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Abstract

This document describes an implementation of the energy functional minimization proposed
by Ballester, Garrido, Lazcano and Caselles for joint optical flow and occlusion estimation.
The method build up from the ideas behind the TV-L1 approach introduced by Zach, Pock and
Bischof in 2007 but incorporating information that allows to detect occlusions. This information
is based on the divergence of the flow and the proposed energy favors the location of occlusions
on regions where this divergence is negative. The implemented variational method uses three
consecutive frames. The energy functional is composed of regularization terms using the total
variation, a data term using the L1 norm, and a term dealing with the occlusions. In the present
implementation, we solve the stationary system of partial differential equations arising from the
dual minimization problem associated with the TV operator by a variation of the box relaxation
numerical scheme proposed by Garamendi, Gaspar, Malpica and Schiavi. This makes the overall
algorithm faster than previous implementations based on a gradient descent method.

Source Code

C source code of the described algorithms is provided and accessible at the IPOL web page of
this article1.

Keywords: optical flow; occlusions; total variation; TV-L1; staggered; box cell centered

1 Introduction

A key problem in computer vision is the estimation of the movement from a sequence of images. The
purpose of motion estimation methods is to compute a motion field representing the displacement
of points in consecutive images. This problem can be addressed using a variational formulation
by modeling the problem as the minimization of an energy functional. Generally, the functional
is composed of a data fidelity term and a regularization term. The data fidelity term is usually
based on the conservation of some property during motion. A common data term is based on the
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brightness constancy assumption, which assumes that the observed object brightness -in particular,
the observed point brightness- does not change along its motion trajectory. The regularization term
allows to define the structure of the motion field and ensures that the optical flow problem is well
posed; it can be seen as an “a priori” requirement.

However, these methods may fail in occlusion areas due to forced, but unreliable, intensity match-
ing. The problem can be further accentuated if the optical flow is smoothed across object boundaries
adjacent to occlusion areas. In this work, we propose an implementation of the method proposed
by Ballester et al. [1] for joint estimation of occlusion areas and optical flow. The method builds up
from the ideas behind the Zach et al. approach [6] and incorporates information that allows to detect
occlusions. An important difference between the present method [1] and the previous ones is that it
requires three consecutive frames (instead of two) because it is based on the assumption that pixels
that are not visible in the next frame are visible in the previous one.

Let Ω ⊂ R2 be the image domain, usually a rectangle, and let I0, I1 : Ω→ R be two consecutive
image frames of a video secuence. Let u = (u1, u2) : Ω→ R2 be the optical flow between I0 and I1,
and x ∈ Ω be the spatial variable that denotes pixel location. To estimate u, Zach et al. [6], propose
to minimize the energy

J̃(u) = |Du1|(Ω) + |Du2|(Ω) + λ

∫
Ω

|I0(x)− I1(x + u(x))|dx, (1)

where the last term,
∫

Ω
|I0(x) − I1(x + u(x))|dx, has a data fidelity role favoring the well-known

brightness constancy assumption (that is, for a point x which moves with optical flow u(x), its
brightness I1(x + u(x)) in the following frame should be similar to I0(x)), the regularization term
is based on the total variation of u1 and u2 (denoted here by |Du1|(Ω) and |Du2|(Ω), respectively)
and λ is a parameter that balances the regularization term and the data fidelity term. Let us briefly
recall that the total variation of a scalar function w belonging to L1(Ω) in Ω is defined by

|Dw|(Ω) = sup
p∈[C1

c (Ω)]2

{∫
Ω

w div(p) dx; |p|[L∞(Ω)]2 ≤ 1
}
,

where [C1
c (Ω)]2 stands for the space of continuously differentiable vectorial functions with compact

support in Ω and | · |[L∞(Ω)]2 is the essential supremum norm. With the previous definition, the space
of functions in Ω with bounded variation, BV (Ω), is defined as

BV (Ω) =
{
u ∈ L1(Ω); |Du|(Ω) <∞

}
,

Notice that if w ∈ C1(Ω), then
∫

Ω
w div(p) dx = −

∫
Ω
∇w · p dx and |Dw|(Ω) =

∫
Ω
|∇w(x)| dx. In

the optical flow literature, the TV-L1 variational method given by (1) is usually written as

J̃(u) =

∫
Ω

|∇u1|+
∫

Ω

|∇u2|+ λ

∫
Ω

|I0(x)− I1(x + u(x))|dx, (2)

We will follow this notation in the following.
This method does not take into account the occlusions between two consecutive frames. Ballester

et al. [1] added some terms to the functional in order to jointly compute occlusions and optical flow.
Their model is based on the assumption that pixels of I0 that are not visible in frame I1 are visible in
the previous frame to I0, that is, in I−1. Let χ : Ω→ {0, 1} be a characteristic function representing
the occlusion map, so that χ(x) = 1 means that x is visible in I0 but not in I1. That is, the set
{x ∈ Ω; χ(x) = 1} represents the occluded region due to motion. Let I−1 : Ω→ R be the previous
frame to I0. It is assumed that the occluded pixels in I1 are visible in I−1. Thus, if χ(x) = 0 (the pixel
is not occluded), we compare I0(x) with I1(x+u(x)). If χ(x) = 1 (the pixel is occluded), we compare
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I0(x) with I−1(x − u(x)). On the other hand, the occluded region should be correlated with the
region where the divergence of the optical flow, div(u), is negative (for infinitesimal displacement).
This was pointed out by Sand and Teller [5], who noticed that the divergence of the motion field may
be used to distinguish between different types of motion areas. Schematically, the divergence of a
flow field is negative for occluded areas, positive for disoccluded, and near zero for the matched areas.
Taking this into account, in [1] it is proposed to jointly compute the optical flow and occlusions by
minimizing the energy

