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Abstract

In this work, we propose several improvements of the inverse compositional algorithm for para-
metric registration. We propose an improved handling of boundary pixels, a different color
handling and gradient estimation, and the possibility to skip scales in the multiscale coarse-
to-fine scheme. In an experimental part, we analyze the influence of the modifications. The
estimation accuracy is at least improved by a factor 1.3 while the computation time is at least
reduced by a factor 2.2 for color images.

Source Code

The C++ source code, the code documentation, and the online demo are accessible at the web
page of this article1. Compilation and usage instruction are included in the README.txt file of
the archive.

Keywords: inverse compositional algorithm; parametric motion estimation; boundary han-
dling; gradient estimation

1 Introduction

Image alignment is one of the most widely used techniques in computer vision. The objective of para-
metric motion estimation methods is to find the global transformation that puts in correspondence
the pixels of two images. An accurate and efficient estimation is important in problems such as optical
flow estimation, object tracking, video stabilization, image stitching or 3D reconstruction. The task
is difficult because it deals with problems like occlusions, noise, local brightness changes or spurious
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motions. Methods can be classified into intensity-based and feature-based. Intensity-based methods
are usually faster but more sensitive to brightness changes and outliers. Feature-based methods are
typically more sensitive to noise and motion blur, but allow to estimate stronger deformations [21].

In this article we focus on the inverse compositional algorithm for parametric motion estimation.
First introduced in [2, 22], it is an improvement of the classical intensity-based method of Lucas-
Kanade [11]. At each step of its iterative scheme it solves a minimization problem equivalent to
Lucas-Kanade but more efficiently. It allows for precomputations and the gradient of the reference
image is not interpolated. The inverse compositional algorithm was studied in more detail in [3]. With
the extension to robust error functions in [1], it becomes less sensitive to outliers. Better precision
for large motions can be obtained with a coarse-to-fine multiscale approach as in [17]. Using the
implementation provided by [17], it can be observed that, for moderate deformations, this method
is faster and more accurate than classical feature-based methods that rely on SIFT keypoints [9, 16]
and the RANSAC algorithm [6].

We claim that the inverse compositional algorithm can be further improved and accelerated with
a correct handling of the boundary values, a different color handling and gradient estimation, and by
skipping scales in the multiscale coarse-to-fine scheme. The estimation accuracy is at least improved
by a factor 1.3 while the computation time is at least reduced by a factor 2.2 for color images. In
this article, we detail the inverse compositional algorithm and analyze the influence of the proposed
modifications. An implementation of the modified algorithm based on the one of [17] is also provided.

The rest of the paper is organized as follows. First, we detail the inverse compositional algorithm
in Section 2 as it is presented in [17], i.e., with the use of robust error functions and a multiscale
approach. In Section 3, we present the proposed modifications that lead to the modified inverse
compositional algorithm. In the experimental part (Section 4) we study and discuss the influence of
the modifications, and we finish with conclusions in Section 5.

2 The Inverse Compositional Algorithm for Parametric Reg-

istration

Let M,N,C be three positive integers. Define the spatial domain Ω = ΩM,N = {0, . . . ,M − 1} ×
{0, . . . , N − 1}. Let I1 and I2 be two images of size M × N with C channels (e.g. C = 1 for
grayscale images and C = 3 for color images). The channels are handled so that, for x ∈ Ω,

I1(x) = (I
(1)
1 (x), . . . , I

(C)
1 (x))T ∈ R

C is a vector of length C.
The motion between the two images is assumed to be representable by a parametric motion

model. Denote by Ψ(·;p) : R2 → R
2 the transformation parametrized by p ∈ R

n. The parametric
motion estimation problem is to find a motion parameter p⋆ such that

∀x ∈ Ω, I1(x) ≃ I2 (Ψ(x;p⋆)) . (1)

There is in practice no equality in (1) because, for instance, images contain noise and occlusions may
occur. In addition, the motion model in general only approximates the real motion.

Additional hypotheses. In order to apply the inverse compositional algorithm, additional hy-
potheses are made on the set of transformations {Ψ(·;p), p ∈ R

n} and its parametrization.

1. The motion parameter p = 0 corresponds to the identity transformation, i.e. Ψ(x; 0) = x for
all x ∈ R

2.

2. The set of transformations has a group structure under composition of functions.
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Transform n Parameters - p Matrix - H(p) Jacobian - J(x, y)

Translation 2 (tx, ty)





1 0 tx
0 1 ty
0 0 1





(

1 0
0 1

)

Euclidean 3 (tx, ty, θ)





cos θ − sin θ tx
sin θ cos θ ty
0 0 1





(

1 0 −y
0 1 x

)

Similarity 4 (tx, ty, a, b)





1 + a −b tx
b 1 + a ty
0 0 1





(

1 0 x −y
0 1 y x

)

Affinity 6 (tx, ty, a11, a12, a21, a22)





1 + a11 a12 tx
a21 1 + a22 ty
0 0 1





(

1 0 x y 0 0
0 1 0 0 x y

)

Homography 8 (h11, h12, h13, . . . , h32)





1 + h11 h12 h13

h21 1 + h22 h23

h31 h32 1





(

x y 1 0 0 0 −x2 −xy
0 0 0 x y 1 −xy −y2

)

Table 1: Planar transformations in their homogeneous coordinates and their Jacobians.

Figure 1: Example of reference image I1 (left) and warped image I2 (right). These are color images of size 512× 512 (i.e.
M = N = 512 and L = 3) linked by a homography. The reference image is generated from the warped image by bicubic
interpolation where outside pixel values are set to 0 (black region).

3. For all x ∈ R
2, the function p ∈ R

n 7→ Ψ(x;p) is differentiable at p = 0.

Table 1 lists the typical planar transformations and provides examples of parametrization. An
example of images related by an homographic transformation is shown in Figure 1.

The inverse compositional algorithm tries to solve the parametric motion problem with an iterative
scheme. Firstly, we start by introducing the mathematical construction on which the algorithm relies
on. Secondly, we detail the inverse compositional algorithm along with all its parameters. Then, we
discuss the influence of the error function. Finally, we present the coarse-to-fine multiscale approach.

2.1 Mathematical Construction

A good candidate for the parameter p∗ in (1) is a minimizer of the energy

p ∈ R
n 7→ E0(p) =

∑

x∈Ω
ρ
(

‖I2(Ψ(x;p))− I1(x)‖2
)

, (2)

where ρ : R+ → R
+ is an increasing and derivable function called the error function whose influence

is discussed in Section 2.3. As there is in general no explicit expression for computing a minimizer,
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it is approximated using an iterative scheme.
At a given step j ≥ 1, the idea of the inverse compositional algorithm is to refine the current

estimated transformation Ψ(·;pj−1) with an inverted incremental transformation (hence the name of
the algorithm) Ψ(·; ∆pj)

−1, i.e.,

Ψ(·;pj) = Ψ(·;pj−1) ◦Ψ(·; ∆pj)
−1. (3)

The ideal choice for the increment ∆pj would be a minimizer of the incremental energy

∆p ∈ R
n 7→ E1(∆p;pj−1) =

∑

x∈Ω
ρ
(

‖I2(Ψ(x;pj−1))− I1(Ψ(x; ∆p))‖2
)

, (4)

as it would give pj = p⋆ with (3) under the assumption that (1) holds. But, as for the original energy
E0, such a minimizer cannot be computed and can only be approximated. Therefore the energy E1

is approximated as follows using two successive first order Taylor expansions. Let x ∈ Ω.

First approximation. A first order Taylor expansion of the function ∆p ∈ R
n 7→ I1(Ψ(x; ∆p))

around 0 gives
I1(Ψ(x; ∆p)) ≃ I1(x) +∇IT1 (x)J(x)∆p, (5)

where

J(x) =
∂Ψ

∂p
(x; 0) ∈M2,n (6)

is the Jacobian matrix of the model at x and ∇I1(x) =
(

∂I1
∂x

(x), ∂I1
∂y

(x)
)T

∈ M2,C is the gradient of

I1 at x. The Jacobian matrices J of some typical planar transformations can be found in Table 1.
For C > 1, ∇I1 actually corresponds to the transposed of the Jacobian matrix of I1 but to simplify
we keep the gradient notation. Let us set

G(x) = ∇IT1 (x)J(x) ∈ML,n, (7)

and denote DI the difference image defined by

DI(x) = DI(x;pj−1) = I2(Ψ(x;pj−1))− I1(x) ∈ R
C . (8)

Using (5) in (4), we define the approximated incremental energy

∆p ∈ R
n 7→ E2(∆p;pj−1) =

∑

x∈Ω
ρ
(

‖DI(x)−G(x)∆p)‖2
)

. (9)

Second approximation. A first order Taylor expansion of the function t ∈ R 7→ ρ(‖DI(x)‖2 + t)
around 0 gives

ρ(‖DI(x)‖2 + t) ≃ ρ(‖DI(x)‖2) + ρ′(‖DI(x)‖2)t. (10)

Using the expansion

‖DI(x)−G(x)∆p)‖2 = ‖DI(x)‖2 − 2∆pTG(x)TDI(x) + ∆pTG(x)TG(x)∆p (11)

and t = −2∆pTG(x)TDI(x) + ∆pTG(x)TG(x)∆p in (10), we obtain the approximation

ρ(‖DI(x)−G(x)∆p)‖2) ≃ ρ(‖DI(x)‖2)+ρ′(‖DI(x)‖2)
(

−2∆pTG(x)TDI(x) + ∆pTG(x)TG(x)∆p
)

.

