretization at a point p, is the collection of neighbors of p in the discretization grid
involved in the numerical approximation of the PDE operator by finite differences. We display the stencils used for the
discretization of eikonal equations, associated with (left, center left) an isotropic metric in dimension 2 and 3, (center right)
an anisotropic Riemannian metric, (right) the Euler-Mumford elastica model.

1.3 An Eulerian and Causal Discretization of the Eikonal Equation

The HFM software relies on an Eulerian and causal discretization of the eikonal equation (3), and
on a Cartesian grid, based on papers [40, 39]. We briefly describe here these two design choices, and
contrast them with the possible alternatives.

Numerical solvers of the time optimal control problem (2) can be of either semi-Lagrangian or
Eulerian nature. Semi-Lagrangian schemes are a discretization of Bellman’s optimality principle,
which expresses that the characterization (2, left) of the problem solution u still holds if the global
domain boundary ∂Ω is replaced with the boundary ∂V (p) of an arbitrary (in practice chosen small)
neighborhood V (p) ⊂ Ω of the current point p. A continued line of research has been devoted to
this approach since the seminal work [61], see the paragraph on causality below. The HFM software
does not follow this popular route, but relies in contrast on an Eulerian scheme, directly expressing
the eikonal PDE (3) at the discrete level using finite differences, similarly to [51, 4]. This approach
requires an exact or approximate representation of the dual metric in the following form: for any
point p ∈ Ω, and any co-vector p̂ ∈ E∗

F∗p(p̂)2 ≈
∑

1≤i≤I

αi(p) max{0, 〈p̂, ėi〉}2, (12)

where αi = αi(p) ≥ 0 and ėi = ėi(p) ∈ Zd are weights and offsets respectively, with index 1 ≤ i ≤ I.
The dependency of the offset ėi = ėi(p) w.r.t. the base point p is usually omitted in equations such
as (12), to alleviate notations. The design of these weights and offsets is non-trivial, see Section 2
and [40, 39], and expressions slightly more general than (12) are often needed as well (14). Figure 3
displays some for the stencils (collection of offsets) used in the numerical scheme for various isotropic
and anisotropic metrics. The eikonal PDE (3), is then discretized under the following form

∀p ∈ X,
∑

1≤i≤I

αi(p) max{0, U(p)− U(p− hėi)}2 = h2, ∀p ∈ ∂X, U(p) = σ(p). (13)

where h > 0 is the discretization scale, and X and ∂X are subsets of the Cartesian grid hZd devoted
to discretizing Ω and ∂Ω respectively. Note, crucially, that the numerical scheme (13, left) is a
non-decreasing function of the finite differences (U(p)− U(p− hė))ė∈Zd . This property, referred to
as monotony or degenerate ellipticity, is essential in establishing the well posedness and stability of
the discretized problem, see [45]. The implementation of the HFM library is slightly more flexible
than (13), allowing for e.g. axis dependent grid scales, the introduction of obstacles in the domain,
and second order accuracy.

Causality is a property of the discretization scheme which reflects the deterministic nature of
the original control problem, and enables it to be solved in a single pass using the fast marching

52

Hamiltonian Fast Marching: A Numerical Solver for Anisotropic and Non-Holonomic Eikonal PDEs

algorithm/dynamic programming principle, see Section 3.1. In the context of Eulerian schemes,
causality means that the numerical scheme is a function of the positive parts of the finite differences
(U(p)− U(p− hė))ė∈Zd , which is indeed the case in (13, left). See Definition 2.1 below for a formal
definition, and [58] for a counterpart in the context of semi-Lagrangian schemes. At the continuous
level, u(p) can be regarded as the arrival time at p ∈ Ω of a front originating from the domain
boundary ∂Ω at the given time σ, and propagating with a speed locally dictated by the metric F .
The continuous counterpart of the causality property is the fact that the front arrival time at a given
point only depends on the earlier arrival times, and not on the future ones. In the context of shortest
paths on graphs, causality amounts to the positivity of the edge weights, which similarly enables
Dijkstra’s single pass algorithm. Note that monotone but non-causal discretization schemes can also
be numerically solved, using a variety of iterative methods such as Fast-Sweeping [65] or (adaptive)
Gauss-Seidel iterations [8, 4]. Their practical usage can however be tedious, in particular with the
strongly anisotropic and inhomogeneous metrics encountered in image processing, which lead to long
and unpredictable computation times [6].

Designing causal discretization schemes for anisotropic metrics is a non-trivial task, which has
been the subject of a continued line of research in the semi-Lagrangian setting [29, 27, 1], follow-
ing the discovery [58, 62] that it is related to a geometrical property of the discretization stencils.
The works [35, 36] assume a Cartesian grid discretization and use, similarly to here but in the
semi-Lagrangian setting, tools from lattice geometry to design reasonably small causal stencils for
(strongly) anisotropic metrics. In the Eulerian setting, the design of causal schemes for non-isotropic
metrics has in contrast been overlooked until the recent works [40, 39], which are at the foundation
of the proposed software.

1.4 Applications to Image Processing and Motion Planning

Minimal path methods have numerous applications [57, 48], of which we can only give a glimpse. We
focus here on applications which can directly benefit from the numerical methods provided within the
proposed software, and in particular from paths globally minimizing a curvature dependent energy.

Motion planning. When preparing the motion of an automatic vehicle in a known environment,
or the movement of an articulated machine such as a robotic arm, using the path globally minimizing
a well chosen energy has obvious advantages [30]. A variety of methods for path optimization exist,
such as local optimization from an initial guess, geodesic shooting, stochastic exploration, or other
techniques based on a fine geometrical description of the domain [7]. Approaches based on the eikonal
PDE have incomparable flexibility, and a guarantee of global optimality. Their main drawbacks are
their cost for the complex models, due to the curse of dimensionality, and until recently the inability
to handle non-holonomic constraints. The HFM library solves the latter issue, and for instance
allows to introduce curvature penalization in the energy functional, so as to minimize the effort on
the machine structure. Hard constraints can also be accounted for, such as vehicles with a bounded
turning radius. In the proof of concept work [41], the HFM library is used to optimize a surveillance
system for detecting an enemy vehicle, subject to non-holonomic constraints, in a worst case scenario.

Image Segmentation. Numerous imaging processing methods involve paths, which can represent
the contours of two dimensional regions, the centerlines of tubular structures, or white fibers in dMRI
scans of the brain. Various path constructions exist, such as fiber following methods based on ODEs,
often enhanced with stochastic perturbations [53]. Another convenient selection principle is to select
a path minimizing an adequate energy, which in practice is obtained by local optimization [28], or
by solving an eikonal equation [16]. The latter approach, chosen in this paper, has the appealing
guarantee that the globally optimal path is found, but it was historically more limited in the type of

53

Jean-Marie Mirebeau, Jorg Portegies

energies that could be minimized. The HFM library intends to alleviate this constraint, by enabling
the efficient computation of globally optimal Riemannian geodesics, as well as paths minimizing a
family of curvature dependent energies. We refer to [48], for an in-depth overview of the uses of
minimal paths in image processing, and devote the following paragraphs to works which specifically
investigate the use of anisotropic (Riemannian or Finslerian) or non-holonomic (curvature penalizing)
metrics in image processing.

Riemannian metrics were first applied in [6] to the segmentation of image regions and of tubular
structures. The metric tensors are built in a preliminary step, based on a local filtering of the image,
and are intended to guide the minimal paths along the image structures of interest; their design
remains a challenging task, which is application dependent, requires expert knowledge, and remains
the object of active research. Activity in the field [12, 15] was renewed after the development of
fast Riemannian eikonal equation solvers [36]. Finslerian metrics allow path length to be measured
differently depending on the direction, by e.g. augmenting a Riemannian metric with an asymmetric
linear term [49]. They have important applications in image segmentation [34, 13]. An efficient
discretization scheme exists for two dimensional Finslerian eikonal equations [35, 37], but for technical
reasons6 it is not presently implemented in the HFM library.

Path energies featuring second order terms, such as curvature, are completely natural in image
segmentation [28]. Curvature penalization is for instance a good prior for region segmentation in
noisy images, in particular if the objects of interest are convex [14]. Another use case is tubular
structure segmentation in images of the retina, which feature complex overlays of vessels: curvature
penalization helps eliminate “shortcuts” where the extracted path runs along the concatenation of
several distinct intersecting vessels [4]. Finally, white fiber tractography in dMRI scans of the brain
is a promising application field: the curvature penalty adds inertia to the paths, preventing them
from getting lost at fiber crossings [22]. Global optimization of path energies featuring curvature and
higher order tems, using dynamic programming, was first investigated in [59, 32]. We do believe that
the approach used in the HFM library lies on firmer grounds, which are presented mathematically in
Section 1.2, Section 2.4, and which history is briefly described below. The first step was to introduce
the configuration space of all positions (in the image domain) and orientations [46]. Among other
things, this allows to design the cost function(s) involved in the path energy using an orientation
sensitive filtering of the image, based on e.g. wavelets [21] or Gabor filters. The second step is to
relate the second order energy model of interest with a non-holonomic metric on the configuration
space, see [4, 14] for the Reeds-Shepp and Euler-Mumford models respectively. The final step is
to design a causal discretization scheme so as to solve the resulting eikonal PDE (possibly slightly
relaxed) more efficiently, which was addressed in [52, 22, 40, 39].

Outline. We discuss in Section 2 the models that can be addressed with our numerical method,
and describe in detail our discretization of the related eikonal PDEs. Section Section 3 describes the
fast marching algorithm, and the related methods of geodesic backtracking and sensitivity analysis.
Numerical experiments are presented in Section 4.

2 Expression of the Hamiltonian

In this section, we describe the discretization of several generalized eikonal equations, using an original
and specific representation of the corresponding Hamiltonian, as announced in the introduction (12).
These implementation principles are at the foundation of our numerical method, but are invisible

6It uses a semi-Lagrangian discretization, in contrast with the Eulerian discretization chosen for the HFM library,
see Section 1.3.

54

Hamiltonian Fast Marching: A Numerical Solver for Anisotropic and Non-Holonomic Eikonal PDEs

from the top-level interface of the HFM library. They are of interest to curious users and to those
who would like to extend the core C++ library with additional models and features.

In the rest of this paper we denote by Hp := (F∗p)2, p ∈ Ω, the squared dual metric, which
is abusively referred to as the Hamiltonian. Note that, in classical mechanics, the Hamiltonian is
defined as 1

2
Hp, but the multiplicative factor 1/2 tends to introduce unnecessary clutter in both the

description and the implementation of our numerical method. Our approach requires the Hamiltonian
to be representable, exactly or approximately (in which case a consistency error is introduced), in
the following general form, which generalizes (12). For any point p ∈ Ω and any co-vector p̂ ∈ E∗

Hp(p̂) ≈ max
1≤k≤K

(∑
1≤i≤I

αik〈p̂, ėik〉2+ +
∑

1≤j≤J

βjk〈p̂, j̇k〉2
)
, (14)

where a+ := max{0, a} for any a ∈ R. The integers I, J,K are meta-parameters which are fixed
for each class of metric. In contrast, the weights αik, βjk ≥ 0 and the offsets ėik, j̇k ∈ Zd implicitly
depend on the current point p ∈ X of the domain, where 1 ≤ i ≤ I, 1 ≤ j ≤ J , and 1 ≤ k ≤ K. Let
us mention that several strategies, discussed in Section 3.1.3, are used to limit the memory footprint
of storing the local parameters αik, βjk, ėik, j̇k of the Hamiltonian representation (14, rhs).

The eikonal equation (3) is equivalently stated in terms of the Hamiltonian evaluated on a con-
tinuous function’s differential: Hp(du(p)) where p ∈ Ω. The finite-difference approximation HU(p)
of this quantity is obtained by inserting the following first order upwind approximations in the
right-hand side of (14)

〈dU(p), ė〉2+ ≈ h−2 max{0, U(p)− U(p− hė)}2, (15)

〈dU(p), ė〉2 ≈ h−2 max{0, U(p)− U(p− hė), U(p)− U(p + hė)}2. (16)

We denoted by U : X ∪ ∂X → R a discrete map, where X and ∂X are disjoint finite subsets of the
Cartesian grid hZd of scale h > 0, devoted to approximating Ω and ∂Ω. By convention, if needed,
U is extended by +∞ outside of its domain so as to implement outflow boundary conditions. The
eikonal Equation (3) is thus discretized in the form

∀p ∈ X, HU(p) = 1, ∀p ∈ ∂X, U(p) = σ(p). (17)

To be more specific, our implementation requires the discretization domain X∪∂X to be box shaped.
It also allows for various types of periodic boundary conditions, devoted to e.g. the commonly used
manifolds R2 × S1 and R3 × S2, and for axis-dependent grid scales, such as a physical scale and
an angular scale in the previous case. See Section D for more detail on the discretization grid
conventions.

Before turning to specific models, we formally define the properties of monotony and causality,
already mentioned in the introduction Section 1.3. These properties enable solving the system (17)
in a single pass using the fast marching algorithm, see Section 3.1.

Definition 2.1. A numerical scheme on a finite set Z is a map H : Z × R× RZ → R. It is said

• Monotone iff H is non-decreasing with respect to the second and (each of the) third variables.

• Causal iff H only depends on the positive part of the third variable(s).

One denotes for any U : Z → R and any p ∈ Z

HU(p) := H
(
p, U(p), (U(p)− U(q))q∈Z

)
.

55

Jean-Marie Mirebeau, Jorg Portegies

For notations to match between Definition 2.1 and (17), one must set Z := X ∪ ∂X, and define
HU(p) := U(p) for all p ∈ ∂X. By design, the properties of monotony and causality are obeyed by
any numerical scheme obtained by inserting the upwind finite differences (15) in an expression of the
form (14), namely

HU(p) := h−2 max
1≤k≤K

(∑
1≤i≤I

αik max
{

0, U(p)− U(p− hėik)
}2

(18)

+
∑

1≤j≤J

βjk max
{

0, U(p)− U(p− ḣjk), U(p)− U(p + ḣjk)
}2
)
.

2.1 Dijkstra’s Algorithm

We show that, with a special choice of parameters, our discretization scheme (17) reduces to the
classical problem of finding shortest paths on a graph with non-negative edge lengths. In addition,
the fast marching algorithm reduces to Dijkstra’s method in that case. Indeed, assume that I = 1
and J = 0, while K ≥ 1 remains arbitrary. Then HU(p) = 1 rewrites as

max
1≤k≤K

(
U(p)− U(p− hėk)

lk(p)

)2

+

= 1, equivalently U(p) = min
1≤k≤K

lk(p) + U(p− hėk).

We denoted lk := 1/
√
α1k and ėk := ė1k, which both (sometimes implicitly) depend on the current

point p. Almost any optimal control problem can be addressed with Dijkstra’s algorithm, by using
sufficiently wide stencils. This even includes problems involving curvature or torsion dependent
energies [59]. We advocate however for more clever designs of the weights and offsets, as discussed
below for several metric structures of interest, so as to improve the accuracy of the numerical results.

2.2 Isotropic Metrics

We recall in this subsection the Eulerian discretization of isotropic eikonal equations, which dates
back to [51]. As discussed in the general introduction, isotropic metrics are (by definition) locally
proportional to the Euclidean norm ‖ · ‖ on the ambient space E := Rd: one has Fp(ṗ) = c(p)‖ṗ‖,
for any point p ∈ Ω and any vector ṗ ∈ E, where c : Ω →]0,∞[is a cost function provided by the
user. The dual metric reads F∗p(p̂) = c(p)−1‖p̂‖, for any co-vector p̂ ∈ E∗.

The Hamiltonian is representable exactly in the form (14), using only d scalar products (I = 0,
J = d, K = 1). Denoting by ėi = (0, · · · , 0, 1, 0, · · · , 0) the unit vector directed along the i-th
coordinate axis, for any 1 ≤ i ≤ d, one has indeed

Hp(p̂) = c(p)−2‖p̂‖2 = c(p)−2
∑

1≤i≤d

〈p̂, ėi〉2. (19)

Note that, in this special case, the offsets (ėi)
d
i=1 do not depend on the current base point p ∈ Ω. For

completeness, we write the full form of the discretization scheme, specializing (18) and recovering [51].
For any U : X ∪ ∂X → R and any grid point p ∈ X

HU(p) = (c(p)h)−2
∑

1≤i≤d

max{0, U(p)− U(p− hėi), U(p)− U(p + hėi)}2. (20)

Several numerical schemes often exist for discretizing a given eikonal equation. Substituting 〈p, ėi〉2 =
〈p, ėi〉2− + 〈p, ėi〉2+ in (19) yields for instance the alternative discretization [56]

H̃U(p) = (c(p)h)−2
∑

1≤i≤d

∑
τ∈{−1,1}

max{0, U(p)− U(p− τhėi)}2. (21)

56

Hamiltonian Fast Marching: A Numerical Solver for Anisotropic and Non-Holonomic Eikonal PDEs

Figure 4: For a given positive definite tensor D, we display the unit ball {ṗ; ‖ṗ‖D−1 ≤ 1} and the collection of offsets
(ėi)1≤i≤d′ appearing in Proposition 2.2. Left: several examples in dimension two. Right: a three dimensional case.