J(u, χ) = Jd(u, χ) + Jr(u, χ) + β

∫
Ω

χ div(u)dx +
α

2

∫
Ω

χ|u|2dx, (3)

with α ≥ 0 and β > 0, | · | refers to the Euclidean norm and where

Jd(u, χ) = λ

∫
Ω

((1− χ)|I0(x)− I1(x + u(x))|+ χ|I0(x)− I−1(x− u(x))|)dx (4)

is the data fidelity term and

Jr(u, χ) =

∫
Ω

g(x) (|∇u1|+ |∇u2|+ |∇χ|) dx

is the regularization term. The weighting function g is used to penalize regularization through an
intensity edge. In the actual implementation, g is simply chosen as

g(x) = (1 + γ|∇Ĩ0(x)|)−1, x ∈ Ω (5)

where Ĩ0 is either I0 or any smoothed version of I0. Notice that there is a new term in (3), weighted
by α ≥ 0 (taken small relative to λ) to penalize large displacements where χ = 1. In [1] this term
is justified by two observations. On the one hand, it is assumed that the occluded background area
is moving slower than the occluding foreground. On the other hand, since images have usually self-
similarities, a pixel may have several possibilities to match. Based on this, taking α > 0 and small,
the model would encourage choosing the smallest displacement. As usual, in order to cope with the
L1 data term, an auxiliary variable v = (v1, v2) with vi ∈ BV (Ω), that represents the optical flow, is
introduced and penalized its deviation from u [6]. Thus, we minimize the energy

Jθ(v,u, χ) = Jd(v, χ) + Jr(u, χ) + β

∫
Ω

χ div(u)dx +
α

2

∫
Ω

χ|v|2dx +
1

2θ

∫
Ω

|u− v|2dx, (6)

depending on the three variables (v,u, χ), where θ > 0. This energy can be minimized by alterna-
tively fixing two variables and minimizing with respect to the third one.

The non-linear terms I1(x + v(x)) and I−1(x − v(x)) can be linearized using Taylor expansions
around a given vector field u0. Let us define the residual

ρ±1(v) := I±1(x± u0(x))±∇I±1 (x± u0(x)) · (v(x)− u0(x))− I0(x).

The procedure is applied by iteratively minimizing the energy

J̃θ(v,u, χ) = J̃d(v, χ) + Jr(u, χ) + β

∫
Ω

χ div(u)dx +
α

2

∫
Ω

χ|v|2dx +
1

2θ

∫
Ω

|u− v|2dx, (7)

where

J̃d(v, χ) = λ

∫
Ω

((1− χ)|ρ1(v)|+ χ|ρ−1(v)|) dx.

To minimize J̃θ we alternate between the minimization with respect to each variable keeping the other
two fixed. More precisely, the energy functionals associated to each minimization are the following
and in the next section we will detail the numerical algorithm used to solve each of them.
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1. Minimization with respect to v

λ

∫
Ω

((1− χ)|ρ1(v)|+ χ|ρ−1(v)|) dx +
α

2

∫
Ω

χ|v|2dx +
1

2θ

∫
Ω

|u− v|2dx. (8)

2. Minimization with respect to u∫
Ω

g(x) (|∇u1|+ |∇u2|) dx + β

∫
Ω

χ div(u)dx +
1

2θ

∫
Ω

|u− v|2dx. (9)

3. Minimization with respect to χ

∫
Ω

g(x)|∇χ|dx + β

∫
Ω

χ div(u)dx + λ

∫
Ω

((1− χ)|ρ1(v)|+ χ|ρ−1(v)|) dx +
α

2

∫
Ω

χ|v|2dx. (10)

2 Numerical Scheme and Implementation Details

The minimization of (7) is done by alternating between the minimization with respect to each variable
while keeping the other two fixed, i.e, minimizing energy functionals (8), (9) and (10).

2.1 Minimization with respect to v

Let us define
δ1 = 1,
δ−1 = 1/(1 + αθ),
µ1 = λθ,
µ−1 = µ1/(1 + αθ),
Λ1(u) = ρ1(u),
Λ−1(u) = ρ−1(u) + µ−1u · ∇I−1(x− u0),
i = {−1, 1}.

Notice that we omitted the arguments x in u,u0. Fixed u and χ, the minimum of J̃θ with respect
to v = (v1, v2) is

v = TH(u,u0)) :=


δiu− iµi∇Ii(x + iu0) if Λi(u) > µi|∇Ii(x + iu0)|2,
δiu + iµi∇Ii(x + iu0) if Λi(u) < −µi|∇Ii(x + iu0)|2,
u− iρi(u) ∇Ii(x+iu0)

|∇Ii(x+iu0)|2 if |Λi(u)| ≤ µi|∇Ii(x + iu0)|2.
(11)

with i = 1 for those points where χ = 0 and i = −1 for those points where χ = 1. The ∇ operator
applied to Ii is discretized using central differences.

2.2 Minimization with respect to u

Assume that v and χ are fixed. Then the minimum of J̃θ with respect to u = (u1, u2) is given by

ui = vi + θ div(gξi) + θβ
∂χ

∂xi
, i = 1, 2

where ξi = (ξi,1, ξi,2) : Ω→ R2 is the dual vector field for ui computed as the solution of the following
system of partial differential equations

g∇
(
vi + θ div(gξi) + θβ

∂χ

∂xi

)
−
∣∣∣∣g∇(vi + θ div(gξi) + θβ

∂χ

∂xi

)∣∣∣∣ ξi = 0, (12)