(12)
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To simplify we denote ρ̃′(x) = ρ̃′(x;pj−1) = ρ′(‖DI(x)‖2) ∈ R
+. We define the Hessian matrix

H ∈Mn and the vector b ∈ R
n by

H = H(pj−1) =
∑

x∈Ω
ρ̃′(x) ·G(x)TG(x), (13)

b = b(pj−1) =
∑

x∈Ω
ρ̃′(x) ·G(x)TDI(x). (14)

Using (12), we define a second approximated incremental energy

∆p ∈ R
n 7→ E3(∆p;pj−1) =

∑

x∈Ω
ρ(‖DI(x)‖2)− 2∆pTb+∆pTH∆p. (15)

Assuming that this quadratic form is non-degenerate (i.e. that the symmetric matrix H is positive
definite), we define the increment ∆pj as its unique minimizer that is given by

∆pj = H−1b. (16)

2.2 Algorithm

In practice, the gradient of I1 is estimated using the central differences scheme, i.e. for x = (x, y) ∈ Ω,

∂I1

∂x
(x) ≃ 1

2
(I1(x+ 1, y)− I1(x− 1, y)) , (17)

∂I1

∂y
(x) ≃ 1

2
(I1(x, y + 1)− I1(x, y − 1)) . (18)

The difference image DI defined in (8) requires the values I2(Ψ(x;pj−1)), which are computed
by bicubic interpolation [7]. Neumann boundary conditions are adopted for both, the gradient
estimation, and the interpolation. As in [17], when I2(Ψ(x;pj−1)) has to be evaluated outside of the
domain [0,M − 1] × [0, N − 1] its values are arbitrarily set to 0. This may be useful for simulated
images as the one shown in Figure 1 but it is not adapted to real data. In Section 3.2 we discuss the
impact of this choice and propose a strategy to avoid introducing bias.

Given an initialization p0 ∈ R
n, the pj’s can be computed using (3) and (16), and are expected to

be close to a minimizer of the original energy E0 after enough iterations. The iterations are stopped
as soon as the increment ∆pj is small enough. More precisely, for a given threshold ǫ > 0, the
stopping criterion is

‖∆pj‖ ≤ ǫ. (19)

Because the sequence (pj)j∈N is not guaranteed to converge, a maximum number of iterations jmax

is also set. When the error function ρ depends on a threshold parameter we adjust it during the
iterations as explained in Section 2.3. The one-scale inverse compositional algorithm is shown in
Algorithm 1.

This algorithm is an improvement of the Lucas-Kanade method [11] since at each step of the
incremental refinement it solves an equivalent minimization problem but more efficiently [2]. As
∇I1, G, and GTG do not depend on pj−1 they are precomputed before the incremental refinement.
The Hessian H can also be precomputed for the L2 error function (see Section 2.3). Note that
precomputing is memory greedy and may be replaced by in-place computations. For instance the
precomputation of GTG requires to store n2MN values. In addition, the gradient of the reference
image is not interpolated during the incremental refinement.

Note that contrast change may deteriorate the algorithm performance since it is not taken into
account in (1). It can be handled by equalizing the input image contrasts, for instance using the
Midway Image Equalization algorithm [8].
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Algorithm 1: One-scale inverse compositional algorithm

input : I1, I2, p, ǫ, jmax, ρ
output: Motion parameter p ∈ R

n

// Precomputations

1 Estimate the gradient ∇I1 as in (17) and (18) using central differences with constant
boundary condition.

2 Compute the Jacobian matrix J as in (6) (see Table 1 for typical planar transformations).
3 Compute G = ∇IT1 J .
4 Compute GTG.
// Incremental refinement

5 Initialize p0 = p and j = 1.
6 repeat

7 for x ∈ Ω do

8 if Ψ(x;pj−1) ∈ [0,M − 1]× [0, N − 1] then
9 Compute I2(Ψ(x;pj−1)) by bicubic interpolation with constant boundary condition.

10 else

11 Set I2(Ψ(x;pj−1)) = 0

12 Compute DI(x) = I2(Ψ(x;pj−1))− I1(x).

13 Update the threshold parameter of the error function ρ as explained in Section 2.3.
14 Compute ρ̃′ = ρ′(‖DI‖2).
15 Compute the vector b =

∑

x∈Ω ρ̃′(x) ·G(x)TDI(x).
16 Compute the Hessian H =

∑

x∈Ω ρ̃′(x) ·G(x)TG(x) and invert it.
17 Compute ∆pj = H−1b.
18 Ψ(·;pj)← Ψ(·;pj−1) ◦Ψ(·; ∆pj)

−1.
19 j ← j + 1.

20 until j > jmax or ‖∆pj−1‖ ≤ ǫ;
21 Return p = pj.

2.3 Error Function

The influence of the error function ρ on the model estimation is only determined by its variations, i.e.,
its derivative ρ′ through the weighting by ρ′(‖DI(x)‖2) in (13) and (14). In theory, any increasing
and derivable function can be chosen as the error function but in the following we only consider the
L2 error function, for which the computations are simplified, and the robust error functions, for which
the model estimation is robust to outliers. Note that the method can be extended to error functions
that are derivable almost everywhere by arbitrarily choosing a representative of the derivative. In
particular, it allows to use the truncated L2 error function.

L2 error function. The error function originally considered in [2] was the identity function ρ(s) =
s, which results in an L2 error in (2). It has the advantage of having a constant derivative ρ′ = 1
so that the Hessian H, defined in (13), and its inverse can be precomputed before the incremental
refinement. Another theoretical advantage is that in Section 2.1 only one first order Taylor expansion
is necessary and E2 = E3. However, as it gives the same weight to every pixel, the model estimation
is not robust to outliers.

Robust error function. We call robust error function [1, 17] an error function that reduces the
influence of high errors in the model estimation. Typically, it is the case when ρ′ is bounded and

440



Improvements of the Inverse Compositional Algorithm for Parametric Motion Estimation

ρ′(s) −→
s→+∞

0. The model estimation using a robust error function is more robust to outliers because

they have less influence. In particular, it allows to deal with problems like occlusions, noise, local
brightness changes or spurious motions. Typical robust error functions considered in [17] are given
in Table 2. Note that they all depend on a threshold parameter λ > 0, which controls the variation
of the error function, i.e., the influence of outliers. A small value limits the influence of pixels with
a high error while a large value means that all the pixels tend to have the same weighting.

Selection of the threshold parameter. In Algorithm 1, when the error function depends on
a threshold parameter that is not specified by the user, it is initialized with a large value λ0 and
then geometrically reduced during the incremental refinement. This strategy successively reduces
the influence of outliers, which are gradually eliminated. In practice, at step j of the incremental
refinement we use the parameter λj = max(0.9jλ0, 5), where λ0 = 80.

2.4 Coarse-to-fine Multiscale Approach

The two approximations in Section 2.1 are only valid under the assumption that ∆p is small. There-
fore, in order to estimate large displacements, a coarse-to-fine multiscale approach is used.

Gaussian pyramid of an image. Let I be an image, Nscales be the number of scales in the
pyramid and η ∈ (0, 1) be the downsampling factor. For s ∈ {0, . . . , Nscales−1} we note Is the image
of the pyramid at scale s. The Gaussian pyramid is recursively computed for s = 1 to Nscales − 1
from I0 = I by

Is(x) =
(

Gσ ∗ Is−1
)

(
1

η
x). (20)

In order to avoid aliasing and to reduce the noise, the images are smoothed with a Gaussian kernel
of standard deviation

σ = σ(η) = σ0

√

1

η2
− 1, (21)

where σ0 = 0.6 is found empirically in [12]. After the convolution (which is computed by applying
a discrete kernel with finite support and using the whole-symmetric boundary condition [7]), the
images are resampled using bicubic interpolation with a step 1

η
. In practice, the number of scales

Nscales is adjusted so that the coarsest scale image is greater than 32 pixels in the shortest dimension.
Thus, the maximal number of scales is

Nmax
scales = 1 +

[

log(min(M,N)
32

)

− log(η)

]

. (22)

Coarse-to-fine approach. The estimation of the motion between I1 and I2 using the multiscale
approach is done as follows. First, the two Gaussian pyramids (Is1)0≤s≤Nscales−1 and (Is2)0≤s≤Nscales−1

are computed as explained in the previous paragraph. Assuming that the images share a large
common part, the motion is initialized at the coarsest scale s = Nscales − 1 as pNscales−1 = 0 (i.e.,
the identity transformation) and is estimated using the one-scale inverse compositional algorithm
(Algorithm 1). Then the estimation is refined in the following finer scales. To transfer the motion
parameter ps at scale s to the motion parameter ps−1 at scale s− 1, the transformation is updated
according to the parametrization. Update rules for the parametrizations of planar transformations
proposed in Table 1 are presented in Table 3. The multiscale inverse compositional algorithm is
shown in Algorithm 2.