According to [56] this scheme is more diffusive than (20) near the cut locus (the points of non-
differentiability of the distance map). However it has the advantage of being differentiable with
respect to the entries of the discrete map U , which is welcome if the eikonal PDE solution is part of
a larger optimization problem, see Section 4.2.

Diagonal metrics are an elementary generalization of isotropic metrics, in which the propagation
cost is possibly distinct along each coordinate axis. The metric, and dual metric, read

Fp(ṗ) =

√∑
1≤i≤d

ci(p)2〈ėi, ṗ〉2, F∗p(p̂) =

√∑
1≤i≤d

ci(p)−2〈p̂, ėi〉2. (22)

Thus Hp(p̂) := F∗p(p̂)2 naturally has the required form (14), with again I = 0, J = d, K = 1.

2.3 Riemannian Metrics, and Sub-Riemannian Approximations

Riemannian metrics are the most common class of non-isotropic metrics. They are determined by
a field M : Ω → S++(E) of positive definite tensors, and take the form Fp(ṗ) := ‖ṗ‖M(p), where

we recall ‖ṗ‖M :=
√
〈M ṗ, ṗ〉. In differential geometry, the natural distance on a sub-manifold of

Rn can be described by a Riemannian metric on a parametrization domain. In image segmentation,
the Riemannian tensors may stem naturally from the data [25], or be creatively designed based on
some local image analysis [6]. In order to discretize Riemannian eikonal equations, we introduce an
adequate decomposition of positive definite tensors. The condition number of D ∈ S++(E), where
S++(E) denotes the set of positive definite tensors, is defined by

Cond(D) :=
√
‖D‖‖D−1‖. (23)

Proposition 2.2. Let D ∈ S++(E), where E := Rd, and let d′ := d(d + 1)/2. Then there exists
non-negative weights αi ≥ 0 and integer offsets ėi ∈ Zd, where 1 ≤ i ≤ d′, such that

D =
∑

1≤i≤d′
αi ėi ⊗ ėi. (24)

Furthermore, this decomposition can be chosen such that ‖ėi‖ ≤ Cond(D)α, for all 1 ≤ i ≤ d′, where
α := d− 1. In dimension d = 3, one has the improved estimate α = 1.

We assume in the following that the decomposition (24) is the one provided by Voronoi’s first
reduction of the quadratic form ṗ 7→ 〈ṗ, Dṗ〉, which enjoys these properties.

We refer to [39] for the proof of Proposition 2.2, and to [54] for more background on Voronoi’s
theory and the field of additive lattice geometry. Our numerical codes devoted to Riemannian metrics

57

Jean-Marie Mirebeau, Jorg Portegies

do compute the tensor decomposition (24) at each gridpoint, using a simple and efficient algorithm
due to Selling [55], see Appendix B. This algorithm applies in dimension d ∈ {2, 3} only, but we
hope to address the case d ∈ {4, 5} in the future using other techniques. Our discretization scheme
directly involves the offsets (ei)

d′
i=1, hence their norm should be as small as possible. The chosen

construction is proved in [38] to be optimal in this regard, in dimension d = 2, and sharp worst and
average case estimates of the stencil radius are also established. The tensor decomposition (24) can
be used to discretize PDEs other than eikonal equations, such as anisotropic diffusion [23].

Proposition 2.2 yields an exact representation of Riemannian Hamiltonians in the desired form (14),
using d′ := d(d+ 1)/2 scalar products (I = 0, J = d′, K = 1). Indeed, for any point p ∈ Ω and any
co-vector p̂ ∈ E∗, one has denoting by D(p) :=M(p)−1 the inverse of the Riemannian metric tensor

Hp(p̂) = ‖p̂‖2
D(p) = 〈p̂, D(p)p̂〉 =

∑
1≤i≤d′

αi(p) 〈p̂, ėi〉2. (25)

The weights αi(p) ≥ 0 and the offsets ėi = ėi(p) ∈ Zd are those appearing in the decomposition (24)
of D(p). Specializing (18) yields

HU(p) =
∑

1≤i≤d′
αi(p) max{0, U(p)− U(p− hėi), U(p)− U(p + hėi)}2. (26)

In comparison with the classical discretization (20) of isotropic eikonal equations, the offsets are point
dependent: ei = ei(p), and are a bit more numerous: d′ instead of d. Interestingly, if the Riemannian
metric tensor is proportional to the identity matrix, M(p) = c(p)2 Id at some point p ∈ Ω, then
one can show that (25) reduces to the previous numerical scheme (20) (in particular d′ − d of the
coefficients αi(p) vanish, while the others are equal to c(p)−2). The offsets (ei)

d′
i=1, introduced in

Proposition 2.2 and used in our numerical scheme, are illustrated in Figure 4 for various two and
three dimensional tensors.

Sub-Riemannian metrics can be regarded as degenerate Riemannian metrics, which metric tensors
have some infinite eigenvalues. The inverse tensor D : Ω → S+(E∗) is well defined, positive semi-
definite, but rank deficient. They define non-holonomic control models, in the sense that, at some
points in space p ∈ Ω, some directions of motion ṗ ∈ E are forbidden, namely those outside of
the span of D(p). Proper sub-Riemannian metrics should also obey a local controllability property,
expressed in terms of commutators of vector fields, which is out of the scope of this paper, see [42].
The HFM library addresses sub-Riemannian metrics using a relaxation approach, involving a family
F ε of Riemannian metrics which tensors Mε explode as some parameter ε → 0. This technique is
viable numerically thanks to the good behavior of our numerical scheme with strongly anisotropic
metrics. In practice, tensors of condition number Cond(Mε) ≈ 10 offer a good compromise between
(a) the sharpness of the sub-Riemannian relaxation, and (b) the size of the discretization stencils,
see Proposition 2.2.

The Reeds-Shepp car model (with reverse gear) [50] is perhaps the most notorious example
of a sub-Riemannian metric, also appearing in Petitot’s description of the visual cortex V1 [47].
This model is posed on the manifold M := R2 × S1 of positions and orientations, and is described
here for a positive relaxation parameter ε > 0. For any point (x, θ) ∈ M and any tangent vector
(ẋ, θ̇) ∈ T(x,θ)M = R2 × R we define following [52]

F ε(x,θ)(ẋ, θ̇)2 = ‖(ẋ, θ̇)‖2
Mε(x,θ) := c(x, θ)2

(
〈n(θ), ẋ〉2 + ε−2〈n(θ)⊥, ẋ〉2 + (ξθ̇)2

)
, (27)

where c : Ω →]0,∞[is a given cost function, and ξ > 0 is a parameter homogeneous to a radius of
curvature. We denoted by n(θ) := (cos θ, sin θ) the unit vector of orientation θ ∈ S1, and by n(θ)⊥

the clockwise orthogonal vector. Lateral physical motions, in the direction of n(θ)⊥, see their cost

58

Hamiltonian Fast Marching: A Numerical Solver for Anisotropic and Non-Holonomic Eikonal PDEs

strongly penalized by the ε−2 factor in (27), and are completely excluded in the limit sub-Riemannian
model for which ε = 0. Our software also implements the higher dimensional generalization of this
model on R3×S2, first considered in [22], as well as a “dual” variant introduced in [40] which penalizes
non-planarity (akin to a torsion penalization) instead of curvature.

We can make explicit the tensor field Mε : R2 × S1 → S++(R3) such that F ε(x,θ)(ẋ, θ̇) =

‖(ẋ, θ̇)‖Mε(x,θ), for all (x, θ) ∈ R2 × S1. The matrix Mε(x, θ) is block-diagonal with structure
(2× 2, 1× 1), and reads

Mε(x, θ) = c(x, θ)2

 n(θ)⊗ n(θ)
+ ε−2 n(θ)⊥ ⊗ n(θ)⊥

ξ2

 .

The eigenvectors are (n(θ), 0), (n(θ)⊥, 0), and (0, 1), with corresponding eigenvalues c(x, θ)2(1,
ε−2, ξ2). Computing the inverse tensors Dε(x, θ) := Mε(x, θ)

−1, we obtain the following expres-
sion of the Hamiltonian: for any co-vector (x̂, θ̂) ∈ T ∗(x,θ)M

Hε
(x,θ)(x̂, θ̂) = ‖(x̂, θ̂)‖2

Dε(x,θ) := c(x, θ)−2
(
〈x̂,n(θ)〉2 + ε2〈x̂,n(θ)⊥〉2 + (θ̂/ξ)2

)
. (28)

From this point, the HFM library applies the previous Riemannian discretization strategy (25),
with a positive relaxation parameter. In practice, choosing ε := 0.1 yields good results. Note that the
matrix Dε(x,θ) of the sub-Riemannian Hamiltonian is rank deficient when ε = 0, hence Proposition 2.2
is not directly applicable to the limit model.

2.4 Curvature Penalized Models

This section is devoted to the computation of paths globally minimizing a curvature dependent
energy, following [39], which is one of the main novelties brought by the HFM library. For that
purpose, the curvature dependent energy of a planar path is reformulated as a the length of a lifted
path in the three dimensional domain M := R2 × S1, defined with respect to a singular metric
F : TM→ [0,∞], see Section 1.2. Said otherwise, the introduction of a second order path derivative
in the cost function comes at the price of (i) an extra dimension S1, and (ii) a strongly (formally
infinitely) anisotropic metric F . This approach shares many similarities with the sub-Riemannian
Reeds-Shepp model (27), the main difference being that the models considered in this section lack
the ability to shift into reverse gear. We describe below the computation of the dual metric, and its
approximation in the form (14) which is required for our discretization strategy.

The dual metric F∗ to the models of interest is described in (8) as the solution to a one dimensional
optimization problem. More precisely, one has

F∗(x,θ)(x̂, θ̂) = c(x, θ)−1f(x̂, θ̂),

where x̂ := 〈x̂,n(θ)〉 ∈ R, and where f : R2 → [0,∞[is defined as the following maximum

f(x̂, θ̂) := sup
θ̇∈R

x̂+ θ̂θ̇

C(θ̇)
, extremal when θ̂C(θ̇) = (x̂+ θ̂θ̇)C ′(θ̇). (29)

We specialize, in the next equation, the optimality condition (29, right) for the curvature costs
CRS, CEM and CD associated to the Reeds-Shepp, Euler-Mumford, and (non-smooth) Dubins models,
see (10). After simplification this condition respectively reads

θ̇x̂ξ2 = θ̂, θ̇2ξ2θ̂ + 2θ̇ξ2x̂− θ̂ = 0, θ̇ξ ∈ {−1, 1, ∞}.

59

Jean-Marie Mirebeau, Jorg Portegies

Figure 5: Left: Applying Proposition 2.3 to a vector (black) with ε = 0.1, in dimension 3, yields the red offsets. Center:
Discretization stencil for the Reeds-Shepp model, red offsets obtained by applying Proposition 2.3 in dimension d = 2, blue
offsets related to the angular dimension. Right: Stencil for the Dubins model, red and blue offsets obtained by applying
Proposition 2.3 in dimension d = 3 to two distinct vectors.

Recall that ξ > 0 is a parameter, homogenous to a radius of curvature, which modulates the intensity
of curvature penalization. Solving for θ̇, and inserting the optimal value in (29, left), one obtains the
following expression of f(x̂, θ̂) respectively√

x̂2
+ + (θ̂/ξ)2, x̂+

√
x̂2 + (θ̂/ξ)2, max{0, x̂+ θ̂/ξ, x̂− θ̂/ξ} (30)

We refer to Appendix A for the details of the computations, and to [39] for a different proof.

Let us focus on the case (30, left) of the Reeds-Shepp forward model, which squared dual metric
thus reads

HRS
(x,θ)(x̂, θ̂) = c(x, θ)−2

(
〈x̂,n(θ)〉2+ + (θ̂/ξ)2

)
. (31)

The main difference with the classical Reeds-Shepp model (with reverse gear), which Hamiltonian
is obtained by setting ε = 0 in (28), is the positive part in the physical contribution 〈x̂,n(θ)〉2+ to

the Hamiltonian (as opposed to the angular contribution (θ̂/ξ)2). This difference accounts for the
lack of reverse gear in the present model. The discretization of this term is addressed in the next
proposition, proved in [39], which introduces (similarly to the reversible case) a relaxation parameter
ε > 0. We denote by Pn the orthogonal projection onto the hyperplane orthogonal to a unit vector
n

Pn := Id−n⊗ n.

Proposition 2.3. Let n ∈ E := Rd and let ε > 0. Consider non-negative weights and offsets
(αi, ėi)

I
i=1 ∈ (R+ × E)I , obtained e.g. by Proposition 2.2, such that for all x̂ ∈ E∗ one has

〈x̂,n〉2 + ε2‖Pn x̂‖2 =
∑

1≤i≤I

αi〈x̂, ėi〉2.

Assume that 〈n, ėi〉 ≥ 0 (otherwise replace ėi with its opposite), for all 1 ≤ i ≤ I. Then

〈x̂,n〉2+ ≤
∑

1≤i≤I

αi〈x̂, ėi〉2+ ≤ 〈x̂,n〉2+ + ε2‖Pn x̂‖2.

The offsets (ei) of corresponding to Proposition 2.3, as well as to the Reeds-Shepp and Dubins
model discussed below, are illustrated in Figure 5.

Denote by αεi (θ) and eεi (θ) the weights and offsets obtained by applying Proposition 2.3 to the
vector n(θ) ∈ R2 and a suitably small ε > 0, where 1 ≤ i ≤ I and I = d′ = d(d+1)/2 = (2×3)/2 = 3,

60

Hamiltonian Fast Marching: A Numerical Solver for Anisotropic and Non-Holonomic Eikonal PDEs

see Proposition 2.2. Then we approximate the Hamiltonian (31) of the Reeds-Shepp forward model
in the form (14) with parameters I = 3, J = 1, K = 1, as follows

HRS
(x,θ)(x̂, θ̂) ≈ c(x, θ)−2

(∑
1≤i≤I

αεi (θ)〈x̂, ėεi (θ)〉2+ + (θ̂/ξ)2
)
.

For completeness, we write the full discretization scheme for this model, specializing (18). Let h > 0
be the gridscale and let Mh := hZ2 × (hZ/2πZ). We assume here that 2π/h is an integer7, so that
the discretization of the periodic circle S1 makes sense. For any U : Mh → R and any (x, θ) ∈Mh

HRS
ε U(x, θ) :=(c(x, θ)h)−2

(∑
1≤i≤I

αεi (θ) max{0, U(x, θ)− U(x− hėεi (θ), θ)}2

+ ξ−2 max{0, U(x, θ)− U(x, θ − h), U(x, θ)− U(x, θ − h)}2
)
.

The Dubins Hamiltonian is discretized using a similar procedure. In view of (30, right) one has
indeed

HD
(x,θ)(x̂, θ̂) = c(x, θ)−2 max{(〈x̂,n(θ)〉+ θ̂/ξ)2

+, (〈x̂,n(θ)〉 − θ̂/ξ)2
+}. (32)

Apply Proposition 2.3 to the three dimensional vectors v+(θ) := (n(θ), ξ−1) and v−(θ) := (n(θ),−ξ−1),
and denote by αε+i(θ), α

ε
−i(θ), ėε+i(θ) and ėε−i(θ) the corresponding weights and offsets, where

1 ≤ i ≤ I and I = (3 × 4)/2 = 6. Then we approximate (32) in the form (14) with parame-
ters I = 6, J = 0, K = 2, as follows

HD
(x,θ)(x̂, θ̂) ≈ c(x, θ)−2 max

{ ∑
1≤i≤I

αε+i(θ) 〈p̂, ėε+i(θ)〉2+,
∑

1≤i≤I

αε−i(θ) 〈p̂, ėε−i(θ)〉2+
}
.

The final PDE discretization scheme is as usual obtained by specializing (18). The Euler-Mumford
elastica model is addressed using a similar procedure, for which we refer to [39] due to space con-
straints.

3 Implementation

In this section, we provide the implementation details for the Fast-Marching algorithm, used to
numerically solve our Eulerian and causal discretization (17) of the eikonal PDE. We strongly rely
on the specific form (14) of the Hamiltonian approximation. We also discuss geodesic backtracking,
and sensitivity analysis.

In order to keep notations simple, we assume that the Hamiltonian H of the model of interest is
representable in the form (14) with parameters J = 0 and K = 1, whereas I remains arbitrary. The
following arguments can be easily adapted to the general case where J and K are arbitrary as well.
For any discretization point p ∈ X, any co-vector p̂ ∈ E∗, and any discrete map U , the Hamiltonian
and finite differences scheme are thus assumed to read

Hp(p̂) =
∑

1≤i≤I

αi〈p̂, ėi〉2+, HU(p) := h−2
∑

1≤i≤I

αi (U(p)− U(p− hėi))
2
+ . (33)

Recall that a2
+ := max{0, a}2. The weights αi = αi(p) ≥ 0 and offsets ėi = ėi(p) ∈ Zd, where

1 ≤ i ≤ I, depend on the current point p ∈ X. Our objective is numerically solve the eikonal

7In the HFM software, two distinct scales hx and hθ are used, and the latter is specified via the integer nθ := 2π/hθ.