435



J.F. Garamendi, Vanel Lazcano, Coloma Ballester

completed with homogeneous Dirichlet boundary conditions.
In Ballester et al., the system of equations (12) is solved using the following fixed point (gradient

descent) iterative scheme

ξi
k+1 =

ξi
k + τ

θ
g∇
(
vi + θ div(gξi

k) + θβ ∂χ
∂xi

)
1 + τ

θ

∣∣∣g∇(vi + θ div(gξi
k) + θβ ∂χ

∂xi

)∣∣∣ , (13)

where τ is an artificial time step. Althought easy to implement, scheme (13) inherits the disadvan-
tages of descent methods like the large number of iterations necessary for the stabilization. In this
work, we adapt one of the numerical schemes proposed by Garamendi et al. [3] for solving the dual
formulation of the Rudin-Osher-Fatemi model [4, 2]. We rewrite (12) as

∇ (fi + div(pi))−
1

g
|∇ (fi + div(pi))|pi = 0, (14)

where the new varible pi = (pi,1, pi,2) is defined as pi = gξi and fi = θ−1vi + β ∂χ
∂xi

. Notice that the
θ parameter has been embedded in fi. For the practical numerical implementation, we rewrite the
equations as

ui = θ (fi + div(pi)) , (15)

∇ (fi + div(pi))−
1

gθ
|∇ui|pi = 0. (16)

Notice that when g(x) = 1 for all x ∈ Ω, we have exactly (for a given image u0 such as fi = u0/θ)
the first order optimality condition of the Rudin-Osher-Fatemi denoising energy functional in its dual
definition [4, 2].

We implemented an improved version of the box cell centered (BCC) scheme, that was the fastest
of the proposed methods in [3]. The BCC method is an iterative box relaxation numerical scheme
defined on staggered grids. In a staggered grid, the nodes corresponding to different unknowns are
placed in alternated positions on the grid. In our case, the initial data fi and the computed field
flow values are located at cell centers, and the discrete values of the vectorial function pi are located
at the grid cell edges (see Figure 1).

Figure 1: Staggered location of unknowns: u and f are described at + nodes, px1 is described at × nodes and px2 is
described at • nodes. Adapted from [3].

To simplify the notation in the discretized expressions, we will omit the index i of pi and fi
corresponding to the first and second component of the flow u. Also, from now on, the subscripts
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will represent relative location to a specific pixel in the discretized staggered grid. Superscripts will
denote vector components of the dual variable p (x1 for the first component and x2 for the second
component); also, superscripts will denote iteration. For instance, for the pixel located at the (j, k)
grid position, px1,k+1

1/2,0 denotes the value of pi,1 at position (j + 1
2
h, k + 0h) in the iteration k+1, where

h is the pixel size, usually h = 1 (see Figures 1 and 2).

Figure 2: In red, nodes updated simultaneously at each pixel. In black, nodes involved in the independent term (W,N, S,E)T

of the system. Adapted from [3].

At each iteration k of the BCC scheme (one iteration is finished when all pixels are visited)
and for each pixel in the image we have to solve a 4 × 4 algebraic system Ax̄ = b̄, with x̄ =(
px2,k+1

0,−1/2 , p
x1,k+1
−1/2,0 , p

x1,k+1
1/2,0 , px2,k+1

0,1/2

)T
. The improvement introduced in the present work to the BCC

scheme is the inclusion of a parameter, ω, that balances the solution computed in the current iteration
(k + 1) and the solution computed in the previous iteration (k), in the following way,

1. Let x̄k+1
0 be a solution of the 4 × 4 algebraic system of equations Ax̄ = b̄ found by an exact

method, e.g. Cramer’s rule or Gauss elimination.

2. Compute x̄k+1 as
x̄k+1 = (1− ω)x̄k + ωx̄k+1

0 .

This parameter plays the same role as the ω parameter in a successive over-relaxation method
for solving a linear system of algebraic equations. Notice that if ω = 1 we have exactly the original
BCC scheme. We refer to the original work of Garamendi et al. [3] for a detailed explanation of the
staggered grid, the operators defined on it and the BCC scheme.

Let us now explain in detail the matrix A and the independent term b̄ (in the form of augmented
matrix (A|b̄)).

2.2.1 Inner Cells

For each cell that does not belong to the boundary of the image domain, the augmented matrix is
as follows

(A|b̄) =


B0,−1/2 −1 1 1 W
−1 B−1/2,0 1 1 N
1 1 B1/2,0 −1 S
1 1 −1 B0,1/2 E

:

 ,
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where Bi,j = −2− (gi,jθ)
−1|∇uki,j|, and

W = −px2,k+1
0,−3/2 + px1,k+1

1/2,−1 − p
x1,k+1
−1/2,−1 − (f0,0 − f0,−1),

N = −px1,k+1
−3/2,0 + px2,k+1

−1,1/2 − p
x2,k+1
−1,−1/2 − (f0,0 − f−1,0),

S = −px1,k3/2,0 − p
x2,k
1,1/2 + px2,k+1

1,−1/2 − (f1,0 − f0,0),

E = −px2,k0,3/2 − p
x1,k
1/2,1 + px1,k−1/2,1 − (f0,1 − f0,0),

Using Cramer’s rule, the solution of the system is as follows

px2,k+1
0,−1/2 = (1− ω)px2,k0,−1/2 + ω |A1|

|A| ,

px1,k+1
−1/2,0 = (1− ω)px1,k−1/2,0 + ω |A2|

|A| ,

px1,k+1
1/2,0 = (1− ω)px1,k1/2,0 + ω |A3|

|A| ,

px2,k+1
0,1/2 = (1− ω)px2,k0,1/2 + ω |A4|

|A| ,

(17)

with
|A1| = W [B−1/2,0B1/2,0B0,1/2 −B−1/2,0 −B1/2,0 −B0,1/2 − 2]