441



Thibaud Briand, Gabriele Facciolo, and Javier Sánchez

Type s 7→ ρλ(s
2) s 7→ ρ′λ(s

2)
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Table 2: Example of error functions. Except for the L2 error function, they are all robust error functions depending on a
threshold parameter λ. The curves correspond to λ = 5.
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Transform ps−1 ps

Translation (tx, ty)
1
η
(tx, ty)

Euclidean (tx, ty, θ) ( 1
η
tx,

1
η
ty, θ)

Similarity (tx, ty, a, b) ( 1
η
tx,

1
η
ty, a, b)

Affinity (tx, ty, a11, a12, a21, a22) ( 1
η
tx,

1
η
ty, a11, a12, a21, a22)

Homography (h11, h12, h13, h21, h22, h23, h31, h32) (h11, h12,
1
η
h13, h21, h22,

1
η
h23, ηh31, ηh32)

Table 3: Update rule in the coarse-to-fine scheme for the parametrizations of planar transformations proposed in Table 1.

Algorithm 2: Multiscale inverse compositional algorithm

input : I1, I2, ǫ, jmax, ρ, Nscales, η
output: Transformation p ∈ R

n

1 Create a Gaussian pyramid of images Is1 , I
s
2 for s = 0, . . . , Nscales − 1

2 Initialize with pNscales−1 = 0
3 for s = Nscales − 1 to 0 do

4 Compute ps with Algorithm 1 applied to Is1 , I
s
2 , p

s, ǫ, jmax, ρ.
5 if s > 0 then

6 Compute ps−1 from ps by zoom of factor η (see Table 3 for typical planar
transformations).

7 Return p = p0

3 Modifications of the Inverse Compositional Algorithm

In this section we propose simple modifications to the inverse compositional algorithm that allow to
improve its performance and precision. These improvements are experimentally verified in Section 4.

3.1 Grayscale Conversion

Assume that I1 and I2 are color images (i.e. C = 3). We consider a classical alternative for color
handling, which consists in averaging the channels to obtain a grayscale image. This is valid since
the motion is the same for all the channels. This divides by 3 the number of input pixels and by√
3 ≃ 1.7 the noise level. As we will see in Section 4.2.2, there is no clear advantage of using color

over grayscale images. Since operating on grayscale images implies less computations, we use it.

3.2 Boundary Handling by Discarding Boundary Pixels

Even though it concerns a relatively small amount of pixels, the handling of boundary pixels has a
significant impact on the performance of the algorithm. To estimate ∇I1(x) at a pixel x close to the
boundary of Ω, an arbitrary extension of the domain is needed (constant extension in Algorithm 1
and whole-symmetric extension in Section 3.3). Also the evaluation of I2(Ψ(x;pj−1)) by bicubic
interpolation requires an arbitrary extension for position Ψ(x;pj−1) that fall close to the boundary
of [0,M−1]× [0, N−1]. Therefore, during the motion estimation the boundary pixels are more likely
to have incorrect gradient estimates, which deteriorate the performance of the algorithm. When a
robust error function is used, the influence of these boundary effects is lessened but is still noticeable.

The handling proposed in [17], and used in Algorithm 1, only avoids the interpolation of values
outside of the image domain. Let x ∈ Ω such that Ψ(x;pj−1) falls outside of the domain [0,M −
1]× [0, N − 1]. Then, the value I2(Ψ(x;pj−1)) is set to 0. This strategy is only adapted to synthetic
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Ω

ΩδΨ−1(Ω̃δ;p)

Ωδ,p

Figure 2: Example of domain Ωδ,p. Ω is the spatial domain where I1 and I2 are defined. Ωδ represents the pixels at
distance at least δ of the boundary of Ω. Pixels outside of Ωδ are discarded to avoid incorrect gradient estimations. Ω̃δ is
the continuous domain corresponding to the convex hull of Ωδ. The continuous domain Ψ−1(Ω̃δ;p) represents the points
whose images by Ψ(·;p) belong to Ω̃δ. Pixels outside of Ω ∩ Ψ−1(Ω̃δ;p) are discarded to avoid incorrect interpolations.
Finally, pixels outside of the gray area are discarded and the computations are made on the pixels of Ωδ,p = Ωδ∩Ψ−1(Ω̃δ;p).

images where pixels outside the domain are set to 0 during the resampling (see example in Figure 1).
Otherwise, as in general I1(x) has no reason to be close to 0, the model error at x is likely to be
high.

Discarding boundary pixels. We propose an alternative strategy that handles all boundary
pixels without introducing outliers. It consists in discarding boundary pixels from the sums in the
energies introduced in Section 2.1. Note that it has the advantage of reducing the complexity of the
algorithm.

More precisely, let δ be a non-negative integer and define for p ∈ R
n

Ωδ = Ωδ
M,N = {δ, . . . ,M − 1− δ} × {δ, . . . , N − 1− δ}, (23)

Ω̃δ = Ω̃δ
M,N = [δ,M − 1− δ]× [δ,N − 1− δ], (24)

Ωδ,p = {x ∈ Ωδ | Ψ(x;p) ∈ Ω̃δ} = Ωδ ∩Ψ−1(Ω̃δ;p). (25)

Ωδ represents the pixels at distance at least δ of the boundary of Ω. Pixels outside of Ωδ are discarded
to avoid incorrect gradient estimations. Ω̃δ is the continuous domain corresponding to the convex
hull of Ωδ. The continuous domain Ψ−1(Ω̃δ;p) represents the points whose images by Ψ(·;p) belong
to Ω̃δ. Pixels outside of Ω ∩Ψ−1(Ω̃δ;pj) are discarded to avoid incorrect interpolations. Finally, the
computations are made on the pixels of Ωδ,p = Ωδ ∩Ψ−1(Ω̃δ;p). We display in Figure 2 an example
of domain Ωδ,p.

At step j of the incremental refinement, the boundary pixels are assumed to be located in Ω \
Ωδ,pj−1 . Boundary pixels are discarded by replacing Ω by Ωδ,pj−1 in the sums of the energies of
Section 2.1. Equivalently it comes back to applying the mask 1Ωδ,pj−1 (x). Consequently, the increment
∆pj is given by

∆pj = H−1
δ bδ, (26)

where

Hδ = Hδ(pj−1) =
∑

x∈Ωδ,pj−1

ρ̃′(x) ·G(x)TG(x) =
∑

x∈Ω
1Ωδ,pj−1 (x)ρ̃

′(x) ·G(x)TG(x), (27)

bδ = bδ(pj−1) =
∑

x∈Ωδ,pj−1

ρ̃′(x) ·G(x)TDI(x) =
∑

x∈Ω
1Ωδ,pj−1 (x)ρ̃

′(x) ·G(x)TDI(x). (28)
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3.3 Gradient Estimation on a Prefiltered Image

In Algorithm 1, the gradient ∇I1 is estimated using the central differences scheme defined by (17)
and (18). In [15], it was shown that the shift estimation with inverse compositional based-methods
can be improved by using other gradient estimators. In particular, the shift estimation becomes more
robust under noise. We extend this study to the general context of parametric motion estimation.

Smoothing the input image I1 reduces its noise and its aliasing, which may lead to a better
gradient estimation. Therefore, during the incremental refinement, we do not estimate directly the
gradient of I1 but we replace I1 and I2 by prefiltered versions Ĩ1 and Ĩ2 and estimate the gradient
∇Ĩ1. In order to be compatible with the gradient, the difference image DI is replaced by a prefiltered
difference image D̃I. Both the gradient estimation and the prefiltering are computed by applying
separable kernels. More precisely, a gradient estimation method is determined by a pair of matched
prefilter and derivative kernels (stored as vectors):

• the prefilter kernel k is symmetrical,

• the derivative kernel d, which is anti-symmetrical.