61

Jean-Marie Mirebeau, Jorg Portegies

equation (3). For that purpose, we rely on the fast marching algorithm to compute U : X ∪ ∂X →
]−∞,∞] obeying

∀p ∈ X, HU(p) = 1, ∀p ∈ ∂X, U(p) = σ(p), (34)

where X and ∂X are finite subsets of hZd, and where the boundary data σ : ∂X →] − ∞,∞] is
given. In the following, we denote by N := #(X t ∂X) the cardinality of the discrete domain.

3.1 Fast Marching

The fast marching algorithm is a generalization of Dijkstra’s algorithm [18] for the computation of
shortest paths on graphs. Said otherwise, it is a specialization of the dynamic programming principle.
The general structure is unchanged, see Algorithm 1, and in particular each point of the domain
X∪∂X is tagged as Accepted only once, after what the corresponding value of the computed solution
U is frozen. This algorithm is implemented in the function void HamiltonFastMarching<T>::Run()

of the provided source code, located in file:
HamiltonFastMarching-master/Headers/Base/HamiltonFastMarching.hxx

Algorithm 1 Fast marching

Pre-compute the reversed stencils (V [p])p∈X∪∂X , defined in (36).
Tag points of ∂X as Trial, and other points as Far.
Initialize U : X ∪ ∂X →]−∞,∞] to the value +∞ on X, and the boundary condition on ∂X.
While there remains Trial points.

Find a Trial point q minimizing U .
Tag q as Accepted, and call Post-process(q).
For each neighbor p ∈ V [q], either Far or Trial

If p is Far, then tag it as Trial, and call Pre-process(p).
Update U(p), taking into account the value U(q) of the last Accepted point.

The collection of points tagged as Trial can be regarded as a propagation front. Two additional
sub-routines, appearing as Pre-process(p) and Post-process(q) in Algorithm 1, and referred to as pre-
processing and post-processing, are called when a point enters and leaves the front respectively. By
default, some memory management is performed at these points, see Section3.1.2 and Section 3.1.3,
but additional tasks may optionally be plugged in as well. At the post-processing stage one may
for instance check for stopping criteria, or slightly alter the value U(p) before it is frozen using the
(formally) second order HAFMM numerical scheme [57].

3.1.1 Stencils and Reversed Stencils

Our algorithm uses point dependent, adaptive stencils, hence we need to cautiously determine the
dependency graph underlying the discretized problem (34). For that purpose, we introduce the
forward stencil V(p) ⊂ X ∪ ∂X, of an arbitrary interior point p ∈ X, and its counterpart the
reversed stencil V [q] ⊂ X, for all q ∈ X ∪∂X. The forward stencil V(p) at p ∈ X, collects all points
q ∈ X ∪ ∂X whose value U(q) is involved in the definition HU(p), see (33, right).

V(p) := {q = p− hėi(p); 1 ≤ i ≤ I, q is visible from p} ∩ (X ∪ ∂X), (35)

The intersection with X ∪∂X is meant to exclude all points q which fall outside of the (box shaped)
discrete domain. Outside of this domain, the unknown function U is by convention extended by +∞,
which amounts to implement outflow boundary conditions. The visibility constraint is a test ensuring

62

Hamiltonian Fast Marching: A Numerical Solver for Anisotropic and Non-Holonomic Eikonal PDEs

Valid obstacles Incorrect obstacles

Figure 6: Obstacles are specified to the HFM software as boolean images. They must be “water tight”: contiguous obstacle
voxels must share a full (d − 1)-dimensional face. Otherwise the numerical scheme will leak through, and the extracted
minimal paths may jump across walls.

that the segment [p,q] does not intersect any of the obstacles that may optionally be introduced
within the domain. This condition is required because our adaptive stencils are often 5 to 10 pixels
wide, hence they would otherwise jump over thin obstacles, such as walls in building maps which are
usually drawn 1 pixel wide. See Figure 6.

The reversed stencil V [q] ⊆ X at q ∈ X ∪ ∂X, is defined by inverting the stencil connectivity
graph

V [q] := {p ∈ X; q ∈ V(p)}. (36)

Thus V [q] collects all points p ∈ X such that HU(p) depends on U(q). Forward and reverse stencils
coincide in the classical discretization of isotropic fast marching (2.2), but differ in most other cases.

The numerical cost of constructing the stencils and the reversed stencils can be neglected in
models for which these sets are independent of the current point (e.g. isotropic metrics Section 2.2),
or depend only on a strict subset of its coordinates (e.g. the angular coordinate for curvature penalized
models Section 2.4), by exploiting redundancy as discussed in Section 3.1.3 below. In other cases (e.g.
Riemannian metrics Section2.3), the construction of the direct stencils V(p) has complexity8 O(I)
for each p ∈ X, thus O(NI) overall. Once this is done, the reversed stencils are computed by sorting
the pairs {(p,q); p ∈ X,q ∈ V(p)} according to their second element, which costs O(IN lnN).

Finally, let us mention that Equations (35) and (36) do not reflect our implementation entirely
faithfully, for two reasons. First, we actually store the offsets instead of the points, e.g. ėi(p) ∈ Zd
instead of p − hėi(p) in (35). Second, the visibility and out of domain tests are performed while
dynamic programming is running, and not during the initial stencil construction as suggested in (35).

3.1.2 Elementary Update

Consider a point p ∈ X tagged Trial, and which value U(p) must be updated with respect to
the Accepted points, as specified in the last line of Algorithm 1. In view of the Hamiltonian’s
expression (33), this means that the currently stored value U(p) must be replaced with the largest
solution λ ∈ R to the following univariate quadratic equation∑

i∈I

αi(p) (λ− U(qi))
2 = 1, where I := {1 ≤ i ≤ I; qi ∈ V(p), qi is Accepted}. (37)

The neighbor points qi := p−hėi(p), where 1 ≤ i ≤ I, are those appearing in the numerical scheme
HU(p) at p, see (33, right). Note that the index set I excludes points that are out of the domain
X ∪ ∂X, are not visible from p, or are tagged Trial or Far. One can show that, by construction of
the fast marching algorithm9, Equation (37) has two real roots, the smallest of which is a numerical

8 We rely on basis reduction techniques to compute the tensor decomposition of Proposition 2.2, see Appendix B.
Strictly speaking, their cost depends on the tensor condition number, but it grows so slowly that it can be regarded
as constant for the applications of interest, see [44] for a complexity analysis of similar methods.

9Using the fact that points are tagged as Accepted sequentially, in the order of increasing values of U .

63

Jean-Marie Mirebeau, Jorg Portegies

artifact, while the largest denoted λ∗ satisfies by construction λ∗ ≥ U(qi) for all i ∈ I, and defines
the updated value of U(p).

Some of our discretization schemes involve a rather large number of neighbors, for instance I =
12 for three dimensional Riemannian metrics, and I = 27 for the Euler-Mumford elastica model
(choosing K = 5 in [39]). The latter figure may increase if the user requests more accuracy, see the
discretization details in [39]. In order to maintain a O(1) complexity of the elementary update, we
cache for each Trial point p ∈ X the coefficients (a, b, c) of the second degree polynomial aλ2−2bλ+c
defined by (37). This cache is initialized as (0, 0,−1) when Pre-process(p) is called. It is increased
(component-wise) by αi(p) (1, U(qi), U(qi)

2) each time a new neighbor qi is Accepted. Finally, it is
deleted when Post-process(p) is called.

The fast marching algorithm, similarly to Dijkstra’s algorithm, must also maintain a queue of
all Trial points, sorted by increasing values of U . For each point p ∈ X t ∂X, queue maintenance
operations include the insertion of the new key (when p is first tagged as Trial), a local re-ordering
when the attached value U(p) is modified (at most I times), and eventually the key removal (when
p is tagged as Accepted). The overall complexity, using a heap based sorted data structure, is thus

O(IN lnN).

3.1.3 Memory Usage

The memory footprint of our algorithm is linear with respect to the number N of discretization points.
The proportionality constant does matter however, since the image resolution of e.g. dMRI medical
data is often huge. In addition, several applications introduce extra domain dimensions, accounting
for e.g. the orientation, grayscale, or radius of some tubular structure to be extracted [15, 46],
which multiplies the number of discretization points. For this reason, the HFM software implements
several memory optimizations, discussed in this paragraph. We use the O(·) notation10 to denote
space complexity, counted in bytes.

Our generalized fast marching solver uses wide stencils, which weights and offsets take significant
memory space if stored indiscriminately. By default11 we use weights αi ∈ R of “double” type, hence
occupying 8 bytes12, and offsets ėi ∈ Zd with “signed char” components, hence occupying d bytes,
where d is the domain dimension, and where 1 ≤ i ≤ I. The storage cost of the forward and the
reversed stencils is thus respectively

O(IN1(8 + d)) O(IN2d)

where N1 and N2 are the number of actually stored stencils. An extensive storage (N1 = N2 = N) of
the numerical scheme stencils thus costs O(I(8 + 2d)N), whereas the memory footprint of the input
speed function and of the output value function is O(2× 8N). For the Euler-Elastica model, which
uses quite large stencils (I = 27 and d = 3), the space complexity O(378N) of our numerical method
would thus vastly exceed the incompressible external cost O(16N) of input and output. Fortunately,
we have developed two data management strategies for stencil storage which make the former cost
negligible for this specific model, and severely limit it for others.

• Data sharing. The stencil offsets ėi(p) of some models only depend on a strict subset p of the
coordinates of the current point p ∈ X, e.g. none (p = ∅) for isotropic metrics Section 2.2, or
the angular coordinate only (p = θ where p = (x, θ)) for curvature penalized models Section 2.4
such as the Euler-Mumford elasticae. In addition, the weights are proportional to (the inverse

10This choice of notation is slightly abusive here, since there is no hidden proportionality constant.
11The C++ code is templated over these types.
12A Byte, the unit of computer memory capacity, consists of 8 bits.

64

Hamiltonian Fast Marching: A Numerical Solver for Anisotropic and Non-Holonomic Eikonal PDEs

square of) some user provided cost functions c(p, l), p ∈ Ω, 1 ≤ l ≤ L, where L is one or is a
small positive integer. In summary, the discretization stencil structure takes the form

ėi = ėi(p), αi = c(p, li(p))−2αi(p). (38)

We take advantage of this structure by storing only the offsets ėi(p) ∈ Zd, weights αi(p) ≥ 0 and
cost index li(p) ∈ J1, LK (omitted if L = 1) associated with the points of the lower dimensional
domain p ∈ X. We denoted J1, LK := [1, L]

⋂
N. Thus N1 = N2 = #(X)� N .

For instance, in the Euler-Mumford elastica model, N1 = N2 is the number of angular directions,
which is typically around 60. Thus the huge footprint O(378N) of extensive stencil storage
for this model, mentioned above, is with our strategy reduced to a negligible constant cost
O(378× 60).

• Recomputation. For a number of models, either Riemannian or involving generalized curvature
costs (11), the numerical scheme stencils lack redundancy, hence the previous data sharing
strategy is not applicable. We thus implement an alternative strategy for memory usage re-
duction, which is to only store the direct stencils V(p) of the points currently tagged as Trial.
Stencils must then be computed twice: (i) initially, so as to construct the reversed stencils V [p],
and (ii) when a point label changes from Far to Trial. The storage cost of the forward stencils
then becomes negligible, since N1 ≈ N1−1/d � N . The additional computational complexity
introduced by these recomputations is moderate - actually, it is dominated by the incompress-
ible cost of maintaining the priority queue of all Trial points. The reversed stencils V [p] still
must be stored all, thus N2 = N , but fortunately they use only a fraction of the memory space
of the forward ones (namely d/(8 + d) where typically d ∈ {2, 3}).
For the Euler-Mumford elastica model (I = 27 and d = 3), generalized in the sense of (11),
the cost of extensive stencil storage O(378N) is reduced with this recomputation strategy to

O(81N + 297N
2
3). In comparison, the cumulated cost of the input parameter fields ξ, κ, c :

X → R, and of the output, is O(32N).

Our algorithm also stores the coefficients of the second degree polynomials (37) associated with
the Trial points, in addition to the stencils, which incurs the memory cost O(4N + 24N1−1/d) with
the chosen implementation13. Finally, we chose to store the set I of active neighbors of each point,
defined in (37), which costs O(dln2 IeN), for use in geodesic backtracking and sensitivity analysis.

3.2 Geodesic Extraction

Geodesic backtracking is done by solving an ODE (5) involving the distance map, which is numerically
approximated in a preliminary step by solving the discretized eikonal PDE (34). Despite the apparent
simplicity of numerical ODE integration, this task deserves caution. Naive implementations of ODE
geodesic backtracking indeed suffer from artifacts such as paths (i) interrupted nearby obstacles
before they reach the seed points, (ii) going past the seed points, or (iii) endlessly oscillating close to
singularities of the distance map. These difficulties are particularly marked when using metrics which
are (a) strongly inhomogeneous, (b) strongly anisotropic, leading to wide discretization stencils, and
(c) non-holonomic and/or non-locally controllable, often leading to discontinuous (in addition to
being non-differentiable) front arrival times.

The proposed software implements two robust numerical methods for geodesic backtracking. They
produce similar results in practice, but are based on distinct principles that we discuss below. These

13The three floating point coefficients of this quadratic polynomial are stored in an array sized according to the
number ≈ N1− 1

d of trial points. A table of unsigned integers stores, for each point p ∈ X ∪ ∂X, the corresponding
array index if p is tagged Trial, or a dummy value otherwise.

65

Jean-Marie Mirebeau, Jorg Portegies

methods presently lack a proper convergence analysis, in particular for non-holonomic models, hence
they may be regarded as partly heuristic.

3.2.1 Modified Euler Method using Upwind Gradients

Our first approach to geodesic backtracking is to solve the ODE (5) using an explicit second order
integration scheme, and an upwind approximation of the geodesic flow direction. More precisely,
consider the differential equation

γ̇(t) = V (γ(t)), where V (p) := dF∗p(du(p)), (39)

for all p ∈ Ω. We use the integration scheme14 γ(t+ δ) ≈ γ(t) + δV
(
γ(t) + 1

2
δV (γ(t))

)
, often called

the modified Euler method, the midpoint rule, or the Runge-Kutta-2 method. The time-step δ > 0
is locally adjusted so that |δV (γ(t))| equals a fraction of the gridscale, by default h/4. The stopping
criterion involves, for robustness, a safety radius around the seed points.

The main difficulty for implementing this method lies in the (approximate) evaluation of the
geodesic flow direction V (p). For instance, naively approximating the gradient du(p) using centered
finite differences often yields unstable results. Instead, we use an upwind approximation of V (p),
derived from the numerical scheme, namely

V (p) ≈ Ṽ (p) := h−1
∑

1≤i≤I

αi (U(p)− U(p− hėi))+ ėi. (40)

Let us formally justify this expression. On the one hand one has

dHp(du(p)) = 2F∗p(du(p)) dF∗p(du(p)) = 2V (p),

where we used first the identity Hp(p̂) = F∗p(p̂)2, and second the eikonal equation F∗p(du(p)) = 1.
One obtains on the other hand

dHp(p̂) = 2
∑

1≤i≤I

αi〈p̂, ėi〉+ėi, dpH(du(p)) ≈ 2h−1
∑

1≤i≤I

αi (u(p)− u(p− hėi))+ ėi,

where we used (left) the Hamiltonian expression Hp(p̂) =
∑I

i=1 αi〈p̂, ėi〉2+, and (right) a first order
Taylor expansion. Substituting the PDE solution u with its numerical approximation U , one ob-
tains (40) as announced. It is well known that the geodesics on a manifold move at constant speed,
a property which in our context reads Fp(V (p)) = 1 (under some differentiability assumptions),
and can be derived from (39, right) and Legendre-Fenchel duality. The following proposition, never
published elsewhere, further motivates (40) by establishing a discrete counterpart of this property.
It is stated in more formal and abstract terms, and proved, in Appendix C.

Proposition 3.1. Under the assumptions of our discretization, one has Fp(Ṽ (p)) ≤ 1 for any
p ∈ X. In addition, equality holds if U coincides with an affine function over the stencil {p} ∪ {p−
hėi}1≤i≤I .

The HFM library sets Ṽ (p) = 0 on boundary points p ∈ ∂X, and extends Ṽ to the continuous do-
main Ω ⊃ X ∪∂X by bilinear interpolation. Outlier points, inside walls or attached to inconsistently
large15 values of U , are for robustness excluded from the interpolation.

14The ODE is in fact solved backwards in time, but we omit this detail here so as to alleviate notations.
15Such inconsistent values typically arise when the front arrival times u are discontinuous in the domain interior Ω,

with e.g. the Dubins model.

66

Hamiltonian Fast Marching: A Numerical Solver for Anisotropic and Non-Holonomic Eikonal PDEs

3.2.2 Diffuse Geodesics and Reverse Algorithmic Differentiation

Our second backtracking method is based on the following principle. Consider a smooth field ζ :
Ω→ R, that should be regarded as a perturbation of the front speed. Define uε : Ω→]−∞,∞], for
any sufficiently small ε ∈ R, by

∀p ∈ Ω, F∗p(duε(p)) = 1 + εξ(p), ∀p ∈ ∂Ω, uε(p) = σ(p).