+ [NB1/2,0B0,1/2 − EB1/2,0 − SB0,1/2 −N − E − S]
+ [SB−1/2,0B0,1/2 − EB−1/2,0 +NB0,1/2 − E + S +N ]
− [EB−1/2,0B1/2,0 + SB−1/2,0 −NB1/2,0 − E + S −N ],

|A2| = B0,−1/2[NB1/2,0B0,1/2 − EB1/2,0 − SB0,1/2 −N − E − S]
+ [−B1/2,0B0,1/2 −B1/2,0 −B0,1/2 − 1]
+ [−SB0,1/2 −NB0,1/2 −N − S]
− [NB1/2,0 + EB1/2,0 +N + E],

|A3| = −B0,−1/2[SB−1/2,0B0,1/2 − EB−1/2,0 +NB0,1/2 − E + S +N ]
+ [−SB0,1/2 −NB0,1/2 −N − S]
+ W [−B1/2,0B0,1/2 −B1/2,0 −B0,1/2 − 1]
− [EB−1/2,0 + SB−1/2,0 − E + S],

|A4| = B0,−1/2[EB−1/2,0B1/2,0 + SB−1/2,0 −NB1/2,0 − E + S −N ]
− [NB1/2,0 + EB1/2,0 +N + E]
+ [EB−1/2,0 + SB−1/2,0 − E + S]
− W [B−1/2,0B1/2,0 +B−1/2,0 +B1/2,0 + 1],

|A| = B0,−1/2[B−1/2,0B1/2,0B0,1/2 −B−1/2,0 −B1/2,0 −B0,1/2 − 2]
+ [−B1/2,0B0,1/2 −B1/2,0 −B0,1/2 − 1]
+ [−B1/2,0B0,1/2 −B1/2,0 −B0,1/2 − 1]
− [B−1/2,0B1/2,0 +B−1/2,0 +B1/2,0 + 1].

2.2.2 Boundary Cells

Due to the boundary conditions p̄ · n̄ = 0, at pixels in the boundary cells of the image domain, the
augmented matrix (A|b̄) is as follows

North-West Corner

(A|b̄) =


1 0 0 0 0
0 1 0 0 0
1 1 B1/2,0 −1 S
1 1 −1 B0,1/2 E

 ,

where Bi,j = −2− (gi,jθ)
−1|∇uki,j| and

S = −px1,m3/2,0 − p
x2,m
1,1/2 + px2,k+1

1,−1/2 − (f1,0 − f0,0),

E = −px2,m0,3/2 − p
x1,m
1/2,1 + px1,m−1/2,1 − (f0,1 − f0,0).
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Using Cramer’s rule, the solution of the system is as follows

px2,k+1
0,−1/2 = 0,

px1,k+1
−1/2,0 = 0,

px1,k+1
1/2,0 = (1− ω)px1,k1/2,0 + ω

SB0,1/2+E

|A| ,

px2,k+1
0,1/2 = (1− ω)px2,k0,1/2 + ω

EB1/2,0+S

|A| ,

(18)

with
|A| = B1/2,0B0,1/2 − 1.

North Side

(A|b̄) =


B0,−1/2 −1 1 1 W

0 1 0 0 0
1 1 B1/2,0 −1 S
1 1 −1 B0,1/2 E

 ,

where Bi,j = −2− (gi,jθ)
−1|∇uki,j|, and

W = −px2,k+1
0,−3/2 + px1,k+1

1/2,−1 − p
x1,k+1
−1/2,−1 − (f0,0 − f0,−1),

S = −px1,m3/2,0 − p
x2,m
1,1/2 + px2,k+1

1,−1/2 − (f1,0 − f0,0),

E = −px2,m0,3/2 − p
x1,m
1/2,1 + px1,m−1/2,1 − (f0,1 − f0,0).

Using Cramer’s rule, the solution of the system is as follows

px2,k+1
0,−1/2 = (1− ω)px2,k0,−1/2 + ω

WB1/2,0B0,1/2−E−S−EB1/2,0−SB0,1/2−W
|A| ,

px1,k+1
−1/2,0 = 0,

px1,k+1
1/2,0 = (1− ω)px1,k1/2,0 + ω

SB0,−1/2B0,1/2−W+E−S−WB0,1/2+EB0,−1/2

|A| ,

px2,k+1
0,1/2 = (1− ω)px2,k0,1/2 + ω

EB0,−1/2B1/2,0+S−W−WB1/20+SB0,−1/2−E
|A| ,

(19)

with
|A| = B0,−1/2B1/2,0B0,1/2 −B1/2,0 −B0,1/2 −B0,−1/2 − 2.

North-East Corner

(A|b̄) =


B0,−1/2 −1 1 1 W

0 1 0 0 0
1 1 B1/2,0 −1 S
0 0 0 1 0

 ,

where Bi,j = −2− (gi,jθ)
−1|∇uki,j|, and

W = −px2,k+1
0,−3/2 + px1,k+1

1/2,−1 − p
x1,k+1
−1/2,−1 − (f0,0 − f0,−1),

S = −px1,m3/2,0 − p
x2,m
1,1/2 + px2,k+1

1,−1/2 − (f1,0 − f0,0).

Using Cramer’s rule, the solution of the system is as follows

px2,k+1
0,−1/2 = (1− ω)px2,k0,−1/2 + ω

WB1/2,0−S
|A| ,

px1,k+1
−1/2,0 = 0,

px1,k+1
1/2,0 = (1− ω)px1,k1/2,0 + ω

SB0,−1/2−W
|A| ,

px2,k+1
0,1/2 = 0,

(20)

with
|A| = B0,−1/2B1/2,0 − 1.

439



J.F. Garamendi, Vanel Lazcano, Coloma Ballester

West Side

(A|b̄) =


1 0 0 0 0
−1 B−1/2,0 1 1 N
1 1 B1/2,0 −1 S
1 1 −1 B0,1/2 E

 ,

where Bi,j = −2− (gi,jθ)
−1|∇uki,j|, and

N = −px1,k+1
−3/2,0 + px2,k+1

−1,1/2 − p
x2,k+1
−1,−1/2 − (f0,0 − f−1,0),

S = −px1,m3/2,0 − p
x2,m
1,1/2 + px2,k+1

1,−1/2 − (f1,0 − f0,0),

E = −px2,m0,3/2 − p
x1,m
1/2,1 + px1,m−1/2,1 − (f0,1 − f0,0).

