
Published in Image Processing On Line on 2019–06–13.
Submitted on 2018–04–12, accepted on 2019–04–10.
ISSN 2105–1232 c© 2019 IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
https://doi.org/10.5201/ipol.2019.226

2
0
1
5
/
0
6
/
1
6

v
0
.5
.1

IP
O
L

a
rt
ic
le

c
la
ss

Implementation of a Denoising Algorithm Based on

High-Order Singular Value Decomposition of Tensors

Fabien Feschet

Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
(fabien.feschet@dg-medical.fr)

Abstract

This article presents an implementation of a denoising algorithm based on High-Order Singular
Value Decomposition (HOSVD) of tensors. It belongs to the class of patch-based methods such
as BM3D and NL-Bayes. It exploits the grouping of similar patches in a local neighborhood
into a 3D matrix also called a third order tensor. Instead of performing a different processing
in each dimension, as in BM3D for instance, it is based on the decomposition of a tensor
simultaneously in all dimensions reducing it to a core tensor in a similar way as SVD does for
matrices in computing the diagonal matrix of singular values. The core tensor is filtered and a
tensor is reconstructed by inverting the HOSVD. As it is common in patch-based algorithms,
all tensors containing a pixel are then merged to produce an output image.

Source Code

The C++ source code, the code documentation, and the online demo are accessible at the IPOL
web page of this article.1 Compilation and usage instructions are included in the README.txt

file of the archive.

Keywords: denoising; sparsity; adaptive grouping; tensor; high-order singular value decompo-
sition

1 Introduction

Denoising an image is one of the most studied problems in image processing due to its need in a wide
variety of situations [15]. The simplest model for this problem considers the observed image being
given as

observation [I] = image [Iclean] + noise [η] . (1)

The model assumes additive noise and also assumes independence between clean image and noise.
Usually the noise is supposed to be Gaussian with mean 0 and variance σ2 which is considered as an
unknown of the problem. However, to study the denoising performance of an algorithm, we manage

1https://doi.org/10.5201/ipol.2019.226

Fabien Feschet, Implementation of a Denoising Algorithm Based on High-Order Singular Value Decomposition of Tensors, Image Processing
On Line, 9 (2019), pp. 158–182. https://doi.org/10.5201/ipol.2019.226

https://doi.org/10.5201/ipol
https://doi.org/10.5201/ipol
http://creativecommons.org/licenses/by-nc-sa/3.0/
https://doi.org/10.5201/ipol.2019.226
https://doi.org/10.5201/ipol.2019.226
https://doi.org/10.5201/ipol.2019.226

Implementation of a Denoising Algorithm Based on High-Order Singular Value Decomposition of Tensors

to fix the variance and the clean image Iclean is known. So, in the paper, σ is supposed to be known
while it has to be estimated in practice. Many approaches have been proposed to solve the denoising
problem either using Fourier transform [20], wavelets [5] or in the spatial domain [1, 18]. Two
state-of-the-art methods are BM3D [4] and NL-Bayes [2], both called patch-based methods. Such
methods use the principle of grouping similar small size patches in a local neighborhood, resulting
in a three dimensional array of patches called a tensor. Then, either space-domain or transform-
domain approaches are used on the group to denoise every patch. The grouping of patches allows
collaborative-filtering and requires averaging, since any pixel of the image belongs to several patches.
Having obtained a first estimation of the clean image Iclean, a final estimation is computed using either
Wiener filtering for BM3D or collaborative filtering for NL-Bayes. This idea of iterative denoising
is not new and also leads to methods like SOS Boosting [17] or DDID [7] and DA3D [14]. One of
the drawbacks of iterative denoising is the tendency to oversmooth the denoised image due to the
regularity principle used in the iterations.

In the present paper, we propose and discuss an implementation of another patch-based denoising
algorithm presented by A. Rajwade et al. [16] and based on the theory of tensor decompositions [3].
The idea of this algorithm is that tensors, intuitively multi-dimensional matrices, offer the possibility
to deal with a patch-grouping as a whole and thus to avoid performing different processings on
different dimensions. The chosen decomposition is called HOSVD for High-Order Singular Value
Decomposition. As the SVD does for matrices, the HOSVD computes a core tensor from a tensor
and this core tensor can be manipulated for instance through a threshold transform. Since the
HOSVD is easily invertible, the modified core tensor permits to reconstruct an approximate tensor
of a patch-group which is the denoised tensor of the group. Rajwade et al. [16] also performed a
second step, a Wiener-like filtering, to increase the PSNR and compared their algorithm with BM3D.
In this paper, we compare with both BM3D and NL-Bayes using the implementation given in IPOL
papers [9, 10]. We used the PSNR measure as it provides fast and reproducible comparisons of
algorithms on the same images. We also focus on some artifacts arising in color image denoising to
evaluate the use-case of the HOSVD algorithm. It must be noted that other tensor decompositions
are available [3] but they are not taken into account in this paper.

Theoretical aspects of the denoising performance can also be tackled in the context of Oracle
Denoising [11]. The work [16] and of Milanfar et al. [11] have been applied to two different contexts
in Oracle denoising. Recall that Oracle denoising is based on knowledge of the clean image and
thus cannot lead to practical algorithms. However, it permits to recover the best performances of
denoising procedures and as such can be used as a gold standard. In [16] the Oracle denoising was
based on the singular value decomposition of (clean) patches such that the singular vectors were
perfectly known. Then, noisy patches were projected on the basis given by the singular vectors and
classical manipulation, like hard thresholding, was performed on the noisy singular values. This led
to far better denoising performances than any state-of-the-art methods. In [11] a different approach
was taken. Given a denoising operator, written as a linear operator, the MSE performances between
denoised image and true image was minimized. This led to the determination of the best shrinking
operation on the eigenvalues of the operator so as to minimize MSE.

The paper is organized as follows. The main algorithm is presented in Section 2. The performance
of this algorithm is compared with BM3D and NL-Bayes in Section 3 and the parameters of the
HOSVD algorithm are studied in Section 4. Extensions are given using DA3D, SOS Boosting and we
provide an Oracle-based denoising scenario in Section 5. Finally, we conclude the paper in Section 6.

159

Fabien Feschet

2 Description of the Algorithm

The description of the HOSVD-based denoising algorithm follows the presentation given in [16]. We
refer to the work of Cichocki et al [3] for tensor decompositions. The acronym HOSVD is called Multi-
linear SVD (or MLSVD) in [3] since it is now the acceptable name for the HOSVD first presented
in [8]. We first present the tensors, then the HOSVD is introduced. After that, we provide the
presentation of the algorithm given in [16] including the Wiener-like second step denoising. We then
provide some remarks on the implementation that permit to avoid useless transforms in the code.

2.1 A Short Introduction to Tensors

Usual matrices are referred to as two-dimensional arrays since their indices are fully described by
subsets of N2. This construction can obviously be extended providing higher dimensional indexing
of the elements of arrays. Tensors are simply the generic term for multi-dimensional arrays. The
order of a tensor is the dimension of its indexing set. A real tensor T of order N hence belongs to
RI1×···×IN and its elements or entries are t(i1, · · · , iN). By definition, order one tensors are vectors
and order two tensors are matrices. A subtensor is a tensor having as indexes set a subset of the
tensor indexes set. The order of a subtensor is the number of non constant dimensions.

I2

I1

I3

Figure 1: Fibers in all possible dimensions for a 3 dimensional tensor.

Fibers are order one subtensors using the whole set of indices for the solely varying dimension
(see Figure 1). Hence for T ∈ RI1×···×IN , a fiber is a tensor whose elements are t(i1, · · · , :, · · · , iN)
such that all dimensions except one is fixed.

I2

I1

I3

Figure 2: Slices for all possible pairs of dimensions for a 3 dimensional tensor.

A slice or matrix slice is an order two subtensor also having all indices in the non constant
dimensions (see Figure 2). So, from a tensor, we can extract matrices by fixing all dimensions except
two. A tensor slice is an order k subtensor where k > 2 dimensions are not fixed, still using all
indices in the varying dimensions.