The prefilter is defined as kT ∗ k while the horizontal and vertical gradient filters are defined re-
spectively by dT ∗ k and kT ∗ d. The prefiltered image Ĩ1 whose gradient is estimated is given by

Ĩ1 = kT ∗ k ∗ I1. (29)

The gradient ∇Ĩ1 is estimated by computing the partial derivative estimates

∂Ĩ1

∂x
≃ dT ∗ k ∗ I1, (30)

∂Ĩ1

∂y
≃ kT ∗ d ∗ I1. (31)

Note that computing the gradient estimation with (30) and (31) does not require Ĩ1. However it is
still computed along with Ĩ2 in order to get the difference image during the incremental refinement.
At step j, the prefiltered difference image D̃I is given by2

D̃I(x) = Ĩ2(Ψ(x;pj−1))− Ĩ1(x), x ∈ Ω. (32)

The convolutions with one-dimensional kernels are computed using the whole-symmetric boundary
condition [7]. Let I be an image and k1 and k2 be two vectors. The filtering kT

2 ∗ k1 ∗ I is computed
by convolving each column of I with k1 and then convolving each row of the result with k2.

All the considered gradient estimation kernels are shown in Table 4. In practice the kernels k

and d were designed simultaneously in order to verify given properties [20, 5]. Note that the central
differences estimator corresponds to k = 1 and d = 1

2
(−1, 0, 1)T so that there is no prefiltering

required. In the following, when the central difference estimator is chosen, the gradient is computed
as in Algorithm 1, i.e., with no prefiltering and the constant boundary condition.

3.4 First Scale of the Gaussian Pyramid

When dealing with low quality input images (i.e. noisy), skipping the finest scales in the Gaussian
pyramid usually yields results similar to using all the scales in the multiscale algorithm 2. Indeed
the images are smoothed during the construction of the Gaussian pyramid reducing noise, alias,

2Interpolating the prefiltered image Ĩ2 should be easier since the image is smooth.
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Gradient estimator
Sample number

-2 -1 0 1 2
Central k 1

differences d -0.5 0 0.5
Hypomode k 0.5 0.5

d -1 1
Farid k 0.229879 0.540242 0.229879
3× 3 d -0.425287 0 0.425287
Farid k 0.037659 0.249153 0.426375 0.249153 0.037659
5× 5 d -0.109604 -0.276691 0 0.276691 0.109604

Gaussian k 0.003865 0.999990 0.003865
σ = 0.3 d -0.707110 0 0.707110
Gaussian k 0.003645 0.235160 0.943070 0.235160 0.003645
σ = 0.6 d -0.021915 -0.706770 0 0.706770 0.021915

Table 4: Prefilter kernel k and derivative kernel d of the proposed gradient estimators.

chromatic aberration, and zipper effects [10]. The motion estimation at coarser scales is less affected
by the artifacts of the input images and the improvement at the finer scales can be negligible.
Another advantage of not using the finest scales is that it significantly reduces the complexity of the
algorithm. Because of its recursive construction the whole Gaussian pyramid has to be computed,
but the motion estimation is only performed at the coarser scales.

In order to select the first scale used in the Gaussian Pyramid, we introduce a new parameter
s0 ∈ {0, . . . , Nscales − 1}. The modified multiscale approach only refines the motion estimation for
the scales Nscales− 1 to s0. Note that if s0 ≥ 2, p0 is computed from ps0−1 thanks to the update rule
with zoom factor ηs0−1 (see Table 3).

3.5 Modified Inverse Compositional Algorithm

Incorporating the proposed modifications to Algorithms 1 and 2, we obtain the modified inverse
compositional algorithm. The one-scale and multiscale versions are respectively presented in Algo-
rithms 3 and 4. The additional parameters are:

1. the non-negative integer δ for discarding boundary pixels (see Section 3.2),

2. the pair (k,d) of kernels for the gradient estimation and the prefiltering (see Section 3.3),

3. the first scale s0 ∈ {0, . . . , Nscales − 1} used in the pyramid (see Section 3.4).

In addition, the user has to specify if the grayscale conversion of Section 3.1 is used.

4 Experiments

In this section, we evaluate experimentally the impact of the modifications proposed in Section 3 on
the motion estimation performance and on the computation time. First, we describe the experimental
setup and the error measure used to evaluate the performance on synthetic data. Then we study the
influence of the modifications and show to what extent each of them improves the performance of the
algorithm. Finally, we compare the non-modified and modified inverse compositional algorithms with
a classic parametric motion estimation based on the SIFT keypoints and the RANSAC algorithm.

446



Improvements of the Inverse Compositional Algorithm for Parametric Motion Estimation

Algorithm 3: One-scale modified inverse compositional algorithm

input : I1, I2, p, ǫ, jmax, ρ, δ, (k,d)
output: Motion parameter p ∈ R

n

// Precomputations

1 Estimate the gradient ∇Ĩ1 from I1 and (k,d) as in (30) and (31).

2 Compute the prefiltered images Ĩ1 = kT ∗ k ∗ I1 and Ĩ2 = kT ∗ k ∗ I2.
3 Compute the Jacobian matrix J as in (6) (see Table 1 for typical planar transformations).

4 Compute G = ∇Ĩ1
T
J .

5 Compute GTG.
// Incremental refinement

6 Initialize p0 = p and j = 1.
7 repeat

8 Compute the domain Ωδ,pj−1 as in (25).
9 for x ∈ Ωδ,pj−1 do

10 Compute Ĩ2(Ψ(x,pj−1)) by bicubic interpolation with constant boundary condition.

11 Compute D̃I(x) = Ĩ2(Ψ(x,pj−1))− Ĩ1(x).

12 Update the threshold parameter of the error function ρ as explained in Section 2.3.

13 Compute ρ̃′ = ρ′(‖D̃I‖2) on Ωδ,pj−1 .

14 Compute the vector bδ =
∑

x∈Ωδ,pj−1 ρ̃
′(x) ·G(x)T D̃I(x).

15 Compute the Hessian Hδ =
∑

x∈Ωδ,pj−1 ρ̃
′(x) ·G(x)TG(x) and invert it.

16 Compute ∆pj = H−1
δ bδ.

17 Ψ(·;pj)← Ψ(·;pj−1) ◦Ψ(·; ∆pj)
−1.

18 j ← j + 1.

19 until j > jmax or ‖∆pj−1‖ ≤ ǫ;
20 Return p = pj.

Algorithm 4: Modified multiscale inverse compositional algorithm

input : I1, I2, ǫ, jmax, ρ, Nscales, s0 ∈ {0, . . . , Nscales − 1}, η, δ, (k,d)
output: Transformation p ∈ R

n

1 If the grayscale conversion is specified by the user, replace I1 and I2 by the average of their
channels.

2 Create a Gaussian pyramid of images Is1 , I
s
2 for s = 0, . . . , Nscales − 1

3 Initialize with pNscales−1 = 0
4 for s = Nscales − 1 to s0 do

5 Compute ps with Algorithm 3 applied to Is1 , I
s
2 , p

s, ǫ, jmax, ρ, δ, (k,d).
6 if s > 0 then

7 Compute ps−1 from ps by zoom of factor η (see Table 3 for typical planar
transformations).

8 if s0 > 1 then

9 Compute p0 from ps0−1 by zoom of factor ηs0−1 (see Table 3 for typical planar
transformations).

10 Return p = p0
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4.1 Experimental Setup

To evaluate the performance of a motion estimation method we build, from a reference image, a
sequence of noisy warped images whose transformations are known. The role of the reference and
warped images is swapped in the estimation algorithm to avoid the accumulation of interpolation
error. For each image, the error between the estimated transformation and the ground truth trans-
formation is expressed in terms of end-point error. The mean of the error among the sequence gives
an evaluation of the performance of the method.

End-point error. Let I1 and I2 be two images linked by a transformation parametrized by p⋆.
Let p be the estimated motion parameters provided by a given motion estimation method. The
end-point error EPE(p,p⋆)(x) at a pixel x ∈ Ω is defined by

EPE(p,p⋆)(x) = ‖Ψ(x;p)−Ψ(x;p⋆)‖2. (33)

It is the distance between the images of the estimated transformation and the ground truth trans-
formation. The end-point error is a measure of the error that is commonly used in optical flow
estimation [18, 19]. An example of end-point error field, i.e the image of end-point errors on Ω, is
shown in Figure 3. The average end-point error EPE(p,p⋆) is defined as the mean of the end-point
errors EPE(p,p⋆)(x) over the domain Ω, i.e.