Using Cramer’s rule, the solution of the system is as follows

px2,k+1
0,−1/2 = 0,

px1,k+1
−1/2,0 = (1− ω)px1,k−1/2,0 + ω

NB1/2,0B0,1/2−EB1/2,0−SB0,1/2−E−S−N
|A| ,

px1,k+1
1/2,0 = (1− ω)px1,k1/2,0 + ω

SB−1/2,0B0,1/2+EB−1/2,0−NB0,1/2−N+E−S
|A| ,

px2,k+1
0,1/2 = (1− ω)px2,k0,1/2 + ω

EB−1/2,0B1/2,0−NB1/2,0+SB−1/2,0−N+S−E
|A| ,

(21)

with
|A| = B−1/2,0B1/2,0B0,1/2 −B−1/2,0 −B0,1/2 −B1/2,0 − 2.

East Side

(A|b̄) =


B0,−1/2 −1 1 1 W
−1 B−1/2,0 1 1 N
1 1 B1/2,0 −1 S
0 0 0 1 0

 ,

where Bi,j = −2− (gi,jθ)
−1|∇uki,j|, and

W = −px2,k+1
0,−3/2 + px1,k+1

1/2,−1 − p
x1,k+1
−1/2,−1 − (f0,0 − f0,−1),

N = −px1,k+1
−3/2,0 + px2,k+1

−1,1/2 − p
x2,k+1
−1,−1/2 − (f0,0 − f−1,0),

S = −px1,m3/2,0 − p
x2,m
1,1/2 + px2,k+1

1,−1/2 − (f1,0 − f0,0).

Using Cramer’s rule, the solution of the system is as follows

px2,k+1
0,−1/2 = (1− ω)px2,k0,−1/2 + ω

WB−1/2,0B1/2,0−SB−1/2,0+NB1/2,0−W+N−S
|A| ,

px1,k+1
−1/2,0 = (1− ω)px1,k−1/2,0 + ω

NB0,−1/2B1/2,0−SB0,−1/2+WB1/2,0+W−N−S
|A| ,

px1,k+1
1/2,0 = (1− ω)px1,k1/2,0 + ω

SB0,−1/2B−1/2,0−NB0,−1/2−WB−1/2,0−W−N−S
|A| ,

px2,k+1
0,1/2 = 0,

(22)

with
|A| = B0,−1/2B−1/2,0B1/2,0 −B0,−1/2 −B−1/2,0 −B1/2,0 − 2.

South-West Corner

(A|b̄) =


1 0 0 0 0
−1 B−1/2,0 1 1 N
0 0 1 0 0
1 1 −1 B0,1/2 E

 ,
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where Bi,j = −2− (gi,jθ)
−1|∇uki,j|, and

N = −px1,k+1
−3/2,0 + px2,k+1

−1,1/2 − p
x2,k+1
−1,−1/2 − (f0,0 − f−1,0),

E = −px2,m0,3/2 − p
x1,m
1/2,1 + px1,m−1/2,1 − (f0,1 − f0,0).

Using Cramer’s rule, the solution of the system is as follows

px2,k+1
0,−1/2 = 0,

px1,k+1
−1/2,0 = (1− ω)px1,k−1/2,0 + ω

NB0,1/2−E
|A| ,

px1,k+1
1/2,0 = 0,

px2,k+1
0,1/2 = (1− ω)px2,k0,1/2 + ω

EB−1/2,0−N
|A| ,

(23)

with

|A| = B−1/2,0B0,1/2 − 1.

South Side

(A|b̄) =


B0,−1/2 −1 1 1 W
−1 B−1/2,0 1 1 N
0 0 1 0 0
1 1 −1 B0,1/2 E

 ,

where Bi,j = −2− (gi,jθ)
−1|∇uki,j|, and

W = −px2,k+1
0,−3/2 + px1,k+1

1/2,−1 − p
x1,k+1
−1/2,−1 − (f0,0 − f0,−1),

N = −px1,k+1
−3/2,0 + px2,k+1

−1,1/2 − p
x2,k+1
−1,−1/2 − (f0,0 − f−1,0),

E = −px2,m0,3/2 − p
x1,m
1/2,1 + px1,m−1/2,1 − (f0,1 − f0,0).

Using Cramer’s rule, the solution of the system is as follows

px2,k+1
0,−1/2 = (1− ω)px2,k0,−1/2 + ω

WB−1/2,0B0,1/2−EB−1/2,0−NB0,1/2−W+N−E
|A| ,

px1,k+1
−1/2,0 = (1− ω)px1,k−1/2,0 + ω

NB0,−1/2B0,1/2−EB0,−1/2+WB0,1/2+W−N−E
|A| ,

px1,k+1
1/2,0 = 0,

px2,k+1
0,1/2 = (1− ω)px2,k0,1/2 + ω

EB0,−1/2B−1/2,0−WB−1/2,0−NB0,−1/2−W−N−E
|A| ,

(24)

with

|A| = B0,−1/2B−1/2,0B0,1/2 −B0,−1/2 −B−1/2,0 −B0,1/2 − 2.