When defining operators like sum and product of tensors, care must be taken over the dimensions
of the involved tensors and the definitions must be coherent with classical sum of vectors and matrices
and classical vector product, matrix-vector product and matrix-matrix product. This is done by

160

Implementation of a Denoising Algorithm Based on High-Order Singular Value Decomposition of Tensors

reshaping tensors, that is rewriting all elements of a tensor into a tensor of different order. The
used terms are folding and unfolding, where the latter flattens a tensor into a matrix. Mode-
n unfolding (or matricization) of T ∈ RI1×···×IN yields a matrix T(n) ∈ RIn×(I1···In−1In+1···IN) with
entries t(in, j1 · · · jn−1jn+1 · · · jN) where the second index is the lexicographic or reverse lexicographic
ordering of all dimensions except n. To see why those transforms help in defining operators which
coincide with classical matrix operators, we might recall that when performing the product of two
matrices (see Figure 3 left), each entry of the resulting matrix is a dot product uvt where u is a (line)
vector and v a column vector. Using fibers (see Figure 3 right), this dot product might be extended
to the product of any pair of fibers of two tensors. Hence, the folding and unfolding operators permit
to look only at the case of the operator between a tensor and a matrix, possibly obtained by folding,
and where lengths coincide.

(left) (right)

Figure 3: (left) matrix product is a series of dot products. (right) Dot product is perfectly valid between fibers having the
same length.

The mode-n product of T ∈ RI1×···×IN and M ∈ RJn×In gives P ∈ RI1×···×Jn×···×IN with
p(i1, · · · , in−1, j, in+1, · · · , iN) =

∑In
in=1 t(i1, · · · , in−1, in, in+1, · · · , iN)b(j, in) and is noted P = T ×n M .

Using unfolding, we remark that this implies that P(n) = MT(n). For instance, when A and U are
matrices, A ×1 U = UA and A ×2 U = AUT . Moreover, for n 6= m and tensor A and matrices U
and V , we have A ×m U ×n V = A ×n V ×m U . When n = m, care must be taken and we have
A×n U ×n V = A×n (UV).

The full multi-linear product of a tensor T and a family of matrices B(i) is the generalization
of the mode-n product to one matrix per dimension (see Figure 3 in [3]) as

JT ;B(1), . . . , B(N)K = T ×1 B(1) ×2 B(2) . . . ×N B(N) .

The classical Kronecker product is also used and is defined as follows. K = M ⊗N with M ∈
RI1×I2 and N ∈ RJ1×J2 giving K ∈ RI1J1×I2J2 with k((i1−1)J1+j1, (i2−1)J2+j2) = m(i1, i2)n(j1, j2).

2.2 HOSVD Decomposition

To introduce the HOSVD decomposition, it is necessary to introduce first the Tucker decomposi-
tion [19]. Indeed, HOSVD is only a special case of the Tucker decomposition. Let T ∈ RI1×···×IN be
a given tensor. The Tucker decomposition of T is

T = JS;B(1), . . . , B(N)K = S ×1 B(1) ×2 B(2) . . . ×N B(N) ,

where S is called the core-tensor and B(n) are called the mode-n component matrices. This decom-
position can always be computed. Using mode-n unfolding, it can be written as

T(n) = B(n)S(n)

(
B(1) ⊗ . . . B(n−1) ⊗B(n+1) ⊗ . . . B(N)

)T
.

161

Fabien Feschet

The HOSVD is then a Tucker decomposition where all mode-n component matrices B(n) are
orthogonal and the core tensor S is all orthogonal. A tensor is said to be all orthogonal if the
following two conditions are satisfied:

1. Slices in each mode are mutually orthogonal,

2. The Frobenius norm of slices in each mode are decreasing with the increase of the running
index.

In practice, HOSVD is computed using classical SVD. Indeed, let us denote by

T = JS;U (1), . . . , U (N)KHOSVD ,

the HOSVD decomposition of tensor T . Then for each mode-n unfolding of T , we can compute its

SVD leading to T(n) = U (n)ΣnV
(n)T . Then, the core tensor is computed using

S = JT ;U (1)T , . . . , U (N)T K .

2.3 HOSVD-Based Denoising Algorithm

Building a denoising algorithm based on the HOSVD relies on the construction of a tensor. Patch-
based methods are well suited for this construction, which is why the method proposed by A. Rajwade
et al [16] is based upon tensors built from local patches. Indeed, as in other patch-based methods (see
Figure 3 in [9] or Section 3.3 Grouping in [10]), the idea is the following. For a given p× p reference
patch Pref, a window around it is considered as well as all p× p patches P inside the window. This
is done in order to keep the search for local similarity in a neighborhood of the reference patch. We
define the similarity or distance between two patches by their normalized L2 distance. A threshold
is fixed on the distances as τd = 3σ2p2. Every patch P such that || Pref − P ||> τd is not considered
in the sequel. So, after computing the distances for all patches in the window around Pref, we have
an ordered list, in increasing distance ordering, of all patches in the window. This list is cut if it
contains more than Kmax patches where Kmax is a global constant. Hence, due to the threshold, the
number of patches kept is at most Kmax, including the reference patch. This number is denoted by
K and depends on the reference patch.

From this collection of K patches, it is easy to build a tensor, simply by collecting the patches
along the third dimension of the tensor and keeping the patches as slices with respect to the first two
dimensions of the tensor. So, we have a tensor T ∈ Rp×p×K . This corresponds obviously to the fact
that each pixel value is coded in one dimension, thus corresponding to gray level images. For color
images, the computed tensor has four dimensions, the third one being the color coding and the last
one the K patches such that Tcolor ∈ Rp×p×3×K . This is an advantage of tensors: for multi-components
images nothing must be modified in the algorithm. For the explanation of the algorithm, the gray
level case is described but readily the algorithm extends to the color case without any change.

The next step computes the HOSVD decomposition of T leading to

T = JS;U (1), . . . , U (N)KHOSVD .

The matrices U (n) are unaffected by the algorithm to ensure the inversion of the transform. Only the
core tensor S is modified. Following [5], a hard threshold is applied on the entries of S, the threshold
being chosen as σ

√
2 log p2K. This leads to the core tensor Sth. Then a tensor is built by inverting

the HOSVD

JSth;U (1), . . . , U (N)K = Tth .

162

Implementation of a Denoising Algorithm Based on High-Order Singular Value Decomposition of Tensors

The algorithm is repeated for all reference patches and then an averaging of the overlapping Tth
is performed as in other patch-based denoising algorithms. A second pass is also performed and
corresponds to applying a Wiener-like filtering. The idea is to use the result of the first pass of
HOSVD to decompose the patches so as to correct the estimation of the core of noisy patches with
respect to this first pass. This procedure is just a Wiener-like filtering but is not an optimal filter [12].
Hence, we must be aware that the gain obtained with this filtering might be lower than with the truly
optimal filter. We decided to keep this method because it is the one used in the original paper [16].
The second pass used the output of the first pass to perform the block matching with the same
threshold for similarity. The Wiener-like transform is given in the following equation (2) where ĉn
is the filtered core, ĉ is the core obtained with the image of the first pass and cn is the core of the
noisy image using the block matching on the output of the first pass.

ĉn = cn
ĉ

ĉ+ σ2
. (2)

2.4 A Remark on the Implementation

An efficient implementation of the algorithm must deal with the tensor representation of the collection
of similar patches. It should be noted that the HOSVD is computed from the SVD of the mode-n

unfolding of the tensor T . There are three unfoldings: T(1) = U (1)Σ1V
(1)T , T(2) = U (2)Σ2V

(2)T and

T(3) = U (3)Σ3V
(3)T . The main question is on the computation of the core tensor S. We can choose

any mode-n unfolding to perform the computation. For instance, using the mode-1 unfolding, we
have

T(1) = U (1)S(1)

(
U (2) ⊗ U (3)

)T
,

or in other words, since the Kronecker product of orthogonal matrices is itself an orthogonal matrix,

S(1) = U (1)TT(1)

(
U (2) ⊗ U (3)

)
,

recalling that (A ⊗ B)T = AT ⊗ BT and ATT
= A. Let us remark then that the threshold can be

performed either on the entries of the core tensor or on its mode-1 unfolding. Indeed, the mode-1
unfolding of the threshold of S is the threshold of the mode-1 unfolding of S since unfolding is just
reshaping a tensor. Hence, we can avoid representing the tensor and simply use its mode-1 unfolding
matricization. This permits to use libraries dedicated to matrices such as Eigen2 in the code. More
generally, in the whole code, we represent tensors by their mode-n unfolding. This is by far the most
efficient way to compute the HOSVD in a loop over all reference patches in the image.

2.5 Complexity Analysis

The detailed Algorithm 1 for HOSVD denoising contains two parts. In the first part, all denoised
tensors are computed using hard thresholding of the core tensor of similar patches. Then in a second
step, for each pixel of the output image, the tensors values at that pixel are simply averaged.