Note that u0 = u is the solution to the original unperturbed shorted path problem. Under suitable
assumptions, the front arrival time uε(p∗) at a point of interest p∗ ∈ Ω can be differentiated with
respect to the parameter ε, and denoting by γ∗ the minimal geodesic associated with u0(p∗) one has
at first order

uε(p∗) = u0(p∗) + ε

∫ 1

0

Fγ∗(t)(γ̇∗(t)) ξ(γ∗(t)) dt+ o(ε).

This derivation follows for the expression of the distance dF as an infimum on the set of paths (1),
and from the envelope theorem, see [5]. Our second geodesic backtracking method takes advantage
of a discrete counterpart of this property. Consider the discrete solution Uε : X t ∂X →]−∞,∞] to

∀p ∈ X, HUε(p) = (1 + εξ(p))2, ∀p ∈ ∂X, Uε(p) = σ(p).

Generically, Uε is differentiable with respect to the parameter ε, and one has at first order

Uε(p∗) = U(p∗) + ε
∑
q∈X

ρ(q)ξ(q) + o(ε),

for some coefficients ρ : X → R. The assumption underlying our second backtracking method is that
the bulk of the coefficients ρ is supported along the minimal geodesic γ∗ of the continuous problem.
We use sensitivity analysis by reverse accumulation to compute ρ, see Section 3.3. This diffuse
support is summarized into a unique path using an averaging procedure. However, path extraction
is restarted if the support of ρ is spread over an excessively large domain. This happens if e.g.
there is no uniqueness of the minimal geodesic, in which case the support of ρ is split into several
components, which is detected using an ad-hoc criterion, see Figure 11 (right). The computation of
the weights ρ is described in the following subsection.

3.3 Sensitivity Analysis

Sensitivity analysis is a generic name for (semi-)automatic (meta-)programming techniques aimed
at computing the first order differential of a function defined algorithmically as the composition of
several elementary functions. This approach combines the formal differentiation of the elementary
functions, with the numerical propagation of the so-called sensitivities, using the composition rules
for derivatives. Denoting by F : Rm → Rn and p ∈ Rm the given map and point of interest, the
objective is to evaluate the Jacobian matrix dFp of size m × n. Interestingly, sensitivity analysis
comes in two flavors, in which time and space complexities differ. They are referred to as forward
and reverse, and are mostly adequate when m� n and when m� n respectively.

The HFM library implements sensitivity analysis “by hand”, since this is particularly simple and
efficient for the addressed problem, instead of relying on meta-programming automatic differentiation
techniques [26]. Our approach allows enhancements in performance and convenience, but also has a
few limitations: differentiation is only possible with respect to certain parameters, and some variants
of the numerical scheme are unsupported (i.e. slightly inexact results will be obtained with the second
order accurate method, or using time-dependent parameter fields).

67

Jean-Marie Mirebeau, Jorg Portegies

To our knowledge, previous literature only considered forward differentiation of isotropic fast
marching [5]. Our contribution is thus two fold: we generalize these previous works to anisotropic
fast marching, and we implement reverse sensitivity analysis for the first time in this context. The
algorithms presented in this subsection are used in [41] to solve two player zero-sum games, where
the first player places a surveillance system and the second player wants to visit a target undetected.

3.3.1 Inputs and Outputs of the Differentiation Methods

The Hamiltonian appearing in the eikonal equation is represented internally in the HFM software
in a sum of squares form (33), involving weights and offsets, denoted by αi(p) ≥ 0 and ėi(p) ∈ Zd,
where p ∈ X and 1 ≤ i ≤ I. Our differentiation techniques assume that the offsets remain constant,
but that the weights are proportional to (the inverse square of) one or several16 user provided cost
functions c(p, l), 1 ≤ l ≤ L, which themselves are subject to a linear perturbation εξ(p, l). See the
discussion (38) on the shared stencil data structure. We also assume a linear perturbation εζ(q) of
the boundary conditions σ(q), q ∈ ∂X. Summarizing, the perturbed cost functions and boundary
conditions read

cε(p, l) := c(p, l) + εξ(p, l), σε(q) := σ(q) + εζ(q), (41)

for all p ∈ X, all q ∈ ∂X, and all 1 ≤ l ≤ L. Following (38), the weights of the perturbed
Hamiltonian read αεi (p) = αi(p)cε(p, li(p))−2. We assume that the discretized problem solution Uε
is indeed differentiable at the parameter ε = 0.

Forward mode. The procedure input consists of two fields ξ : X × J1, LK → R and ζ : ∂X → R.
The output is the first order derivative µ = U ′0, which obeys for all p ∈ X ∪ ∂X

Uε(p) = U0(p) + εµ(p) + o(ε).

Reverse mode. The procedure input is a point p∗ ∈ X ∪ ∂X, and the output consists of two
families of weights ρ : X × J1, LK → R and π : ∂X → R such that one has at first order, for any
perturbation fields ξ and ζ

Uε(p∗) = U0(p∗) + ε

(∑
p∈X, l∈J1,LK

ρ(p, l)ξ(p, l) +
∑
q∈∂X

π(q)ζ(q)

)
+ o(ε).

One may also request the Taylor expansion of a weighted sum of front arrival times,
∑

p∈X∪∂X φ(p)Uε(p)
for some given φ : X ∪ ∂X → R, instead of a single value Uε(p∗).

3.3.2 Algorithmic Strategy

In order to describe the application of sensitivity analysis to discretized eikonal equations, we intro-
duce slightly modified notations. The perturbed Hamiltonian is rewritten as

Hε
p(ṗ) ≈ h−2

∑
q∈V(p)

exp (−2αε(p,q)) 〈p− q, ṗ〉2+, (42)

where ε ∈ R is a small parameter. This description is made equivalent to (33, left) by introducing
the discretization stencils V(p) := {p − hėi(p); 1 ≤ i ≤ I} (see (35) for boundary conditions and

16L = 1 for isotropic or curvature penalized models, but L = d for diagonal models, see Section 2.2.

68

Hamiltonian Fast Marching: A Numerical Solver for Anisotropic and Non-Holonomic Eikonal PDEs

obstacles), and defining αε(p,q) := −1
2

lnαεi (p) when q = p− hėi(p). Denote by Uε : X ∪ ∂X → R
the unique solution to the perturbed and discretized eikonal PDE

∀p ∈ X, h−2
∑

q∈V(p)

exp(−2αε(p,q))(Uε(p)− Uε(q))2
+ = 1, ∀p ∈ ∂X, Uε(p) = σε(p). (43)

Our objective is to relate the first order Taylor expansions of the boundary conditions σε, weights
αε, and solution Uε. Before we begin, let us mention that the simplified numerical scheme (33)
considered in this section makes Uε differentiable, but that it is only almost everywhere differentiable
in the general case (18). That is because a ∈ R 7→ max{0, a}2 is everywhere differentiable, but not
(a, b) ∈ R2 → max{a, b}2.

For all p ∈ ∂X, the boundary condition (43, right) yields the simple relation

U ′ε(p) = σ′ε(p),

where the prime denotes differentiation with respect to the parameter ε. For interior points p ∈ X,
we obtain differentiating (43, left) that∑

q∈V(p)

ωε(p,q)
(
U ′ε(p)− U ′ε(q)− (Uε(p)− Uε(q))α′ε(p,q)

)
= 0,

where ωε(p,q) := exp(−2αε(p,q))(Uε(p) − Uε(q))+. Note, crucially, that ωε(p,q) = 0 whenever
Uε(p) ≤ Uε(q). This property directly comes from the causality of the PDE discretization (43, left),
i.e. the fact that it only involves positive parts of finite differences. Thanks to this, U ′ε(p) can be
expressed in terms of those U ′ε(q) associated to points q ∈ V(p) reached by the front propagation
strictly earlier than p, in other words such that Uε(p) > Uε(q). More precisely one has

U ′ε(p) =
∑

q∈V(p)

ωε(p,q) (U ′ε(q) + (Uε(p)− Uε(q))α′ε(p,q)) , (44)

where ωε(p,q) := ωε(p,q)/
∑

q∈V(p) ωε(p,q), for any p ∈ X and any q ∈ V(p).

Let us reformulate this procedure in linear algebra terms. Let µ := (U ′0(pn))Nn=1 collect the
derivatives of the solution, where the points of X∪∂X are sorted by increasing values U0(p1) ≤ · · · ≤
U0(pN). We regard the perturbations ξ and ζ, of the cost functions and the boundary conditions, as
column vectors. Thus ζ collects the values (σ′0(p))p∈∂X , and ξ is linearly related to (α′0(p,q))p∈Xq∈V(p).

Therefore (44) at the parameter ε = 0 can be rewritten in the form

µ = Lµ+ Aξ +Bζ,

where L is a strictly upper triangular matrix (in view of (44) and recalling that ωε(p,q) > 0 requires
Uε(p) > Uε(q)), and A and B are known matrices. Forward automatic differentiation computes
µ := (Id−L)−1(Aξ +Bζ), given ξ and ζ. Reverse automatic differentiation is the adjoint procedure,
computing ρ := φ(Id−L)−1A and π := φ(Id−L)−1B, given φ : X ∪ ∂X → R. The triangular
structure of Id−L is of course leveraged for fast inversion, by recursive substitution, and actually
the matrices A, B and L are never explicitly assembled by the HFM software.

4 Numerical Experiments

This section is devoted to numerical experiments, which are reproducible using the series of notebooks
that come alongside this publication. Part of these are Jupyter notebooks written in the Python R©

69

Jean-Marie Mirebeau, Jorg Portegies

language17, while others are designed for the Mathematica R© software18. The original source code19

also features additional examples.
We illustrate the different metric models introduced in Section 2, such as isotropic, Riemannian,

or non-holonomic metrics, as well as the algorithmic techniques presented in Section 3, such as
forward and reverse automatic differentiation.

The numerical examples discussed in this section were designed with the intent to illustrate
the functionalities of the HFM library. In contrast, Section 5 shifts the focus from algorithmics to
modeling, and involves examples and test cases coming from applications.

4.1 Base Functionalities, with an Isotropic Metric

This paragraph serves as an introduction to using the HFM library, on a problem involving a ba-
sic isotropic metric, and that could thus be addressed using a variety of other software packages.
Features more specific to our software are considered in the next subsections. We address here a
two-dimensional shortest path problem involving an isotropic metric on a domain Ω ⊂ R2, with the
following value function

u(p) := min
γ(1)=p
γ(0)∈∂Ω

σ(γ(0)) +

∫ 1

0

c(γ(t))‖γ′(t)‖ dt. (45)

Such optimization problems are specified to the HFM library using a dictionary, which entries are
in this paper denoted by key:value. The exact syntax for constructing such an object depends
in practice on the language used for interfacing, e.g. Python, Matlab R© or Mathematica R©. This
dictionary is then fed to the adequate executable, for instance MatlabHFM Isotropic2, where the
prefix denotes the external interface (“Matlab” could be replaced with “Python”, “Mathematica”,
or “File” for the the stand-alone file based executable), and the suffix denotes the metric model, here
an isotropic metric on a two-dimensional domain, which corresponds to (45).

The next step is to define a Cartesian grid, in our example of size 2n× n where n = 100, and a
box domain Ω0 = [−1, 1]× [0, 1], enclosing the PDE domain Ω, and containing the seed points where
finite boundary conditions are imposed, and possibly some obstacles. For that purpose we provide the
keys dims:(2n, n), origin:(−1, 0) (the bottom left corner), and gridscale:h, where h := 1/n. A few
adjustments to this construction might unfortunately be necessary, depending on the visualization
software, see the technical discussion in Appendix D.

We next introduce some starting points for the front propagation, by e.g. the key pair seeds:[(−0.5, 0.3),
(0.5, 0.8)], and some boundary conditions at these points, e.g. seedValues:[0,0.5]. We also need to
define the cost function, e.g. the constant cost:1, and opt in or out of the second order enhancement
to the fast marching method, e.g. sndOrder:1. At this point, we have gathered enough data to
run the fast marching algorithm, but the HFM library must also be instructed what to export in
return. We here choose to request minimal geodesics towards a family of points, e.g. tips:[(0,0.6),(-
0.9,0.5),(0.8,0.8)], as well as the numerical solution U to the eikonal equation and the upwind geodesic
flow vector field (40), as specified by the key pairs exportValues:1 and exportGeodesicFlow:1.
The outputs of this program are illustrated in Figure 7.

In order to enrich the problem, we may introduce some obstacles in the domain and a position
dependent cost function. They are specified using the key pairs walls:arrBool and cost:arrFloat
(replacing the former cost:1), where arrBool and arrFloat are arrays of boolean and of positive
floating point values, sized according to the discretization grid. See Figure 8.

17github.com/Mirebeau/HFM_Python_Notebooks
18github.com/Mirebeau/HFM_Mathematica_Notebooks
19github.com/Mirebeau/HamiltonFastMarching

70

github.com/Mirebeau/HFM_Python_Notebooks
github.com/Mirebeau/HFM_Mathematica_Notebooks
github.com/Mirebeau/HamiltonFastMarching

Hamiltonian Fast Marching: A Numerical Solver for Anisotropic and Non-Holonomic Eikonal PDEs

Figure 7: Left: distance map u(p) := min{‖p−p1‖, σ2+‖p−p2‖}, where p1 = (−0.5, 0.3), p2 = (0.5, 0.8) and σ2 = 0.5.
The function u was numerically computed using isotropic fast marching with second order enhancement. Center: geodesic
flow V (x) := ∇u(x) obtained numerically using (40). Right: verification that |∇V (x)| = 1, at all points of differentiability.

Figure 8: Left: level sets of a non-constant cost function. Center: obstacles introduced in the domain. Right: level sets of
the distance map from two seed points, obtained using isotropic fast marching.

Figure 9: Examples of stopping criteria. Left: front propagation is stopped when all geodesics tips are accepted, which
is enough for backtracking. Center: Voronoi regions associated with two seeds. Right: the Euclidean length l(p), of the
minimal path from each point p ∈ Ω, is here computed simultaneously with the distance map u(p) and used as a stopping
criterion.

Figure 10: Distance map associated with, respectively: a time dependent cost function (left), a three dimensional isotropic
metric (center), or a diagonal metric (right).

The front propagation can be stopped early in many applications, for instance as soon as the
geodesic(s) of interest can be backtracked, saving substantial computation time: often up to 80% in
applications to tubular structure segmentation, see Section 4.5 . Fortunately, the single pass nature of
the fast marching algorithm makes it particularly simple to define and implement termination criteria.
Recall that the points of the discretization grid are successively “accepted”, and the corresponding
values frozen, in the order U(pσ(1)) ≤ · · · ≤ U(pσ(n)) of increasing values of the numerical solution
U . We may instruct the HFM library to stop the front propagation when all or any of a set of points
are accepted, which is enough for geodesic backtracking, using the keys stopWhenAllAccepted or

71

Jean-Marie Mirebeau, Jorg Portegies

stopWhenAnyAccepted respectively. See Figure 9 (left). One may also put a threshold on the
number of accepted points, or on the values of the solution U .

Several side products may be computed simultaneously while the fast marching algorithm is
running, for use within additional stopping criteria and/or for being returned to the user. For
instance, the computation of the Voronoi diagram associated with the different seeds is triggered by
assigning labels of them, with e.g. the pair seedFlags:[0,1]. See Figure 9. Identical labels may be
assigned to several seeds, in which case the regions are merged. Optionally, front propagation can be
stopped when the Voronoi regions meet, using VoronoiStoppingCriterion:‘RegionsMeeting’. In
that case the minimal geodesic from the seeds of the meeting regions is returned, in the form of two
halves joining at the regions meeting point. Another side product of interest is the Euclidean length
of the minimal geodesics, see Figure 9 (right).

The use of a time dependent cost function c = c(p, t), giving rise to the eikonal equation
c(p, u(p))‖∇u(p)‖ = 1, is illustrated in Figure 10. We use an explicit scheme, which is simpler
than [63] but introduces an O(h2) overall error in the solution (expected to be dominated by the
discretization error, since the numerical scheme used is at best second order). Other classical models
implemented in the HFM library are also illustrated in Figure 10, namely two and three dimensional,
isotropic and diagonal metrics, corresponding to the executables ending with ‘Isotropic3’, ‘Diago-
nal2’, or ‘Diagonal3’. Finally, we recall that the features presented in this subsection are transversal
and applicable to any minimal path model implemented in the HFM library.

4.2 Automatic Differentiation

Automatic, or algorithmic, differentiation, is a meta-programming technique for evaluating the Ja-
cobian of a numerical function. We refer to Section 3.3 for details on these methods, and only recall
here their basic intent. Denote by u = F (c, σ) the mapping which associates the numerical PDE
solution u to the numerical cost function c and boundary conditions σ. Denote by J the Jacobian
matrix of F at some fixed input (c, σ), assuming it is indeed differentiable there. The matrix J
is usually non-sparse and excessively large. Fortunately, the technique of forward (resp. backward)
differentiation lets us evaluate at a very reasonable cost any matrix-vector product µ = J · (ξ, ζ) with
the Jacobian (resp. (ρ, π) = JT · φ with its adjoint), where ξ, ζ and φ are arbitrary.