South-East Corner

(A|b̄) =


B0,−1/2 −1 1 1 W
−1 B−1/2,0 1 1 N
0 0 1 0 0
0 0 0 1 0

 ,

where Bi,j = −2− (gi,jθ)
−1|∇uki,j|, and

W = −px2,k+1
0,−3/2 + px1,k+1

1/2,−1 − p
x1,k+1
−1/2,−1 − (f0,0 − f0,−1),

N = −px1,k+1
−3/2,0 + px2,k+1

−1,1/2 − p
x2,k+1
−1,−1/2 − (f0,0 − f−1,0).
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Using Cramer’s rule, the solution of the system is as follows

px2,k+1
0,−1/2 = (1− ω)px2,k0,−1/2 + ω

WB−1/2,0+N

|A| ,

px1,k+1
−1/2,0 = (1− ω)px1,k−1/2,0 + ω

NB0,−1/2+W

|A| ,

px1,k+1
1/2,0 = 0,

px2,k+1
0,1/2 = 0,

(25)

with

|A| = B0,−1/2B−1/2,0 − 1.

2.3 Minimization with respect to χ

Let F = λ(|ρ−1(v)| − |ρ1(v)|) and G = α
2
|v|2. Let 0 < τη, τχ < 1/8. Given u and v, the minimum χ̃

of J̃θ with respect to χ can be obtained by the following primal-dual algorithm

ηn+1 = PB(ηn + τηg∇χn),

χn+1 = P[0,1](χ
n + τχ(div(gηn+1)− β divu− F −G)), (26)

where PB(η) denotes the projection of η on the unit ball ofR2 and P[0,1](r) = max(min(r, 1), 0), r ∈ R.

Notice that, by the co-area formula, the level sets of χ̃ are also minimizers of J̃θ (u,v being fixed).

Thus, before going to the next minimization of J̃θ with respect to u, we redefine χ(x) = Tδ(χ̃(x)),
where Tδ(r) = 1 (resp. 0) if r ≥ δ (resp. < δ).

The ∇ and div operators applied on v and χ computations correspond to forward and backward
finite differences (respectively).

3 Implemented Algorithm

The optical flow computation has been embedded in a pyramidal set of scales in order to cope with
large displacements. At a certain scale and starting from downsampled versions of the input images,
an optical flow problem is solved. The resulting optical flow is interpolated into the following finer
scale and it is used as starting point for the optical flow problem at this finer scale. This procedure
is iterated recursively from the coarsest version of the images to the original ones.

The algorithm is summarized in Algorithms 1, 2, 3 and 4. The inputs are three consecutive
frames I−1, I0, I1 of a given video sequence, a smoothed version of I0 (which is only used to compute
the function g multiplying the regularization terms in order to penalize regularization through an
intensity edge) and the parameters of the model. The output of the algorithm are the optical flow
field u and the occlusion layer χ. The occlusion layer χ is generated by thresholding χ1 using function
T so as to obtain a binary image, see Algorithm 1. Algorithm 2 includes a median filtering of the
optical flow u before computing χ. This step allows to improve robustness for the computation of χ.

The implementation of the C code has been performed in the following main modules,

• Warp module: This module implements the necessary functions for the warping process.

• Pyramid module: This module implements the necessary functions for the pyramidal scale
process.

• Solvers module: This module implements the procedures for minimizing the energy functional
with respect to the variables u, v and χ.
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Algorithm 1: Pyramidal procedure

input : Three consecutive frames I−1, I0, I1

A smoothed version of I0, named filtI0 (which can be chosen equal to I0)
The parameters for the optical flow computation at each scale

output: Flow field u and occlusion map χ for I0

Normalize images in the range [0,255]
Pre-smooth the input images with Gaussian of standard deviation σ
Compute downscaled images Is−1,Is0 , Is1 , filtIs0 for s = 1, . . . , Nscales, (1 finest, Nscales coarsest)
Initialize coarsest uNscales = 0 and χNnscales = 0
for s← Nscales to 2 do

us, χs ← Dual TVL1 optic flow (Algorithm 2)
[us−1, χs−1]← UpSampling(us, χs)

[u1, χ1]← Dual TVL1 optic flow (Algorithm 2)
χ← T (χ1)

Algorithm 2: Dual TVL1 optic flow

input : Three consecutive frames I−1, I0, I1

A smoothed version of I0 named filtI0

λ, α, β, γ and θ parameters
An initial optical flow u0 (usually coming from the previous scale)

output: Flow field u and occlusion layer χ for I0

Compute function g(x) using filtI0 and Equation (5)
Initialize v = 0 for the current scale
for s← 1 to Nwarps do

Compute the warped images Ii(x + iu0(x)), ∇Ii(x + iu0(x)), and ρi, i = {−1, 1}
while n < ext max iterations and stopping criterion > ε do

v← TH(u,u0) (threshold using Equation (11)) // Minimization w.r.t. v (Section 2.1)
u← Solver wrt u (Algorithm 3) // Minimization w.r.t. u (Section 2.2)
u← if it is requiered, median filtering of u using a 3× 3 window size.
χ← Solver wrt chi (primal-dual scheme (26)) //Minimization w.r.t. χ (Section 2.3)

Algorithm 3: Solver wrt u

input : v = (v1, v2), the occlusion map χ and g(x)
β, and θ parameters

output: Flow field u = (u1, u2)
(χx, χy)← ∇χ
f ← v/θ + β(χx, χy)
u1 ← Scalar ROF BoxCellCentered(f1, g, θ) (Algorithm 4)
u2 ← Scalar ROF BoxCellCentered(f2, g, θ) (Algorithm 4)
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Algorithm 4: Scalar ROF BoxCellCentered

input : f and g(x)
ω successive over-relaxation parameter, θ parameter

output: Denoised image u
Initialize the dual variable p = (px1 , px2) = 0̄
Initialize the solution u = f
for iter ← 1 to MAX ITERATIONS U do

(ux, uy)← ForwardGradient(u)

α←
√
u2x+u2y
gθ

for Each cell on the staggered grid do
Bi,j ← −2− αi,j


px2,k+1

0,−1/2

px1,k+1
−1/2,0

px1,k+1
1/2,0

px2,k+1
0,1/2

 =



Equation (17) if cell is an inner cell
Equation (18) if cell is the North-West corner cell
Equation (19) if cell is on the North line
Equation (20) if cell is the North-East corner cell
Equation (21) if cell is on the West column
Equation (22) if cell is on the East column
Equation (23) if cell is the South-West corner cell
Equation (24) if cell is on the South line
Equation (25) if cell is the South-East corner cell

u← θ(f + div(p))

• tvl1OccFlow module: This module performs the iterations of the overall relaxation process for
a given scale.