Let us first give the notations. The patch size is denoted by kHard in the code in a similar way as
in the IPOL BM3D implementation [9]. The similarity is searched in a window of size nHard around
the reference patch. The number of similar patches in this window is denoted by nSxr. Finally, chnls
is the number of channels in the image since grayscale images and color images must be processed
differently.

The complexity of Algorithm 1 is guided by the size of the patches and the number of channels
in the input image. Neglecting the pre-computation of the block matching, the algorithm needs to

2Eigen v3, G. Guennebaud and B. Jacob and others, 2010, http://eigen.tuxfamily.org

163

http://eigen.tuxfamily.org

Fabien Feschet

fill the four unfoldings in time proportional to the size of the tensor, that is : kHard2× nSxr× chnls.
Remember that nSxr is bounded by a fixed constant K set to 30 in the original paper [16]. This
bound is only justified by the computation time in the original implementation. Here, we also bound
nSxr in our implementation, even if it is a lot more faster than the original Matlab implementation
of [16] and set the default bound to be the original bound of 30.

Algorithm 1: HOSVD denoising

input : Inoisy: original image, σ
output: Idenoised: Denoised image
Set kHard = 8 //patch size

Precomputes Block matching with threshold: 3× chnls× σ2 × kHard2

//chnls is the number of channels (1 for grayscale image, 3 otherwise)

foreach pixel position (i, j) do
//nSxr is the number of similar patches to the patch at (i, j)

Define matrix unfold1(kHard,kHard× nSxr × chnls)
Define matrix unfold2(kHard,kHard× nSxr × chnls)
Define matrix unfold3(chnls,kHard2 × nSxr) // unused if chnls==1

Define matrix unfold4(nSxr,kHard2× chnls)
Fill unfold1, unfold2, unfold3 and unfold4 from Inoisy
Compute the SVD svdi of unfoldi

Define matrix U42
if chnls == 1 then

U42 = svd4.matrixU() ⊗ svd2.matrixU()

if chnls == 3 then
U42 = svd4.matrixU() ⊗ svd3.matrixU() ⊗ svd2.matrixU()

Define matrix core = svd1.matrixU()T × unfold1 × U42

Threshold core using
√

2× log(kHard2 × nSxr × chnls)

Store denoised tensor fromCore = svd1.matrixU() × core × U42T

Perform averaging of all overlapping patches to produce Idenoised

For the computations performed in the loop, the complexity of the SVD of a matrix of size m×n
is O(min{mn2,m2n}) [6]. Hence, using the definitions and sizes of the four unfoldings of the local
tensor, we obtain a complexity O(max{chnls×kHard4×nSx2

r, chnls2×kHard3×nSx2
r}). Considering

that the dependency over the number of channels in the image is not a primary concern, we obtain
a O(kHard4 × nSx2

r) complexity. This could be obviously changed for hyper spectral images when
the number of channels exceeds the size of kHard. The cost of Kronecker products is linked to the
sizes of U matrices in the SVD decompositions of the unfoldings. This gives O(kHard2 × nSx2

r) in
both cases. Since all tensors are represented by matrices, the cost of the × operator is simply the
cost of matrix-matrix multiplications. This leads to O(kHard3 × nSx2

r) for the computations of the
1-unfolding of the core tensor. The threshold operation and the inversion of the HOSVD obviously
have this complexity, neglecting the dependency over chnls. So the whole complexity is bounded by
O(nSx2

r × kHard4) for each pixel position (i, j).

3 Evaluation of the Algorithm

In this section, we provide a comparison between three algorithms on the same set of images given in
Table 1. Most of them are classical images. We added an image, the pupuce image of a cat because

164

Implementation of a Denoising Algorithm Based on High-Order Singular Value Decomposition of Tensors

it has some fast background color variations.

Table 1: Images used for the experiments.

The experimental process was as follows. First, for each image, the noise was added depending on
the σ value. Then, the noisy image was saved. All algorithms were tested with the same input noisy
image and with the same σ value which means that the results were comparable. PSNR and RMSE
were computed using an external program to ensure identical behavior for all three algorithms. In
the sequel since color image denoising is not comparable to gray level images denoising with respect
to σ, we decided to separate color experiments from gray level experiments. It should be also noted
that HOSVD has a high computation power demand and so is inherently slower than BM3D and
NL-Bayes. The latter was the fastest method in average.

3.1 Comparison with BM3D and NL-Bayes

We tested the three algorithms HOSVD, BM3D and NL-Bayes using their IPOL implementations
for the last two using the standard parameters given in the README file. To be fair we performed
all experiments in the OPP color space since both BM3D and NL-Bayes used it. Moreover, default
parameters for HOSVD were settled as in [16] and we postponed the tunning of HOSVD to the
next sections. All algorithms used the normalized L2 distances between patches. For HOSVD, the
block-matching computations were performed in all channels. Block-matching computations were
performed only in the O channel for BM3D. For NL-Bayes, only the O channel was used in basic
denoising while all channels were used in the full denoising for block-matching. In HOSVD, the
threshold bound, originally only given for the RGB space [16], was adapted to OPP by summing
σ2
channel over all channels to replace σ2 in the original formulation. Color images comparisons are

given in Figure 4 and gray level images comparisons are given in Figure 5.
Some comments can be done after those measurements. Globally, all algorithms performed well

in the low and medium noise scenarios. For low noise, HOSVD was sometimes better than BM3D

165

Fabien Feschet

30

35

40

45

5 15 25 35 45 55 65 75
Noise level

P
SN

R

BM3D basic
BM3D full

HOSVD basic
HOSVD full

NLBAYES basic
NLBAYES full

Dice

(a) Dice image.

20

25

30

35

5 15 25 35 45 55 65 75
Noise level

P
SN

R

BM3D basic
BM3D full

HOSVD basic
HOSVD full

NLBAYES basic
NLBAYES full

pupuce

(b) pupuce image.

24

28

32

36

40

5 15 25 35 45 55 65 75
Noise level

P
SN

R

BM3D basic
BM3D full

HOSVD basic
HOSVD full

NLBAYES basic
NLBAYES full

traffic

(c) traffic image.

20

25

30

35

5 15 25 35 45 55 65 75
Noise level

P
SN

R

BM3D basic
BM3D full

HOSVD basic
HOSVD full

NLBAYES basic
NLBAYES full

tree

(d) tree image.

25

30

35

5 15 25 35 45 55 65 75
Noise level

P
SN

R

BM3D basic
BM3D full

HOSVD basic
HOSVD full

NLBAYES basic
NLBAYES full

valdemossa

(e) valdemossa image.

Figure 4: Comparison of color images with respect to the noise level using basic and full steps.

and NL-Bayes. For medium noise, NL-Bayes was an interesting competitor. For high noise, BM3D
and NL-Bayes had nearly identical performances but NL-Bayes has less variations in its performance.
HOSVD was not competitive with high noise. It must be remarked that the gains in PSNR obtained
via the second step were rather different between all algorithms. As it can be seen in the Figures, the
Wiener step of HOSVD did not significantly improved performances. This is in conformance with

166

Implementation of a Denoising Algorithm Based on High-Order Singular Value Decomposition of Tensors

25

30

35

5 15 25 35 45 55 65 75
Noise level

P
SN

R

BM3D basic
BM3D full

HOSVD basic
HOSVD full

NLBAYES basic
NLBAYES full

barbara

(a) barbara image.

25

30

35

5 15 25 35 45 55 65 75
Noise level

P
SN

R

BM3D basic
BM3D full

HOSVD basic
HOSVD full

NLBAYES basic
NLBAYES full

lena

(b) lena image.

25

30

35

40

5 15 25 35 45 55 65 75
Noise level

P
SN

R

BM3D basic
BM3D full

HOSVD basic
HOSVD full

NLBAYES basic
NLBAYES full

maison

(c) maison image.

Figure 5: Comparison of gray level images with respect to the noise level using basic and full steps.

Rajade et al. [16]. We must recall that the Wiener step of HOSVD is only an approximate Wiener
and thus has rather low performance. For the traffic image, HOSVD has similar performance
than BM3D and NL-Bayes in all noise levels. Those comments are coherent with the results found
in [16] and we can conclude that when correctly parametrized, HOSVD might be competitive but
with default values it was not the case in average in the OPP color space.

With gray level images, the situation was easier to understand. Using the default parameters
of [16], HOSVD was not competitive in terms of PSNR. Globally also, BM3D was superior to NL-
Bayes in nearly all tests, especially in high noise.