EPE(p,p⋆) =
1

MN

∑

x∈Ω
EPE(p,p⋆)(x). (34)

Building the test sequence. As the error varies with the images, the transformations and the
noise, we evaluate the performance of methods by considering the mean of the errors over a sequence
of images, which is built as follows. Let I be a reference input image. We draw Nimages homographies
parametrized by (p⋆

i )1≤i≤Nimages
by randomly shifting the four corners of the domain Ω along both

directions. The shifts are drawn independently and uniformly in [−L,L] for a given non-negative
integer L. We build a sequence (I i)1≤i≤Nimages

of warped images using bicubic interpolation (with
whole-symmetric boundary condition), verifying I i = I(Ψ(·;p⋆

i )). Finally, we add Gaussian white
noise of standard deviation σ to the reference image and the warped images. The role of the reference
and warped images is swapped in the estimation algorithm to avoid the accumulation of interpolation
error. In other words, we use I1 = I i and I2 = I.

We compute the average error EPEi as in (34). The error of the method for the image I and the
noise level σ, noted EPE to simplify, is evaluated as the mean

EPE =
1

Nimages

Nimages
∑

i=1

EPEi. (35)

Note that this error is not deterministic since it depends on the transformations and the noise
realizations.

4.2 Influence of the Modifications

In order to evaluate the influence of the modifications proposed in Section 3, we use the experimental
setup described in Section 4.1. We introduce one by one the modifications to simplify the presentation
of the results.
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(a) Reference image I1 = I2(Ψ(·;p⋆)) (b) Warped image I2
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(c) End-point error field EPE(p,p⋆)(x) (left) and residual (right) using the IC algorithm

0

0.5

1

1.5

10
-3

0

0.01

0.02

0.03

0.04

0.05

(d) End-point error field EPE(p,p⋆)(x) (left) and residual (right) using the modified IC algorithm

Figure 3: Example of motion estimation on synthetic data. The warped image I2 is the image used in the experiments
of Section 4.2. It is a color image of size 584 × 388 taken from the Middlebury database [4]. The reference image
I1 = I2(Ψ(·;p⋆)) is an example of synthetic image related to I2 by an homography and obtained by bicubic interpolation
with whole-symmetric boundary condition. On the second and third line, the estimated motion p is obtained using either
the inverse compositional algorithm or the modified inverse compositional algorithm. For the modifications we use δ = 5,
the Farid 5 × 5 kernel estimator, the grayscale conversion and s0 = 0. For both methods, the right image is actually the
root mean square over the channels of the residual I1 − I2(Ψ(·;p)), which is obtained by bicubic interpolation. Without
modification, we have EPE=0.00460 and RMSE(I1(x), I2(Ψ(x;p))) = 0.042838. With modification, we have EPE=0.00022
and RMSE(I1(x), I2(Ψ(x;p))) = 0.001790.

449



Thibaud Briand, Gabriele Facciolo, and Javier Sánchez

We take as reference image I the image presented in Figure 3, which is a color image of size 584×
388 taken from the Middlebury database [4]. For all the experiments, the sequence of transformations
used is the same and is obtained by taking Nimages = 1000 and L = 20. The noise level σ varies
in {0, 3, 5, 10, 20, 30, 50}. In order to perform reliable comparisons, for a given noise level, the noisy
images used are the same for all the methods. We use the following parameter values: η = 1

2
,

ǫ = 0.001, jmax = 30 and Nscales = Nmax
scales (see (22)). The error functions used are the L2 and the

Lorentzian functions, for which the threshold parameter varies during the incremental refinement
as explained in Section 2.3. In order to study the performance of each method, we consider the
end-point error (EPE) and the computation time. The displayed computation time corresponds to
the CPU time used for the Nimages = 1000 motion estimations and is expressed in seconds. Note that
it also corresponds to the average computation time per image in milliseconds. The experiments
were made using an Intel(R) Xeon(R) CPU E5-2650 on a single thread.

4.2.1 Discarding Boundary Pixels

To analyze the influence of the boundary handling, we compare the results of the inverse composi-
tional algorithm described in Section 2 and of the modified version that discards boundary pixels
with δ ∈ {0, 5}. The gradient estimation is done using the central difference scheme, all scales are
used and there is no grayscale conversion. Note that δ = 0 corresponds to the case where outside
pixels are discarded during the interpolation (instead of setting the interpolated values to 0). Con-
sidering that, in the following, we use the gradient kernels of Table 4 and bicubic interpolation, the
value δ = 5 is large enough to discard all boundary pixels.

The results are presented in Table 5. It clearly shows that discarding boundary pixels always
provides significantly better results in terms of precision and computation time. Discarding boundary
pixels with δ = 5 provides slightly better results than with δ = 0 since it handles all the boundary
pixels and not only outside pixels during the interpolation (which introduce more error than inside
boundary pixels). By discarding boundary pixels, the incremental refinement is not perturbed by
arbitrarily introduced outliers so that it has the following consequences.

On the precision. The precision of the estimated model is increased by a factor ranging from 3.7
to 780 for the L2 function and from 1.4 to 22 for the Lorentzian function. Since the robust error
functions handle more correctly the outliers, the precision improvements are less important for
the Lorentzian error function than for the L2 function. The improvement factor decreases as
the noise level increases i.e. as the noise becomes the main source of estimation error. This
explains why the ranges of improvement factor are large.

On the computation time. The computation time is divided by a factor ranging from 1.1 to 2 for
the L2 function and from 1.1 to 2.4 for the Lorentzian function. At each step the incremental
refinement complexity is lessened but it is not sufficient to explain such a reduction. The main
reason is that less iterations are required to converge since the incremental refinement does not
try to fit the model with the outliers. Globally the improvement factor tends to decrease with
the noise level.

Finally, because it improves the precision and the computation time, we strongly recommend to
discard boundary pixels with δ = 5. It is done in the following experiments.

4.2.2 Color Handling

To analyze the influence of the grayscale conversion, we compare the results of the modified inverse
compositional algorithm with and without grayscale conversion. Boundary pixels are discarded with
δ = 5, the gradient estimation is done using the central differences scheme and all scales are used.
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L2 Lorentzian
IC δ = 0 δ = 5 IC δ = 0 δ = 5

σ = 0
EPE 0.06268 0.00008 0.00008 0.00221 0.00010 0.00010

Time 438 320 311 915 419 404

σ = 3
EPE 0.06296 0.00208 0.00192 0.00341 0.00207 0.00192

Time 453 333 323 893 387 378

σ = 5
EPE 0.06394 0.00338 0.00282 0.00517 0.00337 0.00282

Time 524 373 355 903 402 391

σ = 10
EPE 0.06646 0.00962 0.00711 0.01163 0.00963 0.00714

Time 669 406 386 951 481 459

σ = 20
EPE 0.09194 0.02901 0.01730 0.03340 0.03101 0.02147

Time 1104 640 544 1290 1109 1069

σ = 30
EPE 0.14683 0.06508 0.03393 0.06763 0.06569 0.04447

Time 1319 1008 827 1741 1651 1581

σ = 50
EPE 0.24210 0.12385 0.06515 0.10959 0.10487 0.07646

Time 1507 1454 1313 2139 2000 1918

Table 5: Influence of the boundary handling. Comparison between the inverse compositional algorithm presented in Section 2
(noted IC) and the modified inverse compositional algorithm that discards boundary pixels with δ = 0 and δ = 5. The
gradient estimation is done using the central difference scheme, all scales are used and there is no grayscale conversion. It
clearly shows that discarding boundary pixels always provides significantly better results in terms of precision and computation
time. The gain is less and less important as the noise level increases.

The results are presented in Table 6. By using the grayscale conversion the computation time
is reduced by a factor ranging from 1.4 to 2.6. Indeed, a reduction was expected since the input
number of channels is divided by 3. For large noise value the reduction is globally more important
because the input noise is divided by

√
3. For the precision, the results are similar but the grayscale

conversion provides the best results for large noise values.
Note that the precision is similar as long as the main structures of the image are preserved by

the grayscale conversion. This behavior is confirmed by the experiments presented in Appendix A
where additional images were used. On the other hand, we have introduced independent Gaussian
noise in each channel, which may not be realistic. For a real image the noise reduction due to the
grayscale conversion may not be so important. Nevertheless, we recommend the use of the grayscale
conversion because it is much faster and the difference in precision is usually not remarkable.

4.2.3 Gradient Estimation on a Prefiltered Image

To analyze the influence of the gradient estimation, we compare the results of the modified inverse
compositional algorithm using each one of the gradient kernels of Table 4. Boundary pixels are
discarded with δ = 5, all scales and the grayscale conversion are used.

The results are presented in Table 7 for the L2 error function and in Table 8 for the Lorentzian
error function. The results analysis is not as simple as for the boundary handling influence and the
color handling. In general, all the estimators provide similar results in terms of precision (except
for the hypomode estimator that gives worse results). However, the central differences estimator
provides slightly better results for small noise level, while the Farid 3 × 3 and 5 × 5 estimators [5]
are better for larger noise levels. The main difference between the gradient estimators lies in the
computation time. For low noise levels the computation times are similar but for large noise levels
the Farid 5× 5 estimator provides significantly better results.