Figure 11: Illustration of forward and backward automatic differentiation. Same setting as Figure 8. Left: first order term
µ in the Taylor expansion uε = u0 + εµ + o(ε) of the distance map associated with the perturbed cost cε = c0 + εχx<0.
Center: likewise, for a perturbation of the boundary condition σ2,ε = σ2 + ε at the seed p2 = (0.5, 0.8). Right: sensitivity
φ, with respect to the cost function, of the distance u(p∗) from p∗ = (0.6, 0.1) to the seed points. The support of φ
approximates the minimal geodesic(s) from p∗ to the closest seed point(s). Two geodesics are visible here since p∗ was
chosen in the cut locus.

In the context of the fast marching algorithm, the first reported uses of forward and backward
differentiation respectively appear in [5] and [41]. For simplicity, these functionalities are illustrated
here in the context of isotropic metrics, but they are applicable to all the minimal path models im-
plemented in the HFM library, including those featuring dimension lifting and curvature penalization
techniques [41].

72

Hamiltonian Fast Marching: A Numerical Solver for Anisotropic and Non-Holonomic Eikonal PDEs

Forward differentiation is used in Figure 11 to compute the first order perturbation in the distance
map u, constructed in Section 4.1, subject to a given perturbation of the input cost function (left),
or of the boundary conditions (center). Conversely, backward differentiation yields the sensitivity
of a specific pointwise value u(p∗) to arbitrary modifications in the cost and boundary conditions,
which reveals the support of the minimal geodesic(s), as discussed in Section 3.2.2 and illustrated in
Figure 11 (right).

We next present an optimization problem in which one aims to maximize the distance between two
points p0 and p1, by adjusting the cost function c : Ω→]0,∞[of an isotropic metric. See [6, 41] for
problems of similar nature, some of them more complex. The cost function is constrained by upper
and lower bounds, and subject to an integral penalty term, all determined by positive constants
α, β, γ. The problem reads as follows

max
α≤c≤β

min
γ(0)=p0

γ(1)=p1

∫ 1

0

c(γ(t))‖γ′(t)‖dt− γ
∫

Ω

c(x)dx. (46)

The minimum over all paths γ is, obviously, numerically computed using the fast marching algorithm.
We use the same domain and obstacles as in the previous section, on a 100 × 200 Cartesian grid,
but switch to the differentiable discretization scheme (21) for isotropic eikonal PDEs. This defines
a concave function of the cost, which is then maximized, using the LBFGS algorithm20 numerically
which takes about 20 seconds. For comparison, solving similar instances reportedly took hours in [5].
The lower complexity of our implementation mainly comes from the use of backward differentiation,
instead of forward differentiation in [5]. The optimal cost function c for (46) has several interesting
features. For instance it creates “barriers” in the space between close obstacles. Another peculiarity
is the fact that there are uncountably many distinct paths of minimal cost, w.r.t. c, joining the
endpoints p0 and p1. See Figure 12.

Figure 12: Left: cost function maximizing the distance between the seed (−0.7, 0.7) and the tip p∗ = (0.8, 0.4), subject
to bound constraints and an integral penalty, see (46). Same obstacles as in Figure 8. Center: Sensitivity of u(p∗) with
respect to the cost function, at the optimum. Right: distance map u from the seed, backtracked geodesics from the tip p∗
and nearby pixels, at the optimum.

4.3 Riemannian Metrics

Riemannian metrics are the most widely occurring class of non-isotropic metrics in applications.
Extending the fast marching algorithm to this context is a non-trivial task, which has been the
subject of a continued line of research since the 2000’s. Many of the proposed approaches have
significant drawbacks, such as the use of excessively large stencils [29, 58, 1], the pre-condition that
the condition number of the metric tensors be mild [27], or the fact that they give up on the causality
property [8].

20It turns out empirically that the LBFGS algorithm still works with the classical non-differentiable scheme (20),
although it requires twice as many iterations to reach the same accuracy.

73

Jean-Marie Mirebeau, Jorg Portegies

Figure 13: Left: minimal geodesics on a parametrized surface in R3. Center: top view of the same geodesics. Right: level
sets of the distance map, for a strongly anisotropic three dimensional test case inspired by tubular structure segmentation.

Figure 14: Level sets of the four anisotropic Riemannian two dimensional examples described in Section 4.3.

The author has introduced efficient and specific techniques for discretizing Riemannian eikonal
PDEs on Cartesian grids. Two flavors were developed, in the semi-Lagrangian and Eulerian frame-
work respectively, referred to as21 the FM-LBR and FM-VR1. They are introduced in [36] and [40]
respectively, with open source code distribution and reproducible experiments in [37] and the present
manuscript respectively. For those readers who may hesitate between the two approaches, let us say
that the FM-VR1 is faster, especially in dimension 3, and more accurate if the second order enhance-
ment of the numerical scheme is activated, but slightly less accurate otherwise, see [40] for a more
in-depth comparison. From a practical point of view, the FM-VR1 code is more feature packed, and
has interfaces to more scripting languages, while the FM-LBR is tightly integrated within the Insight
ToolKit (ITK R©) library.

We repeat in this subsection the numerical experiments presented in [36, 40], which can now be
easily reproduced using the provided Python and Mathematica R© notebooks. The test cases are all
synthetic, but are inspired from problems arising in geometry processing, seismic imaging and tubular
segmentation. In practice, instructing the HFM software to numerically solve a Riemmanian eikonal
equation is done by selecting the appropriate executable, ending with ‘Riemann2’ or ‘Riemann3’,
depending on the dimension22, and providing the key-value pair metric:arrTensors, where “arrTen-
sors” is an array containing the Riemannian metric tensors. (Alternatively, the inverse tensors may
be supplied as dualMetric:arrTensors.)

A series of two dimensional test cases, considered in [58, 36, 40], are described below. Level sets
of each example are displayed in Figure 14. We recall that the condition number of a symmetric
tensor is defined by Cond(M) :=

√
‖M‖‖M−1‖. The numerical techniques implemented in the HFM

library are primarily intended for Riemannian metrics which tensors have condition number . 10,
although more degenerate instances are often handled successfully.

21Fast-Marching using Lattice Basis Reduction, and Fast-Marching using Voronoi’s First Reduction
22The current numerical implementation is indeed limited to dimensions 2 and 3.

74

Hamiltonian Fast Marching: A Numerical Solver for Anisotropic and Non-Holonomic Eikonal PDEs

1. (Geometry processing inspired) We compute the distance from the origin on a two-dimensional
manifold, embedded in R3 and defined by the following height map, where x, y ∈ [−1, 1]2

z(x, y) := (3/4) sin(3πx) sin(3πy).

The Riemannian metric is given byM(x, y) = I+∇z(x, y)∇z(x, y)T , and has condition number
. 6. See Figures 13 and 14. A particularity of this test case is that the eigenvectors of the
metric are quite often almost aligned with the coordinate axes. We thus rotate them by π

6
, in

a second test case, to show that our numerical method is not sensitive to this bias, contrary to
several others, see the discussion in [36].

2. (Seismic imaging inspired) We consider the distance-to-origin problem for the metric tensor
M(x, y) with eigenvalue 0.8−2 associated with the eigenvector (1, π

2
cos(4πx)), and eigenvalue

0.2−2 associated with a perpendicular eigenvector, on the domain [−1, 1]2. The condition
number of the Riemannian metric is thus bounded by 4.

3. (Tubular segmentation inspired) We illustrate the robustness of our numerical scheme by choos-
ing a Riemannian metric which is both discontinuous and extremely anisotropic. More precisely,
the metric is isotropic Euclidean sufficiently far from a predefined curve, in this case a spiral,
and close to the curve it is highly anisotropic with eigenvalues (1, 100−2). The tangent to the
curve is the eigenvector corresponding to the small eigenvalue.

Three dimensional counterparts of the “seismic imaging” and “tubular segmentation” inspired
test cases are also presented in Figure 13 (right), and in the Python notebooks.

4.4 Planar Curvature Penalization

An important innovation of the HFM library is the ability to find planar curves globally minimizing
an energy involving their curvature. For that purpose, the problem is lifted in the configuration space
R2×S1 of positions and orientations, following an idea introduced in [46]. A suitable non-holonomic
metric is then introduced on this set, as proposed in [4, 14] for the Reeds-Shepp and Euler-Mumford
models. Lastly, a specific generalization of the fast marching method is required for efficiently solving
these problems numerically, see Section 1.2, Section 2.4 and [40, 39] which are at the foundation of
our software, or related but distinct methods [52, 22].

The HFM library implements four curvature penalized path models, whose distinctive features
are listed below. See Section 1.2 and Section 2.4 for a formal definition.

• The classical Reeds-Shepp sub-Riemannian model, encodes the motion constraints of a wheelchair,
which is able to move both forward and backward. Distinctive feature: the trajectories feature
cusps, at places where the vehicle changes from forward to reverse gear.

• The Reeds-Shepp forward variant is mathematically similar, except that the vehicle cannot go
backwards. Distinctive feature: the trajectories feature in-place rotations, in particular at their
endpoints and around obstacles.

• The Euler-Mumford elastica model describes the rest position of an elastic bar23. Distinctive
feature: the trajectories are smooth, and “feel natural”.

• The Dubins car model has a bounded turning radius. Distinctive feature: the optimal trajec-
tories are concatenations of straight lines and of arcs of circle.

23Assuming that the cost function c is constant.

75

Jean-Marie Mirebeau, Jorg Portegies

These models are illustrated in Figure 15 in the special case of a constant cost function c ≡ 1. In
Figure 16 we consider both a position dependent cost function c = c(x), which is a common case in
applications, and an orientation dependent cost function c = c(θ), which in particular is suitable for
modeling a sailboat. The executable ending with ‘ReedsShepp2’, ‘ReedsSheppForward2’, ‘Elastica2’
or ‘Dubins2’ must be selected to solve these instances. The parameter ξ, homogeneous to a radius
and modulating the intensity of curvature penalization see (10), must be assigned a value, such as
xi:1. The cost function is set with the pair cost:arr where ‘arr’ is either a constant, a one-dimensional
array if c = c(θ), a two-dimensional array if c = c(x), or a three dimensional array in the general
case where c = c(x, θ), of suitable dimensions.

Figure 15: From top to bottom: Reeds-Shepp, Reeds-Shepp forward, Euler-Mumford elastica, and Dubins car models. Left:
control sets, i.e. unit balls of the local metric. Center: minimal paths in R2 × S1. Right: planar projection of the minimal
paths.

The HFM software also implements generalizations of the above four models, in which the

76

Hamiltonian Fast Marching: A Numerical Solver for Anisotropic and Non-Holonomic Eikonal PDEs

curvature penalization parameter may vary over the domain ξ = ξ(x, θ), and an additional term
κ = κ(x, θ), homogeneous to a curvature, introduces some asymmetry in the treatment of right and
left turns. See (11) and Figure 17.

Figure 16: Left: Planar projection of Euler-Mumford elastica paths, for a cost function c = c(x) depending on the physical
position x ∈ R2 (smaller cost in the upper part of the domain). Center: polar plot of a cost function c = c(θ), related with
sailboat navigation, depending only on the orientation θ ∈ S1. Right: minimal paths for the Reeds-Shepp forward model
with the later cost function. The paths tack, as an actual sailboat would do, instead of going straight against the wind.

Figure 17: Minimal paths for variants of the Dubins car. Left: the car has a position dependent turning radius ξ = ξ(x) =
1 + χy<1/2, smaller in the upper part of the domain. Right: the car has a distinct turning radius on the right and left.

Figure 18: Comparison of the resolution/accuracy (left) and accuracy/computation time (right) compromise of several
numerical methods for the eikonal equation of the Reeds-Shepp model. Log-log scale. In both figures we compare an
iterative approach (green), the FM-LBR (yellow), the FM-VR1 implemented in the HFM-library (blue), and the same with
second order enhancement (red). The latter turns out to be the most efficient, see Section 4.4 for a discussion.

Computational efficiency is an important aspect of numerical techniques for minimal path ex-
traction, which severely constrains their range of applications (response times of different orders of

77

Jean-Marie Mirebeau, Jorg Portegies

magnitude are required for e.g. real time control of a dynamical system, convenient interaction with
a human within an image processing software, or offline data processing). In Figure 18, we compare
the accuracy and execution time of four numerical methods for the classical Reeds-Shepp model,
extending the work [52]. The graphics display the results of the following methods: the HFM library
with (red) or without (blue) second order enhancement, the semi-Lagrangian FM-LBR implementa-
tion (yellow) [52], and a non-causal scheme solved using an iterative numerical method (green)[4].
A Cartesian grid of size (4n, 4n, 2n) is used to discretize the domain [−2π, 2π]2 × S1, and the cost
function is set constant c ≡ 1. The exact solution to the eikonal equation, computed using a geodesic
shooting method, is used for reference.

The first three compared numerical methods involve a relaxation parameter, here set to the
default value ε = 0.1. Therefore one could expect the numerical error to plateau at sufficiently high
grid scales n. However this phenomenon is not observed in our experiment, which only shows straight
lines in log-log scale. This suggests that the discretization error introduced by the relaxation is not
a limiting factor for our numerical scheme, at reasonable grid sizes.

At a given image resolution n, the most accurate numerical method is the FM-VR1 scheme with
second order enhancement, which is implemented in the HFM library. The (slow) iterative method
comes next, and is best among the first order schemes, followed by the FM-LBR scheme, and finally (a
bit disappointingly) the first order instantiation of the FM-VR1. Given a computation time budget,
the FM-VR1 with second order enhancement offers the best accuracy. The first order FM-VR1 comes
second, compensating its lower accuracy resolution-wise with respect to the alternative methods by
its much better complexity. The FM-LBR comes third, and the non-causal iterative method comes
last due to its much longer computation times, which are superlinear with respect to the number of
grid points.

The HFM library can extract three dimensional curves globally minimizing a curvature dependent
energy. For that purpose, the curves are lifted in the five dimensional configuration space R3 ×
S2, and the second order path energy functional is rewritten in terms of a suitable non-holonomic
metric, similarly to the planar case albeit in higher dimension. Numerically, an adequate eikonal
PDE is solved, after what the optimal curves are backtracked. Incidentally, the workflow that we
just described involves numerically solving a non-linear PDE with degenerate anisotropy on a five
dimensional manifold with non-trivial topology, which may look like a fairly challenging problem.
Convincing results are nevertheless obtained in our examples, which run within 5s to 40s on a
standard laptop.

Three minimal path models are considered in this section, which are higher dimensional general-
izations and variants of the Reeds-Shepp model. The original sub-Riemannian model distinguishes
itself by the presence of cusps, where the path orientation is reversed. The forward-only variant lacks
cusps, but often features in place rotations, in particular at the minimal path endpoints, see [22] for
a discussion. Finally, a dual variant favors paths which may be non-smooth, but are embedded in
smooth manifolds. It can be related with torsion penalization, rather than curvature penalization,
see [40]. See also [59] for a distinct attempt to implement genuine torsion penalization. Note that
the three dimensional analogues of the Euler-Mumford and Dubins models, considered in the planar
case Section 4.4, are not implemented in the HFM library at the time of writing.

The non-holonomic metrics considered involve a data-driven cost function c : R3 × S2 →]0,∞[,
a parameter ξ > 0 homogeneous to a radius of curvature, and in our case a relaxation parameter24

ε > 0. For any point (x,n) ∈ R3 × S2, and any tangent vector (ẋ, ṅ), the metric associated with the

24The formula numerically implemented in the HFM library is intermediate between the original singular model
(ε = 0) and the relaxed model (with the given ε > 0), in the spirit of Proposition 2.3.

78

Hamiltonian Fast Marching: A Numerical Solver for Anisotropic and Non-Holonomic Eikonal PDEs

Reeds-Shepp model, the forward variant, and the dual variant, respectively read

F ε(x,n)(ẋ, ṅ)2 = c(x,n)2
(
〈n, ẋ〉2 + ε−2‖n× ẋ‖2 + ξ2‖ṅ‖2

)
,

F ε,+(x,n)(ẋ, ṅ)2 = c(x,n)2
(
〈n, ẋ〉2+ + ε−2〈n, ẋ〉2− + ε−2‖n× ẋ‖2 + ξ2‖ṅ‖2

)
,

F ε,×(x,n)(ẋ, ṅ)2 = c(x,n)2
(
ε−2〈n, ẋ〉2 + ‖n× ẋ‖2 + ξ2‖ṅ‖2

)
.

We denoted by n× ẋ the cross product of the three dimensional vectors n ∈ S2 and ẋ ∈ R3. In the
limit as ε → 0, the angular orientation n and the physical velocity ẋ are respectively constrained
to be collinear, positively collinear, and orthogonal if the path cost remains bounded, due to ε−2

penalization terms.