To conclude, we must also add that the experiments were performed in the ideal scenario were
the noise did not suffer from quantization as the noisy images were saved without quantization. It
should be noted that the performances of all algorithms were rather different when quantization was

167

Fabien Feschet

applied to the noisy images. In practice, this should be taken into account.

3.2 Color Effects

In [16], it was also mentioned that the performance of BM3D suffered from color artifacts in high
noise conditions. So we study in this section, the behavior of the three algorithms on the tree image.
With this image, we want to test the robustness of all algorithms on a complex background. We only
provide experiments for two different values of the noise σ for which the behaviors of all algorithms
differed. It should be noticed that the color artifacts shown here are not specific of the tree image
but are also obtained for instance with the Dice image in the background or to a lesser extent in the
pupuce image on the cat (see Figure 12).

Figure 6: HOSVD basic and full (σ = 35)

Figure 7: BM3D basic and full (σ = 35)

Figure 8: NL-Bayes basic and full (σ = 35)

Images obtained with σ = 35 are given in Figure 6 for HOSVD, in Figure 7 for BM3D and in
Figure 8 for NL-Bayes. All computations are done in the OPP space.

With a higher level of noise (σ = 75 in Figures 9, 10 and 11), we can clearly observe that BM3D
looses its robustness with respect to the original colors. This artifact is neither present for HOSVD
nor for NL-Bayes. Moreover, we can observe why NL-Bayes is a clear winner. It is far better for
restoring details of the images. HOSVD is good at preserving the original contrast. NL-Bayes has a
tendency to produce flatten images, which explains partially its robustness.

168

Implementation of a Denoising Algorithm Based on High-Order Singular Value Decomposition of Tensors

Figure 9: HOSVD basic and full (σ = 75)

Figure 10: BM3D basic and full (σ = 75)

Figure 11: NL-Bayes basic and full (σ = 75)

Figure 12: BM3D full (σ = 75) resulting in erroneous colors.

169

Fabien Feschet

4 Study of the Parameters

Let us recall the list of parameters that might influence the performance of the algorithm:

• the color space, which can be RGB or OPP

• kHard, the size of any patch

• Kmax, the maximum number of similar patches in the block-matching computation

• nHard, the size of the search window for the similarity of patches

• the threshold for the similarity between patches,
initially fixed to 3× chnls× σ2 × kHard2

• the threshold for hard-thresholding of the core of the tensor,

initially fixed to
√

2× log(kHard2 × nSxr × chnls)

• the acceleration factor pHard, as in the BM3D implementation [9]

As usual, since it is useless to test the surface answer of the algorithm to a combination of all the
parameters, in the sequel, only one or two parameters were modified at a time and the others were
usually fixed using its original values [16]. Except for Section 4.1, all experiments were done in the
OPP color space.

4.1 Influence of Color Space

In [16], the RGB color space was used. However, both BM3D and NL-Bayes work in the OPP color
space. Hence, we studied the influence of the color space in the denoising performance. Results are
given in Figure 13.

Contrarily to what was found for BM3D, we found that HOSVD had better performances in the
RGB color space. Sometimes, the increase in PSNR was low, sometimes it had a mix impact on
PSNR. As we did not found any case were using the RGB color space led to a decrease in PSNR, we
must recommend its use for color image denoising.

4.2 Influence of kHard and Kmax

We decided to conduct an experiment where both kHard and Kmax varied. For each image, kHard
was varied from 5 to 11 and Kmax from 20 to 80. We selected four noise levels: low/moderate
(σ = 15), moderate (σ = 25) moderate/high (σ = 45) and high (σ = 75). Color images denoising
results are given in Figure 14 and results for gray level images are given in Figure 15.

For the Dice image, changing kHard had a significant impact for any Kmax. But this was the only
image for which it was the case (see Figure 14). As noted by an anonymous reviewer in a preliminary
version of this paper, it is however counter-intuitive to see that for high noise, lowering kHard still
had a positive influence on PSNR whatever Kmax was. The other images had a more interpretable
behavior with a low influence of kHard on the PSNR at the end of the full denoising. It seems that
always choosing a low kHard is not a bad advice despite the non reliability of the normalized L2

distances between patches for high noise.
The influence of Kmax can be assessed by looking at the PSNR with fixed kHard and varying

Kmax. It seems that Kmax should be chosen to be under 40 in all images. Increasing Kmax over 40
did not lead to an increase in the PSNR.

170

Implementation of a Denoising Algorithm Based on High-Order Singular Value Decomposition of Tensors

35

40

45

5 15 25 35 45 55 65 75
Noise level

P
SN

R

colorspace opp rgb

Dice

(a) Dice image.

25

30

35

5 15 25 35 45 55 65 75
Noise level

P
SN

R

colorspace opp rgb

pupuce

(b) pupuce image.

28

32

36

5 15 25 35 45 55 65 75
Noise level

P
SN

R

colorspace opp rgb

traffic

(c) traffic image.

20

25

30

35

5 15 25 35 45 55 65 75
Noise level

P
SN

R

colorspace opp rgb

tree

(d) tree image.

25

30

35

5 15 25 35 45 55 65 75
Noise level

P
SN

R

colorspace opp rgb

valdemossa

(e) valdemossa image.

Figure 13: color space influence for color images using full step.

20

30

40

60

80

5 7 8 9 11
kHard

K
 m

ax

40.5

41.0

41.5

PSNR

noise: 15

20

30

40

60

80

5 7 8 9 11
kHard

K
 m

ax

37.0
37.5
38.0
38.5
39.0

PSNR

noise: 25

20

30

40

60

80

5 7 8 9 11
kHard

K
 m

ax

33
34
35
36

PSNR

noise: 45

20

30

40

60

80

5 7 8 9 11
kHard

K
 m

ax

29
30
31
32
33

PSNR

noise: 75

(a) Dice image.

20

30

40

60

80

5 7 8 9 11
kHard

K
 m

ax

29.95
30.00
30.05
30.10
30.15

PSNR

noise: 15

20

30

40

60

80

5 7 8 9 11
kHard

K
 m

ax

27.15
27.20
27.25
27.30
27.35

PSNR

noise: 25

20

30

40

60

80

5 7 8 9 11
kHard

K
 m

ax
23.8
23.9
24.0
24.1
24.2

PSNR

noise: 45

20

30

40

60

80

5 7 8 9 11
kHard

K
 m

ax

21.2

21.4

21.6

PSNR

noise: 75

(b) pupuce image.

20

30

40

60

80

5 7 8 9 11
kHard

K
 m

ax

32.68
32.72
32.76
32.80

PSNR

noise: 15

20

30

40

60

80

5 7 8 9 11
kHard

K
 m

ax

29.7
29.8
29.9
30.0
30.1

PSNR

noise: 25

20

30

40

60

80

5 7 8 9 11
kHard

K
 m

ax

26.9
27.0
27.1
27.2

PSNR

noise: 45

20

30

40

60

80

5 7 8 9 11
kHard

K
 m

ax

24.4
24.6
24.8

PSNR

noise: 75

(c) traffic image.

20

30

40

60

80

5 7 8 9 11
kHard

K
 m

ax

28.31
28.33
28.35
28.37
28.39

PSNR

noise: 15

20

30

40

60

80

5 7 8 9 11
kHard

K
 m

ax

25.55

25.60

25.65
PSNR

noise: 25

20

30

40

60

80

5 7 8 9 11
kHard

K
 m

ax

22.3
22.5
22.7
22.9

PSNR

noise: 45

20

30

40

60

80

5 7 8 9 11
kHard

K
 m

ax

20.2
20.3
20.4
20.5
20.6
20.7

PSNR

noise: 75

(d) tree image.

20

30

40

60

80

5 7 8 9 11
kHard

K
 m

ax

30.90
30.95
31.00
31.05

PSNR

noise: 15

20

30

40

60

80

5 7 8 9 11
kHard

K
 m

ax

27.950
27.975
28.000
28.025
28.050
28.075

PSNR

noise: 25

20

30

40

60

80

5 7 8 9 11
kHard

K
 m

ax

24.8

24.9

25.0

PSNR

noise: 45

20

30

40

60

80

5 7 8 9 11
kHard

K
 m

ax

22.5

22.6

22.7

22.8

PSNR

noise: 75

(e) valdemossa image.

Figure 14: Influence of kHard and Kmax for color images using full step.