In general, computing the gradient on a prefiltered image provides a gradient estimation more
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L2 Lorentzian
Color handling Color Grayscale Color Grayscale

σ = 0
EPE 0.00008 0.00008 0.00010 0.00010
Time 311 176 404 261

σ = 3
EPE 0.00192 0.00216 0.00192 0.00215
Time 323 208 378 262

σ = 5
EPE 0.00282 0.00300 0.00282 0.00300
Time 355 195 391 261

σ = 10
EPE 0.00711 0.00707 0.00714 0.00707

Time 386 210 459 281

σ = 20
EPE 0.01730 0.01810 0.02147 0.01929

Time 544 255 1069 449

σ = 30
EPE 0.03393 0.03299 0.04447 0.03941

Time 827 319 1581 806

σ = 50
EPE 0.06515 0.06192 0.07646 0.07060

Time 1313 527 1918 1066

Table 6: Influence of the color handling. Boundary pixels are discarded with δ = 5, the gradient estimation is done using
the central differences scheme and all scales are used. By using the grayscale conversion the computation time is reduced
by a factor ranging from 1.4 to 2.6. Indeed, a reduction was expected since the input number of channels is divided by 3.
For large noise value the reduction is globally more important because the input noise is divided by

√
3. For the precision,

the results are similar but the grayscale conversion provides the best results for large noise values.

robust to noise. In addition, the prefiltered images contain less aliasing and the interpolated values
are computed more precisely. Finally, it allows for a faster convergence of the incremental refinement
and a more precise motion estimation. Therefore, in the following we use the Farid 5× 5 estimator.

Central Differences Hypomode Farid 3× 3 Farid 5× 5 Gaussian 3 Gaussian 6

σ = 0
EPE 0.00008 0.03146 0.00017 0.00026 0.00019 0.00015
Time 176 210 187 202 213 207

σ = 3
EPE 0.00216 0.03169 0.00241 0.00269 0.00219 0.00235
Time 208 249 216 206 216 208

σ = 5
EPE 0.00300 0.03212 0.00317 0.00351 0.00305 0.00312
Time 195 230 202 205 221 209

σ = 10
EPE 0.00707 0.03451 0.00702 0.00749 0.00707 0.00694
Time 210 252 220 210 240 226

σ = 20
EPE 0.01810 0.04133 0.01698 0.01782 0.01800 0.01694

Time 255 306 245 238 281 252

σ = 30
EPE 0.03299 0.04992 0.02917 0.02941 0.03243 0.02940
Time 319 375 291 258 349 290

σ = 50
EPE 0.06192 0.06848 0.04644 0.04491 0.05804 0.04788
Time 527 568 435 370 572 450

Table 7: Influence of the gradient estimator (L2 error function). Comparison of the modified inverse compositional algorithm
using the L2 error function and each one of the gradient kernels of Table 4. Boundary pixels are discarded with δ = 5,
all scales and the grayscale conversion are used. In general, all the estimators provide similar results in terms of precision
(except for the hypomode estimator that gives worse results). However, the central differences estimator provides slightly
better results for small noise level, while the Farid 3 × 3 and 5 × 5 estimators are better for larger noise levels. For low
noise levels the computation times are similar but for large noise levels the Farid 5×5 estimator provides significantly better
results.
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Central Differences Hypomode Farid 3× 3 Farid 5× 5 Gaussian 3 Gaussian 6

σ = 0
EPE 0.00010 0.03140 0.00016 0.00024 0.00010 0.00012
Time 261 277 251 252 279 261

σ = 3
EPE 0.00215 0.03162 0.00240 0.00268 0.00217 0.00234
Time 262 285 255 254 284 255

σ = 5
EPE 0.00300 0.03203 0.00316 0.00349 0.00303 0.00311
Time 261 297 254 253 283 262

σ = 10
EPE 0.00707 0.03437 0.00700 0.00746 0.00705 0.00692

Time 281 341 272 262 318 285

σ = 20
EPE 0.01929 0.04145 0.01693 0.01778 0.01906 0.01698
Time 449 452 334 303 514 361

σ = 30
EPE 0.03941 0.05042 0.02934 0.02933 0.03638 0.03091
Time 806 739 481 375 814 617

σ = 50
EPE 0.07060 0.07333 0.04934 0.04717 0.06203 0.05439
Time 1066 940 837 704 1041 942

Table 8: Influence of the gradient estimator (Lorentzian error function). Comparison of the modified inverse compositional
algorithm using the Lorentzian error function and each one of the gradient kernels of Table 4. Boundary pixels are discarded
with δ = 5, all scales and the grayscale conversion are used. In general, all the estimators provide similar results in terms of
precision (except for the hypomode estimator that gives worse results). However, the central differences estimator provides
slightly better results for small noise level, while the Farid 3× 3 and 5× 5 estimators are better for larger noise levels. For
low noise levels the computation times are similar but for large noise levels the Farid 5× 5 estimator provides significantly
better results.

4.2.4 First Scale in the Gaussian Pyramid

To analyze the influence of the first scale s0 used in the Gaussian pyramid, we compare the results of
the modified inverse compositional algorithm using s0 ∈ {0, 1, 2, 3}. Boundary pixels are discarded
with δ = 5, the Farid 5 × 5 gradient estimator and the grayscale conversion are used. The results
are presented in Table 9 for the L2 error function and in Table 10 for the Lorentzian error function.

Evolution with the number of skipped scales s0. As expected, the precision and the compu-
tation time both decrease with s0, i.e. the number of scales skipped. There is a trade-off
between precision and speed. By comparing the evolution between the column s0 and s0 + 1
we notice that it is less and less interesting to remove scales. Indeed, the decreasing factor
for the computation time decreases with s0 while the increasing factor for the estimation error
increases with s0. Therefore it is reasonable to only consider s0 ∈ {0, 1}.

Evolution with the noise level σ. As σ increases, it is more and more interesting to skip the
finest scale, i.e. to take s0 = 1. Indeed, the decreasing factor for the computation time increases
with σ while the increasing factor for the estimation error decreases with σ. For large values of
σ, the estimation error is similar for s0 = 0 and s0 = 1 while the computation time is divided
by a factor up to 2.3 for the L2 function and 4.4 for the Lorentzian function.

Finally, we recommend to use s0 ∈ {0, 1} with a choice depending on the context of application and
the aim of the user (precision or speed).
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s0 = 0 s0 = 1 s0 = 2 s0 = 3

σ = 0
EPE 0.00026 0.00328 0.01265 0.05672
Time 202 131 107 97

σ = 3
EPE 0.00269 0.00562 0.01446 0.05829
Time 206 130 110 104

σ = 5
EPE 0.00351 0.00684 0.01777 0.06094
Time 205 128 109 107

σ = 10
EPE 0.00749 0.01261 0.02611 0.06899
Time 210 132 113 104

σ = 20
EPE 0.01782 0.02641 0.04101 0.09040
Time 238 132 114 107

σ = 30
EPE 0.02941 0.04276 0.07127 0.12303
Time 258 131 112 106

σ = 50
EPE 0.04491 0.06679 0.10165 0.19240
Time 370 160 129 123

Table 9: Influence of the first scale s0 used in the Gaussian pyramid (L2 error function). Boundary pixels are discarded with
δ = 5, the Farid 5 × 5 gradient estimator and the grayscale conversion are used. The precision and the computation time
both decrease with s0. There is a trade-off between precision and speed. By comparing the evolution between the column
s0 and s0 + 1 we notice that it is less and less interesting to remove scales. As the noise level σ increases, it is more and
more interesting to skip the finest scale, i.e. to take s0 = 1. For large values of σ, the estimation error is similar for s0 = 0
and s0 = 1 while the computation time is divided by a factor up to 2.3.

s0 = 0 s0 = 1 s0 = 2 s0 = 3

σ = 0
EPE 0.00024 0.00327 0.01265 0.05667
Time 252 122 92 87

σ = 3
EPE 0.00268 0.00561 0.01446 0.05826
Time 254 140 114 110

σ = 5
EPE 0.00349 0.00682 0.01777 0.06101
Time 253 143 119 107

σ = 10
EPE 0.00746 0.01257 0.02609 0.06901
Time 262 142 115 106

σ = 20
EPE 0.01778 0.02639 0.04099 0.09019
Time 303 146 112 110

σ = 30
EPE 0.02933 0.04272 0.07131 0.12286
Time 375 150 116 109

σ = 50
EPE 0.04717 0.06675 0.10165 0.19220
Time 704 158 116 105

Table 10: Influence of the first scale used in the Gaussian pyramid (Lorentzian error function). Boundary pixels are discarded
with δ = 5, the Farid 5 × 5 gradient estimator and the grayscale conversion are used. The precision and the computation
time both decrease with s0. There is a trade-off between precision and speed. By comparing the evolution between the
column s0 and s0+1 we notice that it is less and less interesting to remove scales. As the noise level σ increases, it is more
and more interesting to skip the finest scale, i.e. to take s0 = 1. For large values of σ, the estimation error is similar for
s0 = 0 and s0 = 1 while the computation time is divided by a factor up to 4.4.
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4.2.5 Summary of the Improvements

The study of the modifications proposed previously can be summarized as follows:

• Boundary pixels must be discarded with δ = 5.