4.5 Reeds-Shepp Models in R3 × S2

Our implementation relies on a parametrization of the sphere S2 using two Euler angles θ ∈ [0, π]
and φ ∈ [0, 2π], with appropriate boundary conditions

n(θ, φ) := (cos θ, sin θ cosφ, sin θ sinφ).

The Reeds-Shepp model and the dual variant, but not the forward variant, also make sense if n
belongs to the projective orientation space P2 = S2/{−1, 1}, which is parametrized as above except
that θ ∈ [0, π/2] only. The same angular spacing hφ = 2π/nφ is used for discretizing the angles θ
and φ, hence the Cartesian grid devoted to the angular S2 (resp. P2) space has dimension (nφ/2, nφ)
(resp. (nφ/4, nφ)). See Figure 19.

Figure 19: Left: discretization of the unit sphere S2, using 24× 12 points, used for the presented numerical experiments in
R3 × S2. The next three pictures show the sets {ẋ ∈ R3;Fε(0,n)(ẋ, 0) ≤ 1}, with the relaxation parameter ε = 0.2 and for

several orientations n ∈ S2, where F is successively the metric of the Reeds-Shepp model (needles), of the forward variant
(half needles), and of the dual variant (plates).

The HFM library executables ending with ‘ReedsShepp3’ or ‘ReedsSheppForward3’ must be se-
lected to solve these problems. In the case of the Reeds-Shepp model, the projective angular space
is imposed by the key-value pair projective:1, and the dual model is activated by dual:1. The
curvature penalization and the relaxation parameter need to be set, e.g. xi:1 and eps:0.2. In the
examples presented, the discretization grid size is defined as dims:[60, 40, 25, nθ, 24], where nθ = 6
for the projective angular space P2, and nθ = 12 in the case of S2, see Figure 19. The cost function
is specified by cost:arr, where arr is either a constant, a two-dimensional array (c = c(n)), a three
dimensional array (c = c(x)), or a five-dimensional array (c = c(x,n)), of suitable dimensions.

A test case inspired by tubular structure segmentation is presented in Figure 20. The cost function
is small in the neighborhood of two curves, which respectively have low curvature and low torsion,
and is large elsewhere. The common endpoints of the curves are respectively used as the seed of
the front propagation, and the tip from which to backtrack a geodesic. The minimal paths selected

79

Jean-Marie Mirebeau, Jorg Portegies

by the Reeds-Shepp and the Reeds-Shepp dual model go along the low curvature and low torsion
curve respectively, as was expected and desired. A second test case, inspired by motion planning, is
displayed in Figure 21. The backtracked curves are in that case smooth and with well distributed
curvature, up to the occasional and expected singularities: cusps for the Reeds-Shepp model, and
in-place rotations for the forward variant. Computation times25 are respectively around 5s and 40s
in the tubular segmentation and motion planning related experiments, despite the similar grid sizes,
because the front propagation can be aborted earlier in the first case.

Figure 20: Illustration of the three dimensional Reeds-Shepp model and of its dual variant. Left: level set of the cost
function c = c(x), which is small in the neighborhood of two curves, with respectively low torsion and low curvature.
Center: the minimal path for the Reeds-Shepp model follows the low curvature curve. The path γ(t) = (x(t),n(t)) exists
in R3× S2, and its points are displayed as small arrows with origin x(t) and direction n(t). Right: the minimal path for the
Reeds-Shepp dual model follows the low torsion curve.

Figure 21: Minimal paths for the the three dimensional Reeds-Shepp model (left), and of its forward variant (center), in a
domain with obstacles and a constant cost function. Note the cusps (left), where the vehicle orientation is reversed, for the
original model. Right: the forward model features in place rotations at some of the path endpoints.

5 Selected Applications

In this section, we present selected applications of the HFM library. The difference with the numerical
experiments discussed in the previous section lies in the intent and focus: modeling aspects are more
emphasized here, and the datasets come from other application fields (although some are synthetic),
instead of being specifically designed so as to illustrate the functionalities of the HFM library.

5.1 An Interpretation of Poggendorff’s Visual Illusions

We present two visual illusions due to Poggendorff, and their explanation according to the work [24].
This research builds on the works [47, 9], which have shown that the first layer V1 of the visual

25On a 2.7GHz processor using a single core.

80

Hamiltonian Fast Marching: A Numerical Solver for Anisotropic and Non-Holonomic Eikonal PDEs

Figure 22: Poggendorff’s illusions and their interpretation. Left: consider a seed point p in the configuration space
M := R2 × S1, and a family of tips q1, · · · ,qn ∈ M. According to the Petitot Citti-Sarti model, the visual cortex V 1 will
infer a connection between the seed and the closest tip w.r.t. the sub-Riemannian Reeds-Shepp model (with parameter ξ
to be determined). Center and right: this principle explains two visual illusions due to Poggendorff, where the two parts of
an occluded straight line or circle appear to mismatch.

cortex could be regarded as a biological implementation of the manifold R2 × P1, equipped with the
sub-Riemannian structure defining the Reeds-Shepp model.

Consider an image displaying a curve ending at a point x∗ ∈ R2 with tangent orientation θ∗, and
a curve starting at another point x∗ with tangent orientation θ∗. Under some conditions, a human
presented with this image will associate the two curves and infer a connection between them [20].
In everyday experience, a similar phenomenon helps us guess the shape of objects which boundary
is partially occluded. The curve reconstructed by the visual system is, according to the works cited
above, the (planar projection of the) minimal path joining the oriented endpoints p∗ := (x∗, θ∗)
and p∗ := (x∗, θ∗) with respect to the Reeds-Shepp model. The parameter ξ, which determines
the amount of curvature penalization in this model, depends on the scale at which the image is
displayed, and is adjusted by hand in our experiments. The cost function is chosen constant c ≡ 1
in our experiments, although a more complex data-driven construction is considered in the original
work [24].

Assume now that several endpoints (x∗i , θ
∗
i)i∈I are present in the image, instead of a single one.

Then the visual system infers a curve joining the source point (x∗, θ∗) to the closest endpoint,
again with respect to the distance defined by the Reeds-Shepp model, a process called perceptual
grouping [3]. The images created by Poggendorff put this physiological process in evidence by
displaying a partially occluded straight line or circle. To the eye, the true endpoints of the geometrical
figure seem bizarrely misaligned, see Figure 22. This is a visual illusion, highlighting the difference
between (a) the Reeds-Shepp geodesic toward the closest point across the occluded region (with the
correct orientation), and (b) the continuation by a straight segment or an arc of circle that would be
“logical” in the presented image.

81

Jean-Marie Mirebeau, Jorg Portegies

5.2 Motion Planning

We illustrate in Figure 23 a two dimensional motion planning problem, namely finding the optimal
path towards the exit of a building26. The Isotropic, Reeds-Shepp, Reeds-Shepp forward, Elastica
and Dubins models are compared, and their distinctive features are clearly visible, see Section 4.4.

Figure 23: Optimal paths coming from various models, towards the exit of a building. The green point is the source, the
white points are endpoints, black parts indicate the walls and the color indicates the distance (if necessary minimized over
orientation). Top row, left to right: isotropic, isotropic with cost based on Gaussian blurred image, Reeds-Shepp model.
Bottom row, left to right: forward-only Reeds-Shepp model, Dubins’s model, Euler-Mumford elastica model.

The authors readily acknowledge that shortest paths (with respect to any reasonable metric) are
a quite questionable approximation of natural paths, in view of the potential tradeoffs with safety,
comfort or computational effort. For instance, the optimal computed trajectories are tangent to the
wall corners, which would be hazardous in practice in case someone comes in the opposite direction.
These trajectories also anticipate obstacles before they enter the line of sight. Paths closer to e.g.
natural pedestrian motion are obtained by penalizing motion close to the walls, see again Figure 23.
See [10] and references therein on the topic of pedestrian crowd motion models based on eikonal
equations. Optimal paths make most sense when the environnement is well known and path length
(measured with the appropriate metric) is the dominant criterion for success: for instance if one is
playing a race, or trying to avoid a surveillance system [41].

5.3 Tubular Structure Segmentation

Tubular structure segmentation in medical images is one of the main applications intended for the
HFM library. Early versions, and related software of the first author, are used for that purpose
in [12, 52, 15, 22, 14, 33, 3]. Vessel extraction in images of the retina is illustrated in Figure 24,
using two popular models involving respectively radius and orientation lifting. Let us briefly recall
the principles underlying this approach.

Consider an image, e.g. in grayscale and represented by a function I : U → [0, 1], displaying
a family of possibly overlaid tubular structures. Segmentation methods based on minimal paths
attempt to extract the centerlines of these tubular structures as geodesics with respect to a suitable
metric, joining endpoints which are either prescribed by the user or automatically detected by another

26The experiment uses a partial map of Museum Georges Pompidou in Paris

82

Hamiltonian Fast Marching: A Numerical Solver for Anisotropic and Non-Holonomic Eikonal PDEs

Figure 24: Vessel segmentation in an image of the retina, using two dimension lifting techniques. Top: in a radius-lifted
model, a preliminary image filtering is used to detect vessels of small (left) and large (center) scale. The backtracked path
contains information about the vessel radii (right). Bottom: in an orientation lifted model, a preliminary image filtering
detects vessel bits of different orientations (left and center). Vessel extraction using the Reeds-Shepp model (right).

method. They are frequently combined with dimension lifting techniques: a cost function c : U×A→
]0,∞[is defined over the product of the image domain U with an abstract parameter space A. In
practice, the latter often represents a range of radii A = [r, R], of grayscale intensities A = [0, 1],
or of angular orientations A = S1, see e.g. [31, 46]. The local cost c(x, a) is data-driven and built
during a preliminary filtering of the input image, see e.g. [21]. The quantity c(x, a) should be small
iff a tubular structure having feature a is likely present at the position x in the image.

The purpose of dimension lifting is two-fold. First: robustly extract the additional feature of
interest, in addition to the vessel centerline, for applications in medical diagnostic. Vessel radius
and curvature, inferred from orientation in the latter case, are particularly important in this respect.
Second: disentangle the overlaid tubular structures, by separating them in three dimensional space,
based on the additional feature parameter a. This helps avoid or reduce the “shortcut” and “leak”
type artifacts, which often plague minimal path methods for tubular structure extraction. Figure 24
illustrates radius lifting, combined with an isotropic metric model, and orientation lifting, combined
with the Reeds-Shepp model.

5.4 Segmentation in 3D DMRI Data

We illustrate three dimensional tubular structure segmentation in (simulated) dMRI data. This
medical imaging technique measures diffusivity at each point x ∈ R3, and in each direction n ∈ S2.
The input data is therefore intrinsically defined over the configuration space R3 × S2, in contrast
with Section 5.3 where dimension lifting was an artificially introduced image processing technique.

We use a digital phantom dataset that was constructed, using the dMRI simulation method [11],
for the ISBI 2013 reconstruction challenge, where it was used as a benchmark for tracking meth-
ods [17]. The dataset itself consists of a fairly challenging configuration of 27 simulated white matter
bundles, inside a spherical volume. The entire volume has a size of 50× 50× 50 voxels. In the same
volume, there are three spherical regions with isotropic diffusion.

We use a constrained spherical deconvolution approach [60] to estimate from the raw simulated
dMRI data a fiber orientation distribution (FOD), that in each voxel indicates the probability of
having a fiber in that direction. The density of this FOD is denoted by f : R3 × S2 → R+. Then
following the approach in [22], we use the FOD to construct the cost function as follows: for any

83

Jean-Marie Mirebeau, Jorg Portegies

Figure 25: Visualization of the ISBI dataset from different viewpoints. The two left-most images show the full dataset, the
other four images show a selection of the bundles. The black lines inside these bundles indicate the geodesics obtained with
fast marching.

p = (x,n) ∈ R3 × S2

c(p) =

(
1 + σ

∣∣∣∣ f(p)

||f ||∞

∣∣∣∣p)−1

, σ, p ≥ 1. (47)

The parameter σ influences how strongly the data should affect the optimal path, and the exponent
p influences how ‘sharp’ the FOD profiles are. As a proof-of-concept experiment on this dataset,
we consider the case where the seed point and end point of a bundle are given and we compute the
shortest path connecting the two. The path should then at least stay inside the bundle. We use the
Reeds-Shepp forward model, with parameters σ = 3, p = 1, ξ = 0.5, ε = 0.1, nθ = 10 and nφ = 20,
resulting in 200 points in the discretization of the sphere. The geodesics (in black) stay in almost all
cases entirely inside the volume of the corresponding bundle, as is displayed in Figure 25.

6 Conclusion

In this paper, we introduced the Hamiltonian Fast Marching (HFM) library, a state-of-the-art soft-
ware for global path optimization with respect to non-isotropic metrics. Our numerical methods ap-
ply in particular to Riemannian metrics in dimensions two and three, possibly strongly anisotropic,
using an adaptive discretization scheme based on lattice geometry techniques. We also globally op-
timize second order energies depending on the path curvature, by introducing a dimension lifted
space equipped with a non-holonomic metric, suitably relaxed in the implementation. The classical
models due to Reeds-Shepp, Euler-Mumford, and Dubins, are implemented, as well as numerous
generalizations and variants which all have specific qualitative properties and use cases. A number of
transversal methods are provided, such as backward algorithmic differentiation which is novel in this
context. This software is provided in the form of a unified open source C++ code, with convenient
interfaces for several major scripting languages.

The HFM library has already found several applications in the study of visual illusions, motion

84

Hamiltonian Fast Marching: A Numerical Solver for Anisotropic and Non-Holonomic Eikonal PDEs

planning, and image segmentation. We hope that this publication, and the series of introductory
notebooks that are provided alongside, will help popularize these techniques and their present and
future applications. The HFM library is part of an ongoing research effort and will continue to evolve.
Considered additions include higher dimensional Riemannian metrics and a better enforcement of
non-holonomy constraints.

A Dual Metric for Curvature Penalization

This appendix is devoted to formally deriving the expression of the dual metric associated with the
Reeds-Shepp forward, Euler-Mumford, and Dubins model. It is announced in Section 1.2 and Sec-
tion 2.4. We use a unified and systematic presentation that easily generalizes to e.g. the asymmetric
variants (11), or the higher dimensional instantiations. See [39] for another approach.

For notational simplicity, let us fix a point (x, θ) ∈ R2 × S1 of the configuration space of these
models, and denote F := F(x,θ), c := c(x, θ) and n := (cos θ, sin θ). Our first step is to justify the
semi-explicit dual metric expression (8, right). Indeed, one has

F ∗(x̂, θ̂) = sup
(ẋ,θ̇)6=0

〈x̂, ẋ〉+ θ̂θ̇

F (ẋ, θ̇)
= sup

(ẋ,θ̇)6=0
ẋ≥0

〈x̂, ẋn〉+ θ̂θ̇

F (ẋn, θ̇)
= sup

θ̇∈R

〈x̂,n〉+ θ̂θ̇

c C(θ̇)
=

=
f(〈x̂,n〉, θ̂)

c
.

We used successively (i) the definition (4) of the dual metric, (ii) the fact that F (ẋ, θ̇) = ∞ unless
the physical velocity is a non-negative multiple of the current orientation n, (iii) the 1-homogeneity
of F , allowing to assume27 that ẋ = 1, and its explicit expression (8, left), and (iv) the definition (29)
of the function f .

Our next objective is to compute the supremum, denoted f(x̂, θ̂), of

θ̇ ∈ R 7→ (x̂+ θ̂θ̇)/C(θ̇). (48)

For that purpose we recall the specific instantiations CRS, CEM and CD of the cost function C penalizing
curvature, see (10). For notational simplicity, and up to rescaling θ̇, we assume that ξ = 1.

CRS(θ̇) =
√

1 + θ̇2, CEM(θ̇) = 1 + θ̇2, CD(θ̇) =

{
1 if θ̇ ≤ 1,

∞ else.

In the Dubins case, the map (48) is linear on the interval [−1, 1], and vanishes elsewhere, hence its
maximum is f(x̂, θ̂) := max{x̂ − θ̂, x̂ + θ̂, 0}. In the Reeds-Shepp and Euler-Mumford cases, the
supremum of (48) is attained either as θ̇ → ±∞, or for a finite value θ̇ ∈ R obeying the optimality
condition

θ̂C(θ̇) = (x̂+ θ̂θ̇)C ′(θ̇). (49)

For the Reeds-Shepp curvature cost, observing that CRS(θ̇)′ = θ̇/
√

1 + θ̇2, relation (49) yields

θ̂
√

1 + θ̇2 = (x̂+ θ̂θ̇)
θ̇√

1 + θ̇2
⇔ θ̂(1 + θ̇2) = (x̂+ θ̂θ̇)θ̇ ⇔ θ̂ = x̂θ̇.

27We need not consider the case ẋ = 0, since F was extended to the line {(0, θ̇); θ̇ ∈ R} by its lower semi continuous
envelope.