As seen in Figure 15, the behavior of HOSVD on gray level images was much more classical since
increasing kHard had a positive influence on the PSNR. Again choosing a high value Kmax did not

171

Fabien Feschet

20

30

40

60

80

5 7 8 9 11
kHard

K
 m

ax

30

31

32

PSNR

noise: 15

20

30

40

60

80

5 7 8 9 11
kHard

K
 m

ax
27
28
29
30

PSNR

noise: 25

20

30

40

60

80

5 7 8 9 11
kHard

K
 m

ax

22

24

26

PSNR

noise: 45

20

30

40

60

80

5 7 8 9 11
kHard

K
 m

ax

18

20

22

24
PSNR

noise: 75

(a) barbara image.

20

30

40

60

80

5 7 8 9 11
kHard

K
 m

ax

30.0
30.5
31.0
31.5

PSNR

noise: 15

20

30

40

60

80

5 7 8 9 11
kHard

K
 m

ax

26

27

28

29
PSNR

noise: 25

20

30

40

60

80

5 7 8 9 11
kHard

K
 m

ax

22
23
24
25
26

PSNR

noise: 45

20

30

40

60

80

5 7 8 9 11
kHard

K
 m

ax

18

20

22

PSNR

noise: 75

(b) lena image.

20

30

40

60

80

5 7 8 9 11
kHard

K
 m

ax

31
32
33
34

PSNR

noise: 15

20

30

40

60

80

5 7 8 9 11
kHard

K
 m

ax

27
28
29
30
31
32

PSNR

noise: 25

20

30

40

60

80

5 7 8 9 11
kHard

K
 m

ax

24

26

28

PSNR

noise: 45

20

30

40

60

80

5 7 8 9 11
kHard

K
 m

ax

20

22

24

PSNR

noise: 75

(c) maison image.

Figure 15: Influence of kHard and Kmax for gray level images using full step.

change the PSNR so a low value is acceptable for gray level images.

4.3 Influence of the Search Window Size

nHard is the half-size of the searching window for similar patches and is initially set to 16 as de-
fault. Obviously, fixing this parameter is linked with the spatial variability of both noise and image
structures. Indeed, if the noise varies spatially, low values should be chosen. This is the same for
restoring different structures in a noisy image. Color images denoising results are shown in Figure 16
and results for gray level images are displayed in Figure 17. The value of nHard was chosen to vary
from 10 to 28 while Kmax varied from 20 to 80.

As depicted in Figure 16, the influence of nHard on the PSNR was logical for color images.
Increasing nHard led to better results but they cannot be considered as significantly better. For gray
level images (see Figure 17), the result was opposite. Indeed, an increase in nHard led to a decrease
in PSNR. So the value of nHard should be lower for gray level images than for color images. A value
of nHard equal to 16 is sufficient for gray level images while nHard=20 is a good choice for color
images.

4.4 Influence of the Block-Matching Threshold

The block-matching threshold is the threshold on the similarity of patches. Its influence was tested
by varying its value from 0.4 to 2.0 as a multiplicative constant. Except for the tree image, the
block-matching threshold did not led to PSNR variations except for the lowest value (see Figure 18
for color images and Figure 19 for gray level images). We cannot consider that the block-matching
threshold had an influence on the PSNR so its default value of 1.0 is an acceptable value.

4.5 Influence of the Hard Threshold

The core of the HOSVD of the tensor of patches is hard thresholded [16]. This parameter was
expected to be crucial in the performance of the HOSVD denoising as it is the case with classical
SVD denoising. The threshold is based on the same approach than the one for classical SVD denoising
using the result [5] on the core tensor. Its influence was tested by setting its value from 0.4 to 2.0 as

172

Implementation of a Denoising Algorithm Based on High-Order Singular Value Decomposition of Tensors

20

30

40

60

80

10 16 202428
nHard

K
 m

ax

35.5
35.7
35.9
36.1

PSNR

noise: 15

20

30

40

60

80

10 16 202428
nHard

K
 m

ax
31.4
31.6
31.8
32.0
32.2

PSNR

noise: 25

20

30

40

60

80

10 16202428
nHard

K
 m

ax

26.75

27.00

27.25

27.50
PSNR

noise: 45

20

30

40

60

80

10 16 202428
nHard

K
 m

ax

22.3
22.5
22.7
22.9
23.1

PSNR

noise: 75

(a) Dice image.

20

30

40

60

80

10 16202428
nHard

K
 m

ax

29.370
29.375
29.380
29.385
29.390

PSNR

noise: 15

20

30

40

60

80

10 16202428
nHard

K
 m

ax

26.400
26.425
26.450
26.475
26.500

PSNR

noise: 25

20

30

40

60

80

10 16 202428
nHard

K
 m

ax

23.0

23.1

23.2

23.3
PSNR

noise: 45

20

30

40

60

80

10 16 202428
nHard

K
 m

ax

19.9
20.0
20.1
20.2
20.3

PSNR

noise: 75

(b) pupuce image.

20

30

40

60

80

10 16 202428
nHard

K
 m

ax

31.80
31.85
31.90
31.95

PSNR

noise: 15

20

30

40

60

80

10 16 202428
nHard

K
 m

ax

28.7

28.8

28.9

PSNR

noise: 25

20

30

40

60

80

10 16 202428
nHard

K
 m

ax

24.9
25.0
25.1
25.2
25.3

PSNR

noise: 45

20

30

40

60

80

10 16 202428
nHard

K
 m

ax

21.4

21.6

21.8

PSNR

noise: 75

(c) traffic image.

20

30

40

60

80

10 16202428
nHard

K
 m

ax

28.20
28.21
28.22
28.23
28.24
28.25

PSNR

noise: 15

20

30

40

60

80

10 16202428
nHard

K
 m

ax

25.02
25.04
25.06
25.08
25.10
25.12

PSNR

noise: 25

20

30

40

60

80

10 16202428
nHard

K
 m

ax

22.05
22.10
22.15
22.20
22.25

PSNR

noise: 45

20

30

40

60

80

10 16 202428
nHard

K
 m

ax

19.3

19.4

19.5

19.6
PSNR

noise: 75

(d) tree image.

20

30

40

60

80

10 16202428
nHard

K
 m

ax

30.375
30.400
30.425
30.450

PSNR

noise: 15

20

30

40

60

80

10 16202428
nHard

K
 m

ax

27.25
27.30
27.35
27.40

PSNR

noise: 25

20

30

40

60

80

10 16 202428
nHard

K
 m

ax

23.8

23.9

24.0

24.1

PSNR

noise: 45

20

30

40

60

80

10 16 202428
nHard

K
 m

ax

20.6
20.7
20.8
20.9
21.0
21.1

PSNR

noise: 75

(e) valdemossa image.

Figure 16: Influence of nHard and Kmax for color images using full step.

20

30

40

60

80

10 16 202428
nHard

K
 m

ax

32.4
32.5
32.6
32.7
32.8

PSNR

noise: 15

20

30

40

60

80

10 16 202428
nHard

K
 m

ax

29.7
29.9
30.1
30.3

PSNR

noise: 25

20

30

40

60

80

10 16 202428
nHard

K
 m

ax

26.1

26.4

26.7

27.0

PSNR

noise: 45

20

30

40

60

80

10 16 202428
nHard

K
 m

ax

23.1
23.4
23.7
24.0

PSNR

noise: 75

(a) barbara image.

20

30

40

60

80

10 16 202428
nHard

K
 m

ax

31.4
31.5
31.6
31.7
31.8
31.9

PSNR

noise: 15

20

30

40

60

80

10 16 202428
nHard

K
 m

ax

28.6
28.8
29.0
29.2
29.4

PSNR

noise: 25

20

30

40

60

80

10 16 202428
nHard

K
 m

ax

25.5

25.8

26.1

PSNR

noise: 45

20

30

40

60

80

10 16 202428
nHard

K
 m

ax

22.0

22.5

23.0

PSNR

noise: 75

(b) lena image.

20

30

40

60

80

10 16 202428
nHard

K
 m

ax

34.0

34.2

34.4

PSNR

noise: 15

20

30

40

60

80

10 16202428
nHard

K
 m

ax

31.25
31.50
31.75
32.00

PSNR

noise: 25

20

30

40

60

80

10 16 202428
nHard

K
 m

ax

27.2
27.6
28.0
28.4

PSNR

noise: 45

20

30

40

60

80

10 16 202428
nHard

K
 m

ax

24.0

24.5

25.0
PSNR

noise: 75

(c) maison image.