• The grayscale conversion must be used for high noise level and should be used in general since
the eventual loss in precision is negligible with respect to the gain in speed.

• The central differences and the Farid 5× 5 gradient estimators provide similar results. But the
Farid 5× 5 estimator is prefered because it is more robust to noise.

• Discarding the finest scale, i.e. taking s0 = 1, allows for a significant speed up of the motion
estimation with a moderate loss of precision, which decreases with the noise level.

Using these recommended modifications:

• Using s0 = 0. The computation time is at least reduced by a factor 2.2. The estimation
accuracy is at least improved by a factor 5 for the L2 function and 1.3 for the Lorentzian
function.

• Using s1 = 1. The computation time is at least reduced by a factor 3.4. For the L2 function,
the estimation accuracy is at least improved by a factor 3.4. For the Lorentzian function the
estimation accuracy is at most reduced by a factor 0.6.

4.3 Comparison with a SIFT+RANSAC Based Algorithm

In order to put in perspective the performance of the proposed modified inverse compositional algo-
rithm, it is compared with a classical feature-based motion estimation algorithm. It uses as features
the SIFT keypoints [9, 16] and estimates the model with a RANSAC algorithm [6]. Note that the
grayscale conversion is used. A similar algorithm can be found in [14].

For the comparison, we consider the SIFT+RANSAC algorithm, the inverse compositional (IC)
algorithm described in Algorithm 2 and the modified inverse compositional (mIC) algorithm. For
the modifications we follow the recommendations of Section 4.2.5, i.e., we discard boundary pixels
with δ = 5 and use the Farid 5× 5 kernel estimator, the grayscale conversion and s0 ∈ {0, 1}.

4.3.1 Synthetic Data

First we compare the algorithms using the same experimental setup and synthetic data as in Sec-
tion 4.2. The results are presented in Table 11.

On the computation time. The inverse compositional algorithm, modified or not, is faster than
the SIFT+RANSAC algorithm. The computation time increases with the noise level while it de-
creases for the SIFT+RANSAC algorithm. Using s0 = 0, the mIC algorithm is 5.6 to 11 times faster
for the L2 function and 3 to 8.6 times faster for the Lorentzian function. Using s0 = 1, the mIC
algorithm is 13 to 17 times faster for the L2 function and 13 to 18 times faster for the Lorentzian
function.

On the precision. The IC algorithm is in general more accurate than the SIFT+RANSAC al-
gorithm (except when using the L2 function for low noise levels because of the incorrect boundary
handling). On the opposite, the mIC algorithm always clearly outperforms the SIFT+RANSAC
algorithm and in particular for high noise levels. The precision is 14 to 130 times better for s0 = 0
and 7 to 31 times better for s0 = 1.
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General remarks on the experiments. We observed that the behavior of the algorithm for other
reference images is similar to the reported results. However the improvement factors may differ with
the input images. Also, we noticed that in the context of low quality input images the precision may
be better while using s0 = 1.

In our tests the reference and warped images are linked with moderate deformations without
occlusion nor contrast change. For larger deformations, the inverse compositional based algorithms
may be outperformed by feature-based methods. The occlusions highly increase the error for the L2
error function but are well handled by the robust error functions.

L2 Lorentzian
SIFT+R IC mIC s0 = 0 mIC s0 = 1 IC mIC s0 = 0 mIC s0 = 1

σ = 0
EPE 0.03131 0.06268 0.00026 0.00328 0.00221 0.00024 0.00327
Time 2171 438 202 131 915 252 122

σ = 3
EPE 0.04063 0.06296 0.00269 0.00562 0.00341 0.00268 0.00561
Time 2173 453 206 130 893 254 140

σ = 5
EPE 0.04805 0.06394 0.00351 0.00684 0.00517 0.00349 0.00682
Time 2144 524 205 128 903 253 143

σ = 10
EPE 0.15998 0.06646 0.00749 0.01261 0.01163 0.00746 0.01257
Time 2208 669 210 132 951 262 142

σ = 20
EPE 0.82330 0.09194 0.01782 0.02641 0.03340 0.01778 0.02639
Time 2198 1104 238 132 1290 303 146

σ = 30
EPE 0.67803 0.14683 0.02941 0.04276 0.06763 0.02933 0.04272
Time 2177 1319 258 131 1741 375 150

σ = 50
EPE 1.22713 0.24210 0.04491 0.06679 0.10959 0.04717 0.06675
Time 2075 1507 370 160 2139 704 158

Table 11: Comparison of motion estimation methods: SIFT+RANSAC (SIFT+R), inverse compositional (IC) algorithm
described in Algorithm 2 and the modified inverse compositional (mIC) algorithm with s0 ∈ {0, 1}. The mIC algorithm
discards boundary pixels with δ = 5 and uses the Farid 5 × 5 kernel estimator and the grayscale conversion. The inverse
compositional algorithm, modified or not, is always faster than the SIFT+RANSAC algorithm. The computation time
increases with the noise level while it decreases for the SIFT+RANSAC algorithm. The IC algorithm is in general more
accurate than the SIFT+RANSAC algorithm (except using the L2 function for low noise levels because of the incorrect
boundary handling). On the opposite, the mIC algorithm always clearly outperforms the SIFT+RANSAC algorithm and in
particular for high noise levels.

4.3.2 Real Data

Secondly, we compare the methods on two images taken from the ”Lunch Room” sequence of the
PASSTA Dataset [13]. Between the acquisitions, the camera was rotated around its optical center so
that the images are linked by an homography. The images I1 and I2, of size 2048× 2048 and stored
in the JPEG format, are displayed in Figure 4. For the IC and mIC algorithms, we only use the
Lorentzian error function.

Since the real motion p⋆ is unknown, the end-point error cannot be computed. Let denote by p the
estimated motion by a given method. The algorithm precision is indirectly evaluated by considering
the residual I1 − I2(Ψ(·;p)), which is computed by bicubic interpolation. The root mean square
over the channels of the residuals are displayed in Figure 5. The residuals are inevitably corrupted
by JPEG artifacts, noise and interpolation error. The JPEG artifacts and noise are noticeable on
flat areas. The interpolation error is localized at discontinuities and can be confounded with the
consequence of a bad registration. The SIFT+RANSAC residual has significantly higher values than
the IC and mIC residuals. In particular, at the top-right corner of the image (refrigerator edge) the
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(a) Reference image I1 (b) Warped image I2

Figure 4: Real data used in Section 4.3.2. The images are taken from the “Lunch Room” sequence of the PASSTA
Dataset [13]. Between the acquisitions, the camera was rotated around its optical center so that the images are linked by
an homography. The images of size 2048× 2048 are stored in JPEG format.

registration is not precise enough. It can be explained by the low density of SIFT keypoints in this
zone. The mIC s0 = 0 residual is slightly lower than the IC and mIC s0 = 1 residuals on average but
more importantly on the image discontinuities, which is interpreted as a better motion estimation.

By replacing the real motion p⋆ by an estimated motion in the end-point error definition in (33),
we define the end-point difference between two motions. It allows for a comparison of the estimated
motions. The end-point difference fields between the mIC s0 = 0 and the three other methods are
shown in Figure 6. The mIC s0 and SIFT+RANSAC results are considerably different. On average,
the end-point difference is greater than 0.5 pixel. They mainly differ at the top-right corner of the
image, where the SIFT+RANSAC residual is higher. The mIC s0 = 0 and mIC s0 = 1 mainly differ
at the top-left corner of the image. The average end-point difference of 0.15 pixel is not negligible.
The finest scale must be used to achieve sufficient precision. The IC and mIC s0 results are closer
but still significantly different. On average, the end-point difference is greater than 0.05 pixel. They
mainly differ at the boundaries of the domain, which is a consequence of the different boundary
pixels handling but also of the images content.