85

Jean-Marie Mirebeau, Jorg Portegies

Thus θ̇ = θ̂/x̂, provided x̂ 6= 0, and by (48) therefore

f(x̂, θ̂) = (x̂+ θ̂
θ̂

x̂
)/

√
1 + (

θ̂

x̂
)2 =

√
x̂2 + θ̂2,

as announced (since θ → ±∞ is sub-optimal). In addition

f(0, θ̂) = sup
θ̇∈R

θ̂θ̇/
√

1 + θ̇2 = |θ̂|,

in the limit θ̇ → sign(θ̂)∞, hence the previous expression still holds in the case x̂ = 0.
For the Euler-Mumford curvature cost, observing that CEM(θ̇)′ = 2θ̇ we rewrite (49) as

θ̂(1 + θ̇2) = (x̂+ θ̂θ̇)2θ̇ ⇔ θ̇2 + 2θ̇
x̂

θ̂
− 1 = 0 ⇔ θ̇ = θ̇± = − x̂

θ̂
±

√
1 + (

x̂

θ̂
)2, (50)

assuming θ̂ 6= 0. Inserting these roots in (48) we obtain

x̂+ θ̂θ̇±

CEM(θ̇±)
=

θ̂

CEM(θ̇±)′
=

θ̂

2θ̇±
=
−θ̂θ̂∓

2
=
x̂∓

√
x̂2 + θ̂2

2
, (51)

where we used successively (i) the identity (49) defining the roots, (ii) the expression CEM(θ̇)′ = 2θ̇,
(iii) the fact that θ̇+θ̇− = −1, which follows from (50, center) and (iv) the explicit expression of θ̇±.

Choosing the “+” sign in (51, right) yields the largest value, hence f(x̂, θ̂) = (x̂+
√
x̂2 + θ̂2)/2 (since

θ → ±∞ is sub-optimal). In the limit case θ̂ = 0, this expression becomes f(x̂, 0) = (x̂ + |x̂|)/2,
which is still correct, and is attained for θ̇ = 0 if x̂ > 0, and as θ̇ →∞ otherwise.

B Selling’s Algorithm

Our discretization of Riemannian eikonal equations strongly relies on a particular decomposition of
positive definite tensors, see Proposition 2.2. In this Appendix, we describe its algorithmic compu-
tation in dimension d ∈ {2, 3}, as it is implemented in the HFM library. For that purpose, we need
to introduce a few concepts from lattice geometry.

Definition B.1. A superbase of Zd is a (d + 1)-tuple (e0, · · · , ed) ∈ (Zd)d+1 such that | det(e1, · · · ,
ed)| = 1 and e0 + · · ·+ ed = 0.

Any superbase can be used to decompose any 2-tensor D, as follows

D = −
∑

0≤i<j≤d

〈ei, Dej〉vij ⊗ vij, (52)

where vij := e⊥k in dimension d = 2 and with {i, j, k} = {0, 1, 2}, and vij := ek × el in dimension
d = 3 and with {i, j, k, l} = {0, 1, 2, 3}. See Lemma 4.4 in [39] for a proof. We are interested in
tensor decompositions with non-negative coefficients (24), which in the case of (52) is equivalent to
a geometrical property of the superbase.

Definition B.2. A superbase (e0, · · · , ed) of Zd is said D-obtuse, where D ∈ S++(Rd), iff 〈Dei, ej〉 ≤
0 for all 0 ≤ i < j ≤ d.

In dimension d ∈ {2, 3}, Algorithm 2 due to Selling [55] takes a positive definite tensor D as
input, and outputs a D-obtuse superbase. This algorithm is implemented in function:

void BasisReduction<TS,TD,VD>::

ObtuseSuperbase(const SymmetricMatrixType & m, SuperbaseType & sb)

located in file: JMM_CPPLibs-master/LinearAlgebra/LinearAlgebra/BasisReduction.hpp

86

Hamiltonian Fast Marching: A Numerical Solver for Anisotropic and Non-Holonomic Eikonal PDEs

Algorithm 2 Selling’s algorithm [55], d ∈ {2, 3}
Input: A positive definite tensor D ∈ S++(Rd), an arbitrary superbase b = (e0, · · · , ed) of Zd.
Output: A D-obtuse superbase.
While there exists 0 ≤ i < j ≤ d such that 〈ei, Dej〉 > 0 do

If d = 2 then b← (−ei, ej, ei − ej),
If d = 3 then b← (−ei, ej, ek + ei, el + ei).

Termination guarantee. Consider the energy E(e0, · · · , ed), defined by
∑2

i=0 ‖ei‖2
D in dimension

d = 2 and by
∑3

i=0 ‖ei‖2
D + 1

2

∑
i<j ‖ei + ej‖2

D in dimension d = 3. This quantity decreases by
4〈ei∗ , Dej∗〉 > 0 at each iteration, where i∗ and j∗ are the indices appearing in the While condition,
as can easily be checked by expressing the present and next superbase energy in terms of the scalar
products (〈ei, ej〉)di,j=0. Since there exists only finitely many superbases which energy E is below any
given bound, the algorithm must terminate.

C Norm of the Geodesic Flow

This section is devoted to the proof of Proposition 3.1. Our first step is to rewrite the announced
result in a more abstract framework, keeping only the minimal assumptions.

Proposition C.1. Let I ≥ 1 and let H : RI → [0,∞[be convex and positively 2-homogeneous. Let E
be a finite dimensional vector space, and let ė1, · · · , ėI ∈ E. Let H : E∗ → [0,∞[and F : E→ [0,∞]
be defined by

H(p̂) := H(〈p̂, ė1〉, · · · , 〈p̂, ėI〉),
1

2
F(ṗ)2 := sup

p̂∈E∗
〈p̂, ṗ〉 − 1

2
H(p̂). (53)

Consider δ = (δ1, · · · , δn) ∈ Rn, and assume that H(δ) = 1 and that H is differentiable at δ. Then
denoting

v̇ :=
1

2

∑
1≤i≤I

∂iH(δ)ėi, (54)

one has F(v̇) ≤ 1. In addition, equality holds if there exists v̂ ∈ E∗ such that δi = 〈v̂, ėi〉 for all
1 ≤ i ≤ I.

Before turning to the proof, we make the connection with Proposition C.1, which assumptions
are scattered over the paper. The assumptions of positivity, convexity, and two homogeneity of the
function H, and the equality (53) (left) follow from the general expression (14) of the Hamiltonian
(understood, obviously, with an = sign, instead of the informal ≈). The element δ ∈ Rn gathers the
finite differences δi = U(p)−U(p−hėi) of the map U in Proposition C.1, and the identity H(δ) = 1
expresses that U is a solution to the discretized PDE (34) (left). Finally, the vector v̇ defined by (54)
generalizes the expression (40) which is limited to Hamiltonians of the specific form (33).

Proof of Proposition C.1. The result follows from a rather direct computation, presented below. Be-
fore that, we observe that (53, right, rhs) is always non-negative, by choosing p̂ = 0 and observing
that H(0) = 0 by homogeneity. The function F is thus well defined, as its square root, with values

87

Jean-Marie Mirebeau, Jorg Portegies

in [0,∞]. Let p̂ ∈ E∗ be arbitrary, and let α = (〈p̂, ėi〉)Ii=1 ∈ RI . Then one has

2〈p̂, v̇〉 − H(p̂) =
∑

1≤i≤I

∂iH(δ)〈p̂, ėi〉 −H(〈p̂, ė1〉, · · · , 〈p̂, ėI〉)

= 〈dH(δ), α〉 −H(α)

= 〈dH(δ), α− δ〉+ 2H(δ)−H(α)

≤ H(α)−H(δ) + 2H(δ)−H(α) (55)

= H(δ) = 1.

We use in each line successively: (i) definitions (53, left) and (54), of v̇ and H, (ii) the definition of
α ∈ Rn, (iii) Euler’s identity 〈dH(δ), δ〉 = 2H(δ) which follows from the 2-homogeneity of H, (iv)
the convexity inequality 〈dH(δ), α− δ〉 ≤ H(α)−H(δ), (v) the assumption H(δ) = 1.

Taking the supremum of p̂ ∈ E∗ we obtain F(v̇)2 ≤ 1, thus F(v̇) ≤ 1 as announced. Finally,
under the additional assumption, one can test against the co-vector p̂ := v̂, so that α = δ. In that
case (55) becomes an equality and therefore F∗(v̇)2 ≥ 1, thus F∗(v̇) = 1 as announced.

D Axes Ordering and Pixel Area

Software visualization packages have introduced an unfortunately large number of incompatible ways
to display a two or three dimensional array of values. In this appendix, we discuss the conventions
chosen in the HFM library, and how to interface with other common tools.

We assume that the HFM library is provided with the following parameters: dims:(n1, · · · , nd)
the size of the discretization grid, origin:(p1, · · · , pd) the bottom left corner of the domain, and
gridscale:h the length of a pixel side. This defines a box-shaped domain, which we split in an
almost everywhere disjoint family of cubes.

Ω =
∏

1≤i≤d

[pi, pi + hni] =
⋃

0≤m<n

(p + hm + hC).

On the right-hand side, we denoted p := (p1, · · · , pd), n := (n1, · · · , nd), and introduced the unit
cube C = [0, 1]d. The inequality m < n is understood componentwise, i.e. mi < ni for all 1 ≤ i ≤ d,
and the notation q + hC means that the cube C is rescaled by the factor h and then translated by
the vector q.

An array of suitable dimensions U :
∏d

i=1J0, niJ→ R defines a piecewise constant function u :
Ω → R on the cube partition, except on the common facets of neighbor cubes. In other words
u|Km := U(m) on each Km := p + hm + h int(C), 0 ≤m < n.

Pixel area. The HFM library assumes, as shown above and in dimension two for simplicity, that
the “pixel” of coordinates (i, j) occupies the square with corners (i, j)h and (i+ 1, j+ 1)h. However,
some visualization software define the “pixel” of index (i, j) as the square of side h centered at (i, j)h
or at (i+ 1, j + 1)h. This raises (minor) issues when geodesic paths are overlaid on images, and can
be adjusted for by shifting the origin by (−0.5,−0.5)h or (0.5, 0.5)h.

Array ordering. When displaying the data contained in a two or three-dimensional array, some
software choose to assign the array indices (i, j, k) to the coordinate axes (X, Y, Z) in a transposed
manner: i → Y, j → X, k → Z. In addition, the array may internally be stored in row-major
or column-major format. The arrayOrdering field accounts for these specificities, and must be
set to ‘RowMajor’ (default value) for Python Mayavi R©, ‘YXZ RowMajor’ for Python PyPlot, or
‘YXZ ColumnMajor’ for Matlab R©.

88

Hamiltonian Fast Marching: A Numerical Solver for Anisotropic and Non-Holonomic Eikonal PDEs

Acknowledgements

This work was partly supported by ANR research grant MAGA, ANR-16-CE40-0014.

Image Credits

Figure 24 based on data from the High-Resolution Fundus (HRF) Image Database. Figure 25 based on data

from the ISBI 2013 reconstruction challenge. Other images produced by the authors.

References

[1] K. Alton and I.M. Mitchell, An Ordered Upwind Method with Precomputed Stencil and
Monotone Node Acceptance for Solving Static Convex Hamilton-Jacobi Equations, Journal of Sci-
entific Computing, 51 (2011), pp. 313–348. https://doi.org/10.1007/s10915-011-9512-4.

[2] M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-
Jacobi-Bellman Equations, Systems & Control: Foundations & Applications, Birkhäuser Boston,
1997. https://doi.org/10.1007/978-0-8176-4755-1_1.

[3] E.J. Bekkers, D. Chen, and J.M. Portegies, Nilpotent Approximations of Sub-
Riemannian Distances for Fast Perceptual Grouping of Blood Vessels in 2D and 3D, Journal
of Imaging and Vision, (2017). http://dx.doi.org/10.1007/s10851-018-0787-z.

[4] E. Bekkers, R. Duits, A. Mashtakov, and G. Sanguinetti, A PDE Approach to
Data-Driven Sub-Riemannian Geodesics in SE(2), SIAM Journal of Imaging Sciences, 8 (2015),
pp. 2740–2770. https://doi.org/10.1137/15M1018460.

[5] F. Benmansour, G. Carlier, G. Peyré, and F. Santambrogio, Derivatives with re-
spect to metrics and applications: subgradient marching algorithm, Numerische Mathematik,
116 (2010), pp. 357–381. https://doi.org/10.1007/s00211-010-0305-8.

[6] F. Benmansour and L.D. Cohen, Tubular Structure Segmentation Based on Minimal Path
Method and Anisotropic Enhancement, International Journal of Computer Vision, 92 (2010),
pp. 192–210. http://dx.doi.org/10.1007/s11263-010-0331-0.

[7] J-D. Boissonnat, A. Cérézo, and J. Leblond, Shortest paths of bounded curvature in the
plane, Journal of Intelligent and Robotic Systems, 11 (1994), pp. 5–20. https://doi.org/10.

1007/BF01258291.

[8] F. Bornemann and C. Rasch, Finite-element Discretization of Static Hamilton-Jacobi Equa-
tions based on a Local Variational Principle, Computing and Visualization in Science, 9 (2006),
pp. 57–69. http://dx.doi.org/10.1007/s00791-006-0016-y.

[9] W.H. Bosking, Y. Zhang, B. Schofield, and D. Fitzpatrick, Orientation selectivity and
the arrangement of horizontal connections in tree shrew striate cortex, Journal of Neuroscience,
17 (1997), pp. 2112–2127. http://dx.doi.org/10.1523/JNEUROSCI.17-06-02112.1997.

[10] E. Cartee and A. Vladimirsky, Anisotropic Challenges in Pedestrian Flow Modeling, Com-
munications in Mathematical Sciences, (2018). http://dx.doi.org/10.4310/CMS.2018.v16.

n4.a7.

89

https://doi.org/10.1007/s10915-011-9512-4
https://doi.org/10.1007/978-0-8176-4755-1_1
http://dx.doi.org/10.1007/s10851-018-0787-z
https://doi.org/10.1137/15M1018460
https://doi.org/10.1007/s00211-010-0305-8
http://dx.doi.org/10.1007/s11263-010-0331-0
https://doi.org/10.1007/BF01258291
https://doi.org/10.1007/BF01258291
http://dx.doi.org/10.1007/s00791-006-0016-y
http://dx.doi.org/10.1523/JNEUROSCI.17-06-02112.1997
http://dx.doi.org/10.4310/CMS.2018.v16.n4.a7
http://dx.doi.org/10.4310/CMS.2018.v16.n4.a7

Jean-Marie Mirebeau, Jorg Portegies

[11] E. Caruyer, A. Daducci, M. Descoteaux, J-C. Houde, J-P. Thiran, and R. Verma,
Phantomas: a flexible software library to simulate diffusion MR phantoms, May 2014.

[12] D. Chen, L. D. Cohen, and J. M. Mirebeau, Vessel extraction using anisotropic minimal
paths and path score, in IEEE International Conference on Image Processing (ICIP), 2014,
pp. 1570–1574. https://doi.org/10.1109/ICIP.2014.7025314.

[13] D. Chen, J-M. Mirebeau, and L.D. Cohen, Finsler Geodesics Evolution Model for Region
based Active Contours., in Proceedings of the British Machine Vision Conference (BMVC), 2016.
https://dx.doi.org/10.5244/C.30.22.

[14] D. Chen, J-M. Mirebeau, and Laurent D. Cohen, A New Finsler Minimal Path Model
With Curvature Penalization for Image Segmentation and Closed Contour Detection, Computer
Vision and Pattern Recognition (CVPR), (2016), pp. 355–363. http://dx.doi.org/10.1109/

CVPR.2016.45.

[15] D. Chen, J-M. Mirebeau, and L. D. Cohen, Vessel tree extraction using radius-lifted key-
points searching scheme and anisotropic fast marching method, Journal of Algorithms & Compu-
tational Technology, 10 (2016), pp. 224–234. https://doi.org/10.1177/1748301816656289.

[16] L.D Cohen and R. Kimmel, Global minimum for active contour models: A minimal path
approach, International Journal of Computer Vision, 24 (1997), pp. 57–78. http://dx.doi.

org/10.1109/CVPR.1996.517144.

[17] A. Daducci, E. J. Canales-Rodriguez, M. Descoteaux, E. Garyfallidis, Y. Gur,
Y. C. Lin, M. Mani, S. Merlet, M. Paquette, A. Ramirez-Manzanares, M. Reisert,
P. R. Rodrigues, F. Sepehrband, E. Caruyer, J. Choupan, R. Deriche, M. Jacob,
G. Menegaz, V. Prčkovska, M. Rivera, Y. Wiaux, and J. P. Thiran, Quantitative
Comparison of Reconstruction Methods for Intra-Voxel Fiber Recovery From Diffusion MRI,
IEEE Transactions on Medical Imaging, 33 (2014), pp. 384–399. https://doi.org/10.1109/

TMI.2013.2285500.

[18] E.W. Dijkstra, A short introduction to the art of programming, vol. 4, Technische Hogeschool
Eindhoven Eindhoven, 1971.

[19] L. E. Dubins, On Curves of Minimal Length with a Constraint on Average Curvature, and with
Prescribed Initial and Terminal Positions and Tangents, American Journal of Mathematics, 79
(1957), pp. 497–516. https://doi.org/10.2307/2372560.