Figure 17: Influence of nHard and Kmax for gray level images using full step.

a multiplicative constant. Results are given in Figure 20 for color images and in Figure 21 for gray
level images.

The obtained results were unexpexted. Indeed, the value of 0.7 was better for color images except
for the Dice image. However for gray level images, values from 1.0 to 2.0 resulted in nearly the same
PSNR values. Values below 1.0 were significantly worse so cannot be considered as good choices for
gray level images. We hence recommend the value of 0.7 for color images and the value of 1.0 for

173

Fabien Feschet

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

25

30

35

40

45

5 15 25 35 45 55 65 75
Noise level

P
SN

R

Block Matching threshold ● ● ● ● ●0.4 0.7 1 1.5

Dice full

(a) Dice image.

●●●●●

●

●

●
●●

●

●
●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

20

25

30

35

5 15 25 35 45 55 65 75
Noise level

P
SN

R

Block Matching threshold ● ● ● ● ●0.4 0.7 1 1.5

pupuce full

(b) pupuce image.

●
●●●●

●

●●
●●

●

●
●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●25

30

35

5 15 25 35 45 55 65 75
Noise level

P
SN

R

Block Matching threshold ● ● ● ● ●0.4 0.7 1 1.5

traffic full

(c) traffic image.

●●●●●

●●
●●●

●

●●
●
●

●

●
●
●●

●
●

●●●

●

●
●●●

●

●●●●

●

●●●●20

25

30

35

5 15 25 35 45 55 65 75
Noise level

P
SN

R

Block Matching threshold ● ● ● ● ●0.4 0.7 1 1.5

tree full

(d) tree image.

●
●●●●

●

●●●●

●

●
●
●●

●

●
●●●

●

●
●●●

●

●●●●

●

●●●●

●

●●●●

25

30

35

5 15 25 35 45 55 65 75
Noise level

P
SN

R

Block Matching threshold ● ● ● ● ●0.4 0.7 1 1.5

valdemossa full

(e) valdemossa image.

Figure 18: Influence of the block-matching threshold for color images using full step.

●

●

●

●
●

●

●

●
●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

20

25

30

35

5 15 25 35 45 55 65 75
Noise level

P
SN

R

Block Matching threshold ● ● ● ● ●0.4 0.7 1 1.5

barbara full

(a) barbara image.

●

●

●
●●

●

●

●
●●

●

●

●●●

●

●
●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

20

25

30

35

5 15 25 35 45 55 65 75
Noise level

P
SN

R

Block Matching threshold ● ● ● ● ●0.4 0.7 1 1.5

lena full

(b) lena image.

●

●

●
●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

20

25

30

35

40

5 15 25 35 45 55 65 75
Noise level

P
SN

R

Block Matching threshold ● ● ● ● ●0.4 0.7 1 1.5

maison full

(c) maison image.

Figure 19: Influence of the block-matching threshold for gray level images using full step.

gray level images.

4.6 Influence of the Acceleration Factor

The acceleration factor pHard is set to 3 as default and has the same meaning than in the BM3D
IPOL implementation [9]. The idea is that potentially the performance of the algorithm can be kept
high while reducing the computation time using partial computations. Results are given in Figure 22
for color images and in Figure 23 for gray level images.

For color images (see Figure 22), the acceleration factor had a small positive influence on PSNR
under low noise whereas it had no impact from medium to high noise. For gray level images (see
Figure 23), even in low noise, the acceleration factor had almost no influence on the PSNR. Hence,
with the default value of 8 × 8 patches, the acceleration factor can be chosen as high as 5. Since
HOSVD has a high computational complexity, we hence recommend to use an acceleration factor of
at least 3. This was the default value in all our experiments.

174

Implementation of a Denoising Algorithm Based on High-Order Singular Value Decomposition of Tensors

●

●●●●

●

●

●●●

●

●

●●●

●

●

●●●

●

●

●●●

●

●

●●●

●

●

●●●

●

●

●●●

20

30

40

5 15 25 35 45 55 65 75
Noise level

P
SN

R

Hard threshold ● ● ● ● ●0.4 0.7 1 1.5 2

Dice full

(a) Dice image.

●

●●

●

●

●

●
●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

20

25

30

35

5 15 25 35 45 55 65 75
Noise level

P
SN

R

Hard threshold ● ● ● ● ●0.4 0.7 1 1.5 2

pupuce full

(b) pupuce image.

●

●●

●
●

●

●●

●
●

●

●
●

●
●

●

●
●

●
●

●

●●

●
●

●

●●
●
●

●

●●
●●

●

●●
●●

20

25

30

35

40

5 15 25 35 45 55 65 75
Noise level

P
SN

R

Hard threshold ● ● ● ● ●0.4 0.7 1 1.5 2

traffic full

(c) traffic image.

●
●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●20

25

30

35

5 15 25 35 45 55 65 75
Noise level

P
SN

R

Hard threshold ● ● ● ● ●0.4 0.7 1 1.5 2

tree full

(d) tree image.

●

●●

●

●

●

●●
●
●

●

●
●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●
●

●
●

20

25

30

35

5 15 25 35 45 55 65 75
Noise level

P
SN

R

Hard threshold ● ● ● ● ●0.4 0.7 1 1.5 2

valdemossa full

(e) valdemossa image.

Figure 20: Influence of the hard threshold for color images using full step.

●

●
●
●●

●

●

●●●

●

●

●●
●

●

●

●●
●

●

●

●●
●

●

●

●●●

●

●

●●●

●

●

●●●

20

25

30

35

5 15 25 35 45 55 65 75
Noise level

P
SN

R

Hard threshold ● ● ● ● ●0.4 0.7 1 1.5 2

barbara full

(a) barbara image.

●

●
●●
●

●

●

●●●

●

●

●●
●

●

●

●●●

●

●

●●
●

●

●

●●●

●

●

●
●●

●

●

●
●●

20

25

30

35

5 15 25 35 45 55 65 75
Noise level

P
SN

R

Hard threshold ● ● ● ● ●0.4 0.7 1 1.5 2

lena full

(b) lena image.

●

●●●●

●

●

●●●

●

●

●●●

●

●

●
●●

●

●

●
●●

●

●

●
●●

●

●

●
●●

●

●

●
●●

20

25

30

35

40

5 15 25 35 45 55 65 75
Noise level

P
SN

R

Hard threshold ● ● ● ● ●0.4 0.7 1 1.5 2

maison full

(c) maison image.

Figure 21: Influence of the hard threshold for gray level images using full step.

5 Extensions

In this section, we introduce several extensions of the implementation of the presented algorithm [16].
We propose to perform iterative denoising with the one step enhancement introduced in DA3D [14]
and the iterative SOS Boosting procedure [17]. These extensions are followed by an Oracle scenario
given in [16] for the SVD denoising and applied here to the HOSVD decomposition.

5.1 A Step Further

We tested the use of the DA3D method [14] as a black-box to compute the influence of one step of
iteration on the result of a denoising algorithm. We used Wiener filtering of HOSVD as the input of
the DA3D algorithm. Results are given in Figure 24 for color images and in Figure 25 for gray level
images.

In average, no significant increase in PSNR was obtained for HOSVD on color images, except for
the Dice image. Indeed, if the clean image contains important smooth parts then the DA3D method

175

Fabien Feschet

5

15

25

35

45

55

65

75

1 2 3 4 5
pHard

n
o
is

e

35

40

45
PSNR

Dice

(a) Dice image.

5

15

25

35

45

55

65

75

1 2 3 4 5
pHard

n
o
is

e

24

28

32

36

PSNR

pupuce

(b) pupuce image.

5

15

25

35

45

55

65

75

1 2 3 4 5
pHard

n
o
is

e

25

30

35

PSNR

traffic

(c) traffic image.

5

15

25

35

45

55

65

75

1 2 3 4 5
pHard

n
o
is

e

24

28

32

PSNR

tree

(d) tree image.

5

15

25

35

45

55

65

75

1 2 3 4 5
pHard

n
o
is

e

26

30

34

38
PSNR

valdemossa

(e) valdemossa image.

Figure 22: Influence of the acceleration factor for color images using full step.

5

15

25

35

45

55

65

75

1 2 3 4 5
pHard

n
o
is

e

24

28

32

36

PSNR

barbara

(a) barbara image.

5

15

25

35

45

55

65

75

1 2 3 4 5
pHard

n
o
is

e

24

28

32

36

PSNR

lena

(b) lena image.

5

15

25

35

45

55

65

75

1 2 3 4 5
pHard

n
o
is

e

25

30

35

PSNR

maison

(c) maison image.