Let us add some comments on the implementation of the minimization with respect to v, which
is given by (3). In practice, these equations are implemented in the code by using two auxiliary
variables vfwd and vbck, satisfying

v(x) =

{
vfwd(x) if χ(x) = 0,
vbck(x) if χ(x) = 1.

(27)

In the same way, in the implementation of the minimization with respect to χ, the F and G variables
are calculated depending whether the continuous chi is less or greater than 0.5.

The whole algorithm has some parameters. In our implementation there are parameters for the
model and parameters to control the behavior of the numerical implementation. The parameters
for the model are given in command line and the parameters for the numerical implementation can
be controlled in a header file before compiling. This fact, and the modular organization of the
algorithms, allow the possibility of changing the numerical aspects of the algorithms related to the
minimization w.r.t the variables u, v, and χ without affecting the rest of the code, even without
modifying the program call. The meaning of the model parameters is as follows:

Model parameters. These parameters allow to control the parameters for the model. Default
values are given in parentheses.

• lambda (λ = 0.15): This parameter, see Equation (4), controls the trade-off between the data
term and the regularization term. The smaller the parameter is, the smoother the solution is.
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• alpha (α = 0.01): This parameter, α ≥ 0 in Equation (6), is used to penalize large displace-
ments of the motion field u in the occluded areas. The smaller the parameter is, the smaller
the computed displacement in the occluded areas.

• beta (β = 0.15): The parameter, β > 0 in Equation (6), allows to control the sensibility of the
algorithm to the detection of occluded areas.

• theta (θ = 0.3): This parameter, see Equation (6), controls the attachment between the
auxiliary variable v and the final solution u. When θ is large there is no effective transfer of
information between u and v.

• nwarps (Nwarps = 2): This parameter, see Algorithm 2, sets the number of warping iterations
to be performed at each level. In order to obtain more accurate results, this parameter can be
increased for instance to 10.

• epsilon (ε = 0.01): This parameter, see Algorithm 2, is the stopping criterion for the iterative
process.

• nscales (Nnscales = maximum): It corresponds to the number of levels for creating the image
pyramid and is used jointly with the zfactor parameter. See Algorithm 1. The maximum
number of scales is computed to assure that the smallest images of the pyramid don’t have a
size smaller than 16× 16.

If the displacements inside the video sequence are small, it can be set to 1.

• zfactor (0.5): This parameter, with values between 0 and 1, sets the downsampling factor to
construct the image pyramid. A value of 0.5 is associated to the construction of a pyramid in
which images are downsampled by a factor of 2. This parameter is also used for the UpSampling
function that can be seen in Algorithm 1.

• medianFilter (1): This parameter switchs on (medianFilter=1) or off (medianFilter=0)
the median filter (see Algorithm 2). When medianFilter=1 the final results of the test with the
ground truth have less error, but we are not minimizing exactly the proposed energy functional.

Numerical parameters. The parameters below can be modified by editing the header source file
constants.h. In any case, it is not needed/recommended.

• OMEGA (ω = 1.25): It corresponds to the ω relaxation value in the minimization w.r.t. u.

• TAU ETA (τη = 0.15): It corresponds to the time step for η in the minimization w.r.t. χ.

• TAU CHI: (τχ = 0.15): It corresponds to the time step for χ in the minimization w.r.t. χ.

• THR CHI: (δ = 0.75): It corresponds to the threshold for χ.

• MAX ITERATIONS CHI (100): It corresponds to the number of iterations of the algorithm for
minimizing w.r.t. χ.

• MAX ITERATIONS U (10): It corresponds to the number of iterations of the algorithm for min-
imizing w.r.t. u.

• EXT MAX ITERATIONS (20): It corresponds to the maximum number of iterations for the second
loop of Algorithm 2.

• G FACTOR (γ = 0.05): It corresponds to the weight γ in Equation (5). The g function can be
set to identity (so, without effect) setting the variable G CHOICE to 1.

445



J.F. Garamendi, Vanel Lazcano, Coloma Ballester

Output Optical Flow .flo file format. The program output for the optical flow is a file in
format .flo. This format is defined in the Middlebury optical flow database2, where the readers can
find information and source code (in C++ and Matlab) for reading, writing and visualizing optical
flow files.

4 Experimental Results

We present some experimental results of the implemented algorithm. The experiments were per-
formed on sequences from the Middlebury Benchmark Database. This database contains data with
public ground truth, so we can evaluate the error of the solution. As error metric we show the Av-
erage End-Point Error (EPE) and the Average Angular-Point Error (AAE), which can be computed
as

EPE := (1/N)
N∑
i=1

√(
u1,i − ugt1,i

)2
+
(
u2,i − ugt2,i

)2
,

AAE := (1/N)
N∑
i=1

arccos

 u1,iu
gt
1,i + u2,iu

gt
2,i√

u2
1,i − u2

2,i + 1
√

(ugt1,i)
2 − (ugt2,i)

2 + 1

 ,

with ugt = (ugt1 , u
gt
2 ) being the ground truth solution (provided by the Middlebury Benchmark

Database).

4.1 Evaluation on Middlebury

We did a parameter study and in Table 1 are shown the EPE and AAE for the test sequences with
the best model parameters. Parameter β was set to 1 and ε was set to 10−6. The other parameters
were set to the default value except the number of warps, that we set to 10. The size of the images
and the default scale factor of 0.5 gives a maximum number of scales of 5.