[20] R. Duits, U. Boscain, F. Rossi, and Y. Sachkov, Association Fields via Cuspless Sub-
Riemannian Geodesics in SE(2), Journal of Mathematical Imaging and Vision, 49 (2013),
pp. 384–417. https://doi.org/10.1007/s10851-013-0475-y.

[21] R. Duits, M. Felsberg, G. Granlund, and B. ter Haar Romeny, Image Analysis
and Reconstruction using a Wavelet Transform Constructed from a Reducible Representation of
the Euclidean Motion Group, International Journal of Computer Vision, 72 (2007), pp. 79–102.
https://doi.org/10.1007/s11263-006-8894-5.

[22] R. Duits, S.P.L. Meesters, J-M. Mirebeau, and J.M. Portegies, Optimal Paths
for Variants of the 2D and 3D Reeds-Shepp Car with Applications in Image Analysis,
arXiv:1612.06137 [math], (2016). arXiv: 1612.06137.

90

https://doi.org/10.1109/ICIP.2014.7025314
https://dx.doi.org/10.5244/C.30.22
http://dx.doi.org/10.1109/CVPR.2016.45
http://dx.doi.org/10.1109/CVPR.2016.45
https://doi.org/10.1177/1748301816656289
http://dx.doi.org/10.1109/CVPR.1996.517144
http://dx.doi.org/10.1109/CVPR.1996.517144
https://doi.org/10.1109/TMI.2013.2285500
https://doi.org/10.1109/TMI.2013.2285500
https://doi.org/10.2307/2372560
https://doi.org/10.1007/s10851-013-0475-y
https://doi.org/10.1007/s11263-006-8894-5

Hamiltonian Fast Marching: A Numerical Solver for Anisotropic and Non-Holonomic Eikonal PDEs

[23] J. Fehrenbach and J-M. Mirebeau, Sparse non-negative stencils for anisotropic diffusion,
Journal of Mathematical Imaging and Vision, 49 (2014), pp. 123–147. http://dx.doi.org/10.
1007/s10851-013-0446-3.

[24] B. Franceschiello, A. Mashtakov, G. Citti, and A. Sarti, Modelling of the Poggen-
dorff Illusion via Sub-Riemannian Geodesics in the Roto-Translation Group, in International
Conference on Image Analysis and Processing, Springer, 2017, pp. 37–47. http://dx.doi.org/
10.1007/978-3-319-70742-6_4.

[25] A. Fuster, T. Dela Haije, A. Tristán-Vega, B. Plantinga, C-F. Westin, and
L. Florack, Adjugate Diffusion Tensors for Geodesic Tractography in White Matter, Jour-
nal of Mathematical Imaging and Vision, 54 (2016), pp. 1–14. https://doi.org/10.1007/

s10851-015-0586-8.

[26] A. Griewank and A. Walther, Evaluating Derivatives, Principles and Techniques of Al-
gorithmic Differentiation, Society for Industrial and Applied Mathematics, 2008. https:

//doi.org/10.1137/1.9780898717761.bm.

[27] S. Jbabdi, P. Bellec, R. Toro, J. Daunizeau, M. Pélégrini-Issac, and H. Benali,
Accurate anisotropic fast marching for diffusion-based geodesic tractography, Journal of Biomed-
ical Imaging, 2008 (2008), pp. 2–12. https://doi.org/10.1155/2008/320195.

[28] M. Kass, A. Witkin, and D. Terzopoulos, Snakes: Active contour models, International
Journal of Computer Vision, 1 (1988), pp. 321–331. https://doi.org/10.1007/BF00133570.

[29] R. Kimmel and J.A. Sethian, Computing geodesic paths on manifolds, Proceedings of the
National Academy of Sciences, 95 (1998), pp. 8431–8435. http://dx.doi.org/10.1073/pnas.
95.15.8431.

[30] J-C. Latombe, Robot motion planning, vol. 124, Springer Science and Business Media, 2012.
http://dx.doi.org/10.1007/978-1-4615-4022-9.

[31] H. Li and A. Yezzi, Vessels as 4-D curves: Global minimal 4-D paths to extract 3-D tubular
surfaces and centrelines, IEEE Transactions on Medical Imaging, 26 (2007), pp. 1213–1223.
http://dx.doi.org/10.1109/TMI.2007.903696.

[32] W. Liao, K. Rohr, and S. Wörz, Globally Optimal Curvature-Regularized Fast Marching For
Vessel Segmentation, 2013, pp. 550–557. http://dx.doi.org/10.1007/978-3-642-40811-3_

69.

[33] A. Mashtakov, R. Duits, Yu Sachkov, E. J. Bekkers, and I. Beschastnyi, Tracking
of Lines in Spherical Images via Sub-Riemannian Geodesics in SO(3), Journal of Mathematical
Imaging and Vision, (2017), pp. 1–26. https://doi.org/10.1007/s10851-017-0705-9.

[34] J. Melonakos, E. Pichon, S. Angenent, and A. Tannenbaum, Finsler Active Con-
tours, IEEE Transactions on Pattern Analysis and Machine Intelligence, 30 (2008), pp. 412–423.
https://doi.org/10.1109/TPAMI.2007.70713.

[35] J-M. Mirebeau, Efficient fast marching with Finsler metrics, Numerische Mathematik, 126
(2013), pp. 515–557. https://doi.org/10.1007/s00211-013-0571-3.

[36] , Anisotropic Fast-Marching on Cartesian Grids Using Lattice Basis Reduction, SIAM Jour-
nal on Numerical Analysis, 52 (2014), pp. 1573–1599. https://doi.org/10.1137/120861667.

91

http://dx.doi.org/10.1007/s10851-013-0446-3
http://dx.doi.org/10.1007/s10851-013-0446-3
http://dx.doi.org/10.1007/978-3-319-70742-6_4
http://dx.doi.org/10.1007/978-3-319-70742-6_4
https://doi.org/10.1007/s10851-015-0586-8
https://doi.org/10.1007/s10851-015-0586-8
https://doi.org/10.1137/1.9780898717761.bm
https://doi.org/10.1137/1.9780898717761.bm
https://doi.org/10.1155/2008/320195
https://doi.org/10.1007/BF00133570
http://dx.doi.org/10.1073/pnas.95.15.8431
http://dx.doi.org/10.1073/pnas.95.15.8431
http://dx.doi.org/10.1007/978-1-4615-4022-9
http://dx.doi.org/10.1109/TMI.2007.903696
http://dx.doi.org/10.1007/978-3-642-40811-3_69
http://dx.doi.org/10.1007/978-3-642-40811-3_69
https://doi.org/10.1007/s10851-017-0705-9
https://doi.org/10.1109/TPAMI.2007.70713
https://doi.org/10.1007/s00211-013-0571-3
https://doi.org/10.1137/120861667

Jean-Marie Mirebeau, Jorg Portegies

[37] , Anisotropic Fast Marching in ITK, The Insight Journal, (2015). http://hdl.handle.

net/10380/3518.

[38] , Minimal stencils for discretizations of anisotropic PDEs preserving causality or the max-
imum principle, SIAM Journal on Numerical Analysis, 54 (2016), pp. 1582–1611. http:

//dx.doi.org/10.1137/16M1064854.

[39] , Fast Marching methods for Curvature Penalized Shortest Paths, Journal of Mathematical
Imaging and Vision, (2017). http://dx.doi.org/10.1007/s10851-017-0778-5.

[40] , Riemannian fast-marching on cartesian grids using Voronoi’s first reduction of quadratic
forms. 2017.

[41] J-M. Mirebeau and J. Dreo, Automatic differentiation of non-holonomic fast marching for
computing most threatening trajectories under sensors surveillance, in Geometrical Science of
Information, 2017. http://dx.doi.org/10.1007/978-3-319-68445-1_91.

[42] R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications,
American Mathematical Society, Aug. 2006. http://dx.doi.org/10.1090/surv/091.

[43] D. Mumford, Elastica and computer vision, in Algebraic Geometry and its Applications,
Springer, 1994, pp. 491–506. http://dx.doi.org/10.1007/978-1-4612-2628-4_31.

[44] P.Q. Nguyen and D. Stehlé, Low-dimensional lattice basis reduction revisited, in ANTS,
Springer, 2004, pp. 338–357. http://dx.doi.org/10.1007/978-3-540-24847-7_26.

[45] A.M. Oberman, Convergent Difference Schemes for Degenerate Elliptic and Parabolic Equa-
tions: Hamilton-Jacobi Equations and Free Boundary Problems, SIAM Journal on Numerical
Analysis, 44 (2006), pp. 879–895. https://doi.org/10.1137/S0036142903435235.

[46] M. Pechaud, R. Keriven, and G. Peyré, Extraction of tubular structures over an orien-
tation domain, in IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition Workshops (CVPR Workshops), IEEE, 2009, pp. 336–342. https://doi.org/10.1109/
CVPR.2009.5206782.

[47] J. Petitot, The neurogeometry of pinwheels as a sub-Riemannian contact structure, Journal of
Physiology-Paris, 97 (2003), pp. 265–309. http://dx.doi.org/10.1016/j.jphysparis.2003.
10.010.

[48] G. Peyré, M. Péchaud, R. Keriven, and L.D. Cohen, Geodesic Methods in Computer
Vision and Graphics, CGV, 5 (2010), pp. 197–397. https://doi.org/10.1561/0600000029.

[49] G. Randers, On an Asymmetrical Metric in the Four-Space of General Relativity, Physical
Review, 59 (1941), pp. 195–199. https://doi.org/10.1103/PhysRev.59.195.

[50] J. A. Reeds and L. A. Shepp, Optimal paths for a car that goes both forwards and backwards.,
Pacific Journal of Mathematics, 145 (1990), pp. 367–393. http://dx.doi.org/10.2140/pjm.

1990.145.367.

[51] E. Rouy and A. Tourin, A Viscosity Solutions Approach to Shape-From-Shading, SIAM
Journal on Numerical Analysis, 29 (1992), pp. 867–884. http://dx.doi.org/10.1137/0729053.

92

http://hdl.handle.net/10380/3518
http://hdl.handle.net/10380/3518
http://dx.doi.org/10.1137/16M1064854
http://dx.doi.org/10.1137/16M1064854
http://dx.doi.org/10.1007/s10851-017-0778-5
http://dx.doi.org/10.1007/978-3-319-68445-1_91
http://dx.doi.org/10.1090/surv/091
http://dx.doi.org/10.1007/978-1-4612-2628-4_31
http://dx.doi.org/10.1007/978-3-540-24847-7_26
https://doi.org/10.1137/S0036142903435235
https://doi.org/10.1109/CVPR.2009.5206782
https://doi.org/10.1109/CVPR.2009.5206782
http://dx.doi.org/10.1016/j.jphysparis.2003.10.010
http://dx.doi.org/10.1016/j.jphysparis.2003.10.010
https://doi.org/10.1561/0600000029
https://doi.org/10.1103/PhysRev.59.195
http://dx.doi.org/10.2140/pjm.1990.145.367
http://dx.doi.org/10.2140/pjm.1990.145.367
http://dx.doi.org/10.1137/0729053

Hamiltonian Fast Marching: A Numerical Solver for Anisotropic and Non-Holonomic Eikonal PDEs

[52] G.R. Sanguinetti, E.J. Bekkers, R. Duits, M.H.J. Janssen, A. Mashtakov, and J-
M. Mirebeau, Sub-Riemannian Fast Marching in SE(2), in Progress in Pattern Recognition,
Image Analysis, Computer Vision, and Applications, no. 9423 in Lecture Notes in Computer
Science, Springer International Publishing, 2015, pp. 366–374. http://dx.doi.org/10.1007/

978-3-319-25751-8_44.

[53] M. Schober, N. Kasenburg, A. Feragen, P. Hennig, and S. Hauberg, Probabilistic
Shortest Path Tractography in DTI. Using Gaussian Process ODE Solvers, in Medical Image
Computing and Computer-Assisted Intervention – MICCAI, Springer, Cham, Cham, Sept. 2014,
pp. 265–272. https://doi.org/10.1007/978-3-319-10443-0_34.

[54] A. Schürmann, Computational geometry of positive definite quadratic forms, University Lec-
ture Series, 49 (2009). http://dx.doi.org/10.1090/ulect/048.

[55] E. Selling, Ueber die binären und ternären quadratischen Formen., Journal fur die Reine und
Angewandte Mathematik, 77 (1874), pp. 143–229. https://eudml.org/doc/148235.

[56] J.A. Sethian, A fast marching level set method for monotonically advancing fronts, Proceedings
of the National Academy of Sciences, 93 (1996), pp. 1591–1595. http://dx.doi.org/10.1073/
pnas.93.4.1591.

[57] , Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Ge-
ometry, Fluid Mechanics, Computer Vision, and Materials Science ... on Applied and Compu-
tational Mathematics), Cambridge University Press, Cambridge, U.K. ; New York, 2 edition ed.,
June 1999. ISBN 978-0-521-64557-7.

[58] J.A. Sethian and A. Vladimirsky, Ordered upwind methods for static Hamilton–Jacobi
equations, PNAS, 98 (2001), pp. 11069–11074. https://doi.org/10.1073/pnas.201222998.

[59] P. Strandmark, J. Ulen, F. Kahl, and L. Grady, Shortest Paths with Curvature and
Torsion, in IEEE International Conference on Computer Vision (ICCV), IEEE, 2013, pp. 2024–
2031. https://doi.org/10.1109/ICCV.2013.253.

[60] J-D. Tournier, F. Calamante, and A. Connelly, Robust determination of the fibre orien-
tation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical decon-
volution, NeuroImage, 35 (2007), pp. 1459–1472. https://doi.org/10.1016/j.neuroimage.

2007.02.016.

[61] J. N. Tsitsiklis, Efficient algorithms for globally optimal trajectories, IEEE Transactions on
Automatic Control, 40 (1995), pp. 1528–1538. https://doi.org/10.1109/9.412624.

[62] A. Vladimirsky, Label-setting methods for Multimode Stochastic Shortest Path problems on
graphs, Mathematics of Operations Research, 33 (2008), pp. 821–838. http://dx.doi.org/10.
1287/moor.1080.0321.

[63] A. Vladimirsky and C.i Zheng, A fast implicit method for time-dependent Hamilton-Jacobi
PDEs, arXiv.org, (2013). http://arxiv.org/abs/1306.3506.

[64] C. Zach, L. Shan, and M. Niethammer, Globally Optimal Finsler Active Con-
tours., in DAGM-Symposium, Springer, 2009, pp. 552–561. http://dx.doi.org/10.1007/

978-3-642-03798-6_56.

[65] H. Zhao, A fast sweeping method for eikonal equations, Mathematics of Computation, (2005).
http://dx.doi.org/10.1090/S0025-5718-04-01678-3.

93

http://dx.doi.org/10.1007/978-3-319-25751-8_44
http://dx.doi.org/10.1007/978-3-319-25751-8_44
https://doi.org/10.1007/978-3-319-10443-0_34
http://dx.doi.org/10.1090/ulect/048
https://eudml.org/doc/148235
http://dx.doi.org/10.1073/pnas.93.4.1591
http://dx.doi.org/10.1073/pnas.93.4.1591
https://doi.org/10.1073/pnas.201222998
https://doi.org/10.1109/ICCV.2013.253
https://doi.org/10.1016/j.neuroimage.2007.02.016
https://doi.org/10.1016/j.neuroimage.2007.02.016
https://doi.org/10.1109/9.412624
http://dx.doi.org/10.1287/moor.1080.0321
http://dx.doi.org/10.1287/moor.1080.0321
http://arxiv.org/abs/1306.3506
http://dx.doi.org/10.1007/978-3-642-03798-6_56
http://dx.doi.org/10.1007/978-3-642-03798-6_56
http://dx.doi.org/10.1090/S0025-5718-04-01678-3

	Introduction
	Curve Optimization Via Eikonal PDEs
	Isotropic, Anisotropic and Non-Holonomic Metrics
	An Eulerian and Causal Discretization of the Eikonal Equation
	Applications to Image Processing and Motion Planning

	Expression of the Hamiltonian
	Dijkstra's Algorithm
	Isotropic Metrics
	Riemannian Metrics, and Sub-Riemannian Approximations
	Curvature Penalized Models

	Implementation
	Fast Marching
	Stencils and Reversed Stencils
	Elementary Update
	Memory Usage

	Geodesic Extraction
	Modified Euler Method using Upwind Gradients
	Diffuse Geodesics and Reverse Algorithmic Differentiation

	Sensitivity Analysis
	Inputs and Outputs of the Differentiation Methods
	Algorithmic Strategy

	Numerical Experiments
	Base Functionalities, with an Isotropic Metric
	Automatic Differentiation
	Riemannian Metrics
	Planar Curvature Penalization
	Reeds-Shepp Models in R3 S2

	Selected Applications
	An Interpretation of Poggendorff's Visual Illusions
	Motion Planning
	Tubular Structure Segmentation
	Segmentation in 3D DMRI Data

	Conclusion
	Dual Metric for Curvature Penalization
	Selling's Algorithm
	Norm of the Geodesic Flow
	Axes Ordering and Pixel Area