Figure 23: Influence of the acceleration factor for gray level images using full step.

gave significant increases in PSNR. For HOSVD and for gray level images, a gain was obtained for
strong noise (see Figure 25). The impact of DA3D was more important as the noise level increased,
which is a good point. Hence, except for some particular cases, the one step DA3D procedure is only
always interesting for gray level images. We did not see any pejorative effects of using DA3D on our
test images set.

176

Implementation of a Denoising Algorithm Based on High-Order Singular Value Decomposition of Tensors

32

36

40

44

5 15 25 35 45 55 65 75
Noise level

P
SN

R

step da3d full

Dice

(a) Dice image.

25

30

35

5 15 25 35 45 55 65 75
Noise level

P
SN

R

step da3d full

pupuce

(b) pupuce image.

28

32

36

5 15 25 35 45 55 65 75
Noise level

P
SN

R

step da3d full

traffic

(c) traffic image.

20

25

30

35

5 15 25 35 45 55 65 75
Noise level

P
SN

R

step da3d full

tree

(d) tree image.

25

30

35

5 15 25 35 45 55 65 75
Noise level

P
SN

R

step da3d full

valdemossa

(e) valdemossa image.

Figure 24: DA3D denoising for color images.

24

28

32

36

5 15 25 35 45 55 65 75
Noise level

P
SN

R

step da3d full

barbara

(a) barbara image.

26

30

34

38

5 15 25 35 45 55 65 75
Noise level

P
SN

R

step da3d full

lena

(b) lena image.

25

30

35

40

5 15 25 35 45 55 65 75
Noise level

P
SN

R

step da3d full

maison

(c) maison image.

Figure 25: DA3D denoising for gray level images.

5.2 Iterative Denoising

In [17], the increase in PSNR for BM3D was limited. The main reason given by the authors was
that the performance of BM3D was considered really high with respect to theoretical performance
bounds. We implemented SOS Boosting for HOSVD to see if the same behavior was encountered
with HOSVD. The implementation was done as an external script avoiding any quantization effects
all along the process. We used three iterations for SOS denoising as in [17] for BM3D. Results are
given in Figure 26 for color images and in Figure 27 for gray level images.

The situation was a little bit worse in fact. We tested a lot of parameters for SOS Boosting.
During each test, we only noted that the PSNR was decreasing regularly with the formulas used
in [17] that are a weighted mean between the noisy image and the SOS estimation. We were unable
to find a situation were SOS Boosting permitted to increase the PSNR. We might recall the SOS
iterations for HOSVD copied from the ones of BM3D,

x̂(k+1) =
1

1− ρ̃
f
(
(1− ρ̃)y + ρ̃x̂(k)

)
− ρ̃

1− ρ̃
x̂(k) .

177

Fabien Feschet

30

35

40

45

5 15 25 35 45 55 65 75
Noise level

P
SN

R

step full SOS

Dice

(a) Dice image.

20

25

30

35

5 15 25 35 45 55 65 75
Noise level

P
SN

R

step full SOS

pupuce

(b) pupuce image.

25

30

35

5 15 25 35 45 55 65 75
Noise level

P
SN

R

step full SOS

traffic

(c) traffic image.

20

25

30

35

5 15 25 35 45 55 65 75
Noise level

P
SN

R

step full SOS

tree

(d) tree image.

25

30

35

5 15 25 35 45 55 65 75
Noise level

P
SN

R

step full SOS

valdemossa

(e) valdemossa image.

Figure 26: SOS denoising for color images.

24

28

32

36

5 15 25 35 45 55 65 75
Noise level

P
SN

R

step full SOS

barbara

(a) barbara image.

26

30

34

38

5 15 25 35 45 55 65 75
Noise level

P
SN

R

step full SOS

lena

(b) lena image.

25

30

35

40

5 15 25 35 45 55 65 75
Noise level

P
SN

R

step full SOS

maison

(c) maison image.

Figure 27: SOS denoising for gray level images.

Hence starting with x̂(0) = 0, we notice that

x̂(1) =
1

1− ρ̃
f ((1− ρ̃)y) ,

and obviously if the denoising algorithm f() is invariant to scale transforms then

x̂(1) =
1

1− ρ̃
f ((1− ρ̃)y) ' f(y) .

This is indeed the case for HOSVD. Thus, assuming equality between x̂(1) and f(y), we get

x̂(2) =
1

1− ρ̃
f ((1− ρ̃)y + f(y))− ρ̃

1− ρ̃
f(y) .

Hence the denoising algorithm f() is applied on a regularized noisy image with the smooth image
f(y). Taking into account the fact that any denoising algorithm has a tendency to smooth the noisy

178

Implementation of a Denoising Algorithm Based on High-Order Singular Value Decomposition of Tensors

image, we get an image which is more smooth than f(y). Then subtracting the image f(y) leads to
an excesively smooth image. As such any sub-image which was sufficiently denoised at the first step
is smoothed again by the iteration of the denoising algorithm which inherently results in a decrease
in the PSNR. This means that in our context, SOS Boosting is not able to increase the denoising
performance because it is applied to the whole image and not to sub-images. This usage of SOS
Boosting is beyond the content of the present study but might be required to produce an increase in
PSNR.

5.3 Oracle Denoising in HOSVD

Aside the Oracle denoising scenario based on minimization of MSE knowing the original clean image
as in [11], the authors in [16] also propose an Oracle scenario based on SVD decomposition. The
process is as follows. For each patch of size p × p, the Singular Value Decomposition of the clean
corresponding patch is provided by an Oracle. That is, for a patch P we know its decomposition
P = USV T . For the patch Q in the noisy image at the same position, we can compute its projection
using the true singular vectors SQ = UTQV . Then, SQ is processed with a hard threshold of

σ
√

2 log p2 and, after reconstruction, averaged over all overlapping patches. The authors in [16]
showed that this results in a significant increase in the PSNR. They concluded that, whereas the
singular values have been the object of most researches, singular vectors could be at least as important
than singular values, perhaps even more important. However, this experimentation is coherent with
what is known for the SVD for which the noise component corresponds to the small singular values,
the ones that are put to zero with hard thresholding. So it is coherent that knowing the true singular
vectors is by far most beneficial than knowing the true singular values. In the Oracle scenario, the
true clean image might be used at several steps. We chose to restrict its use in a similar way as
in a SVD decomposition. Indeed, the noisy image is still used for block-matching and thus this
part is inherently imperfect. Then the tensors Ui of the HOSVD are computed with respect to the
clean image. Then the core of the noisy tensor is computed with the clean Ui and the core is hard
thresholded. A reconstruction is performed still using the clean Ui. The averaging is not modified
at all and thus has an influence of the denoised image. Results are presented in Figure 28 for color
images and in Figure 29 for gray level images.

As expected, the benefit of the Oracle scenario increased with an increase in the noise level. The
effect of the Oracle scenario did not rely upon the nature of the images since both gray level images
and color images led to large increases in PSNR. We can thus conclude that the singular vectors
are indeed extremely important and that works should be done using them to increase the practical
performance of patch-based denoising algorithms.

6 Conclusion

We provide an implementation of the HOSVD tensor decomposition for denoising [16] and a complete
analysis of the parameters of the implementation. All experiments lead us to the conclusion that
HOSVD can be useful in denoising but its actual performance is globally limited by a sub-optimal
second pass of the Wiener-like filtering. We also notice its good performance on images contain-
ing regular textures. However, the method is hard to tune due to the sensitivity of the denoising
performance to several of its parameters, which should be considered as an alert to the fact that
those parameters should probably be fixed by a local analysis of the non-uniformity of the patches.
Our Oracle scenario showed that HOSVD might be a good opponent to state-of-the-art algorithms
when correctly tuned and with an efficient second pass. We were not able to provide really good
increases in PSNR with the use of the DA3D algorithm [14] and with SOS Boosting [17], contrarily

179

Fabien Feschet

30

40

5 15 25 35 45 55 65 75
Noise level

P
SN

R

step full oracle

Dice

(a) Dice image.

20

25

30

35

40

5 15 25 35 45 55 65 75
Noise level

P
SN

R

step full oracle

pupuce

(b) pupuce image.

25

30

35

40

5 15 25 35 45 55 65 75
Noise level

P
SN

R

step full oracle

traffic

(c) traffic image.

20

25

30

35

5 15 25 35 45 55 65 75
Noise level

P
SN

R

step full oracle

tree

(d) tree image.