Urban2 Urban3 Grove2 Grove3 Rubberwhale Hydrangea
EPE 0.31488 0.34046 0.13573 0.56019 0.16501 0.21941
λ 0.6 1 0.4 0.8 0.3 0.1
θ 0.2 0.5 0.3 0.4 0.2 0.8

AAE 2.39342 2.97392 2.01494 5.3 5.33447 2.4380
λ 0.6 1 0.4 0.9 0.2 0.1
θ 0.2 0.5 0.3 0.5 0.2 0.8

Table 1: EPE, AAE, and best parameters for the Middlebury test sequences.

In Figure 3 the optical flow and the occlusion layer χ are shown for the Urban2 sequence. The
optical flow u is shown using the color coding scheme at the right of the image. The occlusion layer
is shown superimposed on the central frame of the sequence. As it can be seen, the method is able to
detect the regions of I0 that get occluded at frame I1 due to the apparent movement of the buildings.

2http://vision.middlebury.edu/flow/
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Figure 3: First row: Three consecutive frames I−1, I0, I1 of the Urban2 Middlebury video sequence. Second row: The
optical flow u in color coded (the color legend is besides) and the occlusion layer in red overimposed on I0. The values of
the parameters are given in the text.

4.2 Evaluation on MPI-Sintel

The MPI-Sintel database presents long synthetic video sequences containing large displacements and
image degradation as blur, reflections, shadows and fog. There are two versions of the MPI-Sintel
database: clean and final. The final version includes large displacements and image degradation.
For our evaluation we took the final version of the video sequences. In Figure 4 we present some
examples of sequences in the MPI-Sintel database.

In Figure 4, in the first row, is presented an image sequence with large displacement, around
170 pixels. In the second row is shown a girl trying to catch the small dragon. We observe large
displacements in the girl’s arms and also in the wings of the small dragon. In the third row we
observe fog and deformation of the hand.

Our experiment is shown in Figure 5. We present an optical flow estimation and also the occlusion
layer estimation. In the first row we show frame 20 and frame 21 of the sequence alley 1. The girl
moves her arm downwards. In the second row we show the optical flow ground truth and the
estimated optical flow. We observe that the optical flow is estimated correctly. In the third row we
show the occlusion ground truth and the estimated occlusion layer. We observe that the occlusion
is correctly estimated.

In the first row of Figure 6 we present frames of the sequence cave 4. This sequence presents
large displacements (around 170 pixels). In the second row we present the optical flow ground truth
and the estimated optical flow. We observe that the optical flow is not well estimated due to the
large displacements. In the third row we present the occlusion layer ground truth and the estimated
occlusion layer.

We have evaluated our method using the final version of the MPI database. We divided the
database in three subsets: large displacements (displacements larger that 40 pixels), medium dis-
placements (less than 40 pixels) and small displacements. We set λ = 0.60 and θ = 0.1, Nwarps = 10,
α = 0.01. We computed the average End Point Error for each video sequence in subsets of the
database and we present the results in Table 2.
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Figure 4: First row: Frames 10 and 11 of the sequence cave 4. Second row: Frames 30 and 31 of temple 3 video sequence.
Third row: Frames 06 and 07 of ambush 4 video sequence.
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Figure 5: First row: Frames 19 and 20 of the sequence alley 1. Second row: Estimated optical flow and optical flow ground
truth. Third row: Occlusion ground truth and estimated occlusion layer.

449



J.F. Garamendi, Vanel Lazcano, Coloma Ballester

Figure 6: First row: Frames 13 and 14 of the sequence cave 4. Second row: Optical flow ground truth and estimated
optical flow. Third row Ground truth layer and estimated occlusion layer.
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Table 2: End Point Error obtained by our model in subset: large displacement, medium displacement and small displacement
of MPI.

Large Medium Small
Displacement Displacement Displacement

Sequence EPE Sequence EPE Sequence EPE
Ambush 2 52.16 Alley 2 0.62 Alley 1 0.46
Ambush 4 30.15 Bamboo 1 0.41 Ambush 7 4.76
Ambush 5 15.52 Bamboo 2 1.27 Bandage 1 1.12
Ambush 6 23.39 Market 2 1.24 Bandage 2 0.69
Market 5 21.84 Temple 2 4.28 Mountain 1 2.46
Market 6 9.23 Shaman 2 0.33
Cave 2 22.35 Shaman 3 0.95
Cave 4 5.78 Sleeping 1 0.11

Temple 3 26.33 Sleeping 2 0.18
Average EPE 21.08 Average EPE 1.56 Average EPE 1.37

Total Average EPE 8.34

We observe in Table 2 that the average EPE in all sequences is 8.34. We observe that for small and
medium displacements our method presents an EPE smaller than 1.56. For large displacements our
method presents an EPE of 21.08. We conclude that the performance of our method is acceptable
for small and medium displacements and that the method cannot handle large displacements.

5 Conclusions

This work proposes an implementation of the variational model for joint optical flow and occlusion
estimation proposed by Ballester et al. The problem is modeled as an energy functional minimization
with a term based on the divergence of the flow that favors the location of occlusions on regions where
this divergence is negative. Our method requires three consecutive frames. Assuming that occluded
pixels are visible in the previous frame, the optical flow on non-occluded pixels is forward estimated
whereas is backwards estimated on the occluded ones. In the minimization process, there are three
different energy functionals to minimize. The first one leads to a point-wise threshold, the second
one is a problem very similar to the Rudin-Osher-Fatemi denoising model. The problem is solved
following a Box Cell Centered on a staggered grid that gives a faster convergence on the ROF
minimization. The third one is minimized using a primal-dual scheme. Finally, some test were done
using the well known Middlebury database, with good quantitative results on the error with respect
to the ground truth.
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