The estimated motions are computed in respectively 39, 42, 18 and 2 seconds for the SIFT+RANSAC,
IC and mIC algorithms. The IC algorithm is slower because at each scale the incremental refinement
requires a large amount of iterations. For the mIC algorithm it is the case only for the finest scale.
It explains why not using the finest scale divides the computation time by 9.
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(a) SIFT+RANSAC (3.865058, 39)
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(b) IC (3.601141, 42)
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(c) mIC s0 = 0 (3.598951, 18)
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(d) mIC s0 = 1 (3.599503, 2)

Figure 5: Example of motion estimation on real data. The images correspond to the root mean square over the channels
of the residuals I1 − I2(Ψ(·;p)), which is computed using bicubic interpolation. The first value between parentheses is
the RMSE between I1 and I2(Ψ(·;p)). The second value is the computation time expressed in seconds. The residuals
are inevitably corrupted by JPEG artifacts, noise and interpolation error. The JPEG artifacts and noise are noticeable on
flat areas. The interpolation error is localized at discontinuities and can be confounded with the consequence of a bad
registration. The SIFT+RANSAC residual has significantly higher values than the IC and mIC residuals. In particular, at
the top-right corner of the image (refrigerator edge) the registration is not precise enough. It can be explained by the low
density of SIFT keypoints in this zone. The mIC s0 = 0 residual is slightly lower than the IC and mIC s0 = 1 residuals on
average but more importantly on the image discontinuities, which is interpreted as a better motion estimation.
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(a) SIFT+RANSAC vs mIC s0 = 0 (0.64806)
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(b) IC vs mIC s0 = 0 (0.06032)
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(c) mIC s0 = 1 vs mIC s0 = 0 (0.14505)

Figure 6: Example of end-point difference fields on real data. The value between parentheses is the average end-point
difference. The mIC s0 and SIFT+RANSAC results are considerably different. On average, the end-point difference is
greater than 0.5 pixel. They mainly differ at the top-right corner of the image, where the SIFT+RANSAC residual is higher.
The mIC s0 = 0 and mIC s0 = 1 mainly differ at the top-left corner of the image. The average end-point difference of 0.15
pixel is not negligible. The finest scale must be used to achieve sufficient precision. The IC and mIC s0 results are closer
but still significantly different. On average, the end-point difference is greater than 0.05 pixel. They mainly differ at the
boundaries of the domain, which is a consequence of the different boundary pixels handling but also of the images content.
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5 Conclusion

We detailed the inverse compositional algorithm and proposed to modify it with a correct boundary
handling, the grayscale conversion, a more robust gradient estimation applied to a prefiltered image
and by skipping scales in the multiscale coarse-to-fine scheme. Discarding boundary pixels is the main
source of improvement and must always be done. In general, we recommend to discard boundary
pixels with δ = 5 and to use the grayscale conversion and the Farid 5× 5 gradient estimator. With
these settings, the estimation accuracy is at least improved by a factor 1.3 while the computation
time is at least reduced by a factor 2.2 when all the scales are used and by a factor 3.4 when the finest
scale is not used. For moderate transformations, the modified algorithm outperforms the classical
feature-based methods using the SIFT keypoints and the RANSAC algorithm.

For low quality images, for instance because of noise, using the Farid 5 × 5 gradient estimator
and the grayscale conversion provides the best results. For high quality images, using the central
differences gradient estimator without grayscale conversion may provide slightly better results. When
efficiency is preferred over accuracy, the grayscale conversion must be used and the finest scale must
be skipped.

A Influence of the Color Handling

In Section 4.2.2, we showed that using the grayscale conversion leads to a reduction of the compu-
tation time. In addition, the precision of the estimation is similar and the grayscale conversion even
provides the best results for large noise values. However, this analysis was conducted using a single
image, which is the RubberWhale image (see Figure 3). Using the grayscale conversion for other im-
ages may deteriorate the precision if the main structures are lost during the conversion. Hopefully,
this degenerate case only occurs in images with a specific content.

In this section, we show that the previous analysis remains true on images with classical content.
We evaluate the influence of the grayscale conversion using the same experimental setup as in Sec-
tion 4.1 but with other images. More precisely, we used 12 color images taken from the Middleburry
database [4]3. As in Section 4.2.2, boundary pixels are discarded with δ = 5, the gradient estimation
is done using the central differences scheme and all scales are used.

Results for two images. First, we consider the results for the Grove2 and Urban2 images. These
two synthetic color images of size 640 × 480 are shown in Figure 7. The results are presented in
Table 12 and Table 13. By using the grayscale conversion the computation time is reduced by a
factor ranging from 1.6 to 2.6. The precision results are similar but the grayscale conversion provides
the best results for large noise values.

Global results The global results are presented in Table 14. The displayed end-point error and
computation time (in ms per image) correspond to the mean over the 12 test sequences of Nimages =
1000 images. By using the grayscale conversion the computation time is reduced by a factor ranging
from 1.6 to 2.3. The precision results are similar but the grayscale conversion provides the best
results for large noise values.

3http://vision.middlebury.edu/flow/data/ (in the “other datasets” part)
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(a) Grove2 image (b) Urban2 image

Figure 7: Example of color images taken from the Middleburry database [4]. These two synthetic images are of size
640× 480.

L2 Lorentzian
Color handling Color Grayscale Color Grayscale

σ = 0
EPE 0.00029 0.00029 0.00030 0.00030

Time 317 185 402 257

σ = 3
EPE 0.00089 0.00089 0.00088 0.00089
Time 330 194 398 265

σ = 5
EPE 0.00142 0.00136 0.00141 0.00135

Time 322 193 383 261

σ = 10
EPE 0.00277 0.00234 0.00279 0.00233

Time 333 189 370 250

σ = 20
EPE 0.00802 0.00598 0.00873 0.00603

Time 407 205 534 268

σ = 30
EPE 0.01620 0.01077 0.02027 0.01216

Time 522 233 851 383

σ = 50
EPE 0.04230 0.02702 0.05478 0.03585

Time 806 306 1321 664

Table 12: Influence of the color handling using the Grove2 image. The experimental setup is the same as in Section 4.1.
Boundary pixels are discarded with δ = 5, the gradient estimation is done using the central differences scheme and all scales
are used. The computation time is in ms per image. By using the grayscale conversion the computation time is reduced
by a factor ranging from 1.6 to 2.6. For the precision, the results are similar but the grayscale conversion provides the best
results for large noise values.
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L2 Lorentzian
Color handling Color Grayscale Color Grayscale

σ = 0
EPE 0.00018 0.00018 0.00017 0.00018
Time 323 187 410 261

σ = 3
EPE 0.00164 0.00159 0.00163 0.00159

Time 324 195 385 264

σ = 5
EPE 0.00266 0.00244 0.00265 0.00244

Time 325 191 378 253

σ = 10
EPE 0.00735 0.00648 0.00744 0.00649

Time 402 199 471 257

σ = 20
EPE 0.01986 0.01538 0.02656 0.01756

Time 626 250 1142 470

σ = 30
EPE 0.03874 0.02950 0.04797 0.03750

Time 964 330 1364 715

σ = 50
EPE 0.08237 0.06832 0.09522 0.07508

Time 1192 521 1598 1004

Table 13: Influence of the color handling using the Urban2 image. The experimental setup is the same as in Section 4.1.
Boundary pixels are discarded with δ = 5, the gradient estimation is done using the central differences scheme and all scales
are used. The computation time is in ms per image. By using the grayscale conversion the computation time is reduced
by a factor ranging from 1.6 to 2.3. For the precision, the results are similar but the grayscale conversion provides the best
results for large noise values.

L2 Lorentzian
Color handling Color Grayscale Color Grayscale

σ = 0
EPE 0.00012 0.00012 0.00012 0.00011

Time 295 169 369 229

σ = 3
EPE 0.00156 0.00177 0.00156 0.00177
Time 302 174 350 230

σ = 5
EPE 0.00470 0.00309 0.00470 0.00309

Time 306 177 357 228

σ = 10
EPE 0.01082 0.00655 0.01128 0.00666

Time 377 193 486 261

σ = 20
EPE 0.02175 0.01712 0.02630 0.01989

Time 584 260 881 443

σ = 30
EPE 0.03358 0.03130 0.04188 0.03756

Time 766 329 1110 596

σ = 50
EPE 0.06895 0.06518 0.08162 0.07108

Time 972 435 1370 753

Table 14: Influence of the color handling (global results using 12 images). The experimental setup is the same as in
Section 4.1 except that 12 images from the Middleburry database [4] are used. Boundary pixels are discarded with δ = 5,
the gradient estimation is done using the central differences scheme and all scales are used. The displayed end-point error
(EPE in pixels) and computation time (in ms per image) correspond to the mean over the 12 test sequences ofNimages = 1000
images. By using the grayscale conversion the computation time is reduced by a factor ranging from 1.6 to 2.3. For the
precision, the results are similar but the grayscale conversion provides the best results for large noise values.
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