25

30

35

40

5 15 25 35 45 55 65 75
Noise level

P
SN

R

step full oracle

valdemossa

(e) valdemossa image.

Figure 28: Oracle denoising for color images.

25

30

35

40

5 15 25 35 45 55 65 75
Noise level

P
SN

R

step full oracle

barbara

(a) barbara image.

25

30

35

40

5 15 25 35 45 55 65 75
Noise level

P
SN

R

step full oracle

lena

(b) lena image.

25

30

35

40

5 15 25 35 45 55 65 75
Noise level

P
SN

R

step full oracle

maison

(c) maison image.

Figure 29: Oracle denoising for gray level images.

to what was expected from the experiments provided in the reference paper. For the latter, we did
not observe any positive influence for HOSVD probably due to an excess of smoothing during the
first passes of SOS Boosting. For DA3D, we did observe some interesting PSNR improvements.

To conclude, we must recommend to add a true Wiener filtering [13] to HOSVD as a second pass
as its main advantage is its independence of the dimension of the images, that is, it readily extends
to any dimension without significant modifications.

Acknowledgement

We thank both reviewers for constructive comments on a preliminary version of the manuscript
which greatly improved the content and the presentation of this study. We thank Pablo Arias and
Jean-Michel Morel for providing us specific code for avoiding quantization when saving noisy images.

180

Implementation of a Denoising Algorithm Based on High-Order Singular Value Decomposition of Tensors

Image Credits

F. Feschet, CC-BY

, , M. Colom, CC-BY

A Buades, CC-BY-SA

, , The USC-SIPI Image Database3

References

[1] A. Buades, B. Coll, and J.M. Morel, A review of image denoising algorithms, with a
new one, Multiscale Modeling and Simulation, 4 (2006), pp. 490–530. http://dx.doi.org/10.
1137/040616024.

[2] A. Buades, B. Coll, and J-M. Morel, A non-local algorithm for image denoising, in
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR),
Washington, DC, USA, 2005, IEEE Computer Society, pp. 60–65. http://dx.doi.org/10.

1109/CVPR.2005.38.

[3] A Cichocki, C Mandic, A. H Phan, C. Caiafa, G. Zhou, Q. Zhao, and L De
Lathauwer, Tensor decompositions for signal processing applications. from two-way to mul-
tiway component analysis, IEEE Signal Processing Magazine, 32 (2015), pp. 145–163. https:

//doi.org/10.1109/MSP.2013.2297439.

[4] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, Image Denoising by Sparse 3-D
Transform-Domain Collaborative Filtering, IEEE Transactions on Image Processing, 16 (2007),
pp. 2080–2095. http://dx.doi.org/10.1109/TIP.2007.901238.

[5] D.L. Donoho and J.M. Johnstone, Ideal spatial adaptation by wavelet shrinkage,
Biometrika, 81 (1994), pp. 425–455. https://doi.org/10.1093/biomet/81.3.425.

[6] G. H. Golub and C. F. Van Loan, Matrix Computations (3rd Ed.), Johns Hopkins Univer-
sity Press, Baltimore, MD, USA, 1996. ISBN 0-8018-5414-8.

[7] C. Knaus and M. Zwicker, Dual-domain image denoising, in Proceedings of the IEEE
International Conference on Image Processing (ICIP), IEEE Computer Society, 2013, pp. 440–
444. https://doi.org/10.1109/ICIP.2013.6738091.

[8] L. De Lathauwer, B. De Moor, and J. Vandewalle, A multilinear singular value de-
composition, SIAM Journal on Matrix Analysis and Applications, 21 (2000), pp. 1253–1278.
http://dx.doi.org/10.1137/S0895479896305696.

[9] M. Lebrun, An Analysis and Implementation of the BM3D Image Denoising Method, Image
Processing On Line, 2 (2012), pp. 175–213. https://doi.org/10.5201/ipol.2012.l-bm3d.

[10] M. Lebrun, A. Buades, and J-M. Morel, Implementation of the “Non-Local Bayes” (NL-
Bayes) Image Denoising Algorithm, Image Processing On Line, 3 (2013), pp. 1–42. https:

//doi.org/10.5201/ipol.2013.16.

3Allan G Weber, The USC-SIPI image database version 5, USC-SIPI Report, 315 (1997), pp. 124.

181

http://dx.doi.org/10.1137/040616024
http://dx.doi.org/10.1137/040616024
http://dx.doi.org/10.1109/CVPR.2005.38
http://dx.doi.org/10.1109/CVPR.2005.38
https://doi.org/10.1109/MSP.2013.2297439
https://doi.org/10.1109/MSP.2013.2297439
http://dx.doi.org/10.1109/TIP.2007.901238
https://doi.org/10.1093/biomet/81.3.425
https://doi.org/10.1109/ICIP.2013.6738091
http://dx.doi.org/10.1137/S0895479896305696
https://doi.org/10.5201/ipol.2012.l-bm3d
https://doi.org/10.5201/ipol.2013.16
https://doi.org/10.5201/ipol.2013.16

Fabien Feschet

[11] P. Milanfar, Symmetrizing smoothing filters, SIAM Journal on Imaging Sciences, 6 (2013),
pp. 263–284. https://doi.org/10.1137/120875843.

[12] D. Muti and S. Bourennane, Multidimensional filtering based on a tensor approach, Signal
Processing, 30 (2005), pp. 1172 – 1204. https://doi.org/10.1016/j.sigpro.2004.11.029.

[13] D. Muti, S. Bourennane, and J. Marot, Lower-rank tensor approximation and multiway
filtering, SIAM Journal on Matrix Analysis and Applications, 85 (2008), pp. 2338 – 2353. https:
//doi.org/10.1137/060653263.

[14] N. Pierazzo and G. Facciolo, Data Adaptive Dual Domain Denoising: a Method to Boost
State of the Art Denoising Algorithms, Image Processing On Line, 7 (2017), pp. 93–114. https:
//doi.org/10.5201/ipol.2017.203.

[15] S. Preethi and D. Narmadha, A survey on image denoising techniques, International Jour-
nal of Computer Applications, 58 (2012), pp. 27–30. https://doi.org/10.5120/9288-3488.

[16] A. Rajwade, A. Rangarajan, and A. Manduchiee, Image denoising using the higher
order singular value decomposition, IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 35 (2013), pp. 849–862. https://doi.org/10.1109/TPAMI.2012.140.

[17] Y. Romano and M. Elad, Boosting of image denoising algorithms, SIAM Journal on Imaging
Sciences, 8 (2015), pp. 1187–1219. https://doi.org/10.1137/140990978.

[18] C. Tomasi and R. Manduchi, Bilateral filtering for gray and color images, in Proceedings of
the Sixth International Conference on Computer Vision (ICCV), Washington, DC, USA, 1998,
IEEE Computer Society, pp. 839–. https://doi.org/10.1109/ICCV.1998.710815.

[19] L.R. Tucker, Some mathematical notes on three-mode factor analysis, Psychometrika, 31
(1966), pp. 279–311. https://doi.org/10.1007/BF02289464.

[20] G. Yu and G. Sapiro, DCT image denoising: a simple and effective image denoising algo-
rithm, Image Processing On Line, (2011). https://doi.org/10.5201/ipol.2011.ys-dct.

182

https://doi.org/10.1137/120875843
https://doi.org/10.1016/j.sigpro.2004.11.029
https://doi.org/10.1137/060653263
https://doi.org/10.1137/060653263
https://doi.org/10.5201/ipol.2017.203
https://doi.org/10.5201/ipol.2017.203
https://doi.org/10.5120/9288-3488
https://doi.org/10.1109/TPAMI.2012.140
https://doi.org/10.1137/140990978
https://doi.org/10.1109/ICCV.1998.710815
https://doi.org/10.1007/BF02289464
https://doi.org/10.5201/ipol.2011.ys-dct

	Introduction
	Description of the Algorithm
	A Short Introduction to Tensors
	HOSVD Decomposition
	HOSVD-Based Denoising Algorithm
	A Remark on the Implementation
	Complexity Analysis

	Evaluation of the Algorithm
	Comparison with BM3D and NL-Bayes
	Color Effects

	Study of the Parameters
	Influence of Color Space
	Influence of kHard and Kmax
	Influence of the Search Window Size
	Influence of the Block-Matching Threshold
	Influence of the Hard Threshold
	Influence of the Acceleration Factor

	Extensions
	A Step Further
	Iterative Denoising
	Oracle Denoising in HOSVD

	Conclusion

