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Abstract

The conception and improvement of algorithms for subpixel stereovision requires very precise
test databases. The state of the art on the sets of images used extensively by the scientific
community shows that they are often incomplete and imprecise compared to the dataset goals.
We will present a method based on image synthesis to produce stereoscopic pairs with ground
truths such as disparity and occlusion maps reaching an accuracy of about 10−6 pixels. The a
priori noise estimate is also taken into account. This process allows us to deliver a new image
database consisting of 66 stereo pairs together with their ground truths.
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Source Code

We provide the code of a program that computes the 3D coordinates of the points associated
with each ground truth in order to view them with appropriate software. We also provide a
modified code of the algorithm from Lisani et al. [15]. It allows to process images in floating
point format such as TIF or EXR.

Supplementary Material

The database is available at this address1. The use of these images for scientists is permitted
provided that this article is mentioned as well as the designers of the scenes.

1https://doi.org/10.5201/ipol.2018.187

Tristan Dagobert, The Production of Ground Truths for Evaluating High Accurate Stereovision Algorithms, Image Processing On Line, 8
(2018), pp. 1–23. https://doi.org/10.5201/ipol.2018.187

https://doi.org/10.5201/ipol
https://doi.org/10.5201/ipol
http://creativecommons.org/licenses/by-nc-sa/3.0/
https://doi.org/10.5201/ipol.2018.187
https://doi.org/10.5201/ipol.2018.187
https://doi.org/10.5201/ipol.2018.187


Tristan Dagobert

1 Introduction

The field of stereo vision is vast and its applications have developed considerably over the last twenty
years: satellite photogrammetry or robotic navigation are the best examples. In its most general
formulation (see Hartley et al. [10, parts 2 to 4]), stereo reconstruction involves rebuilding a 3D
model of the scene from two or more 2D views. This technology can be divided into two groups
of complementary algorithms (cf. Szeliski [24, p. 19]): the algorithms estimating the position of
the geometric points from the pixels, resulting in point clouds, and algorithms reconstructing the
forms from such clouds. One of the basic needs for the development, improvement and objective
comparison of such algorithms is to have reliable ground truths which are as accurate as possible;
Scharstein et al. [21] were among the first to make such calibrated ground truths.

The matching algorithms are faced with two recurring problems which new approaches seek to
overcome: the influence of noise in stereo pairs and the fattening effect. Noise due to the sensor
technology is inherent to the images. However images used as ground truths must contain a noise
which is negligible or at least quantified, to compare algorithm efficiency objectively. The second
problem analyzed by Delon et al. [4, 5] is the fattening effect that appears along contrasted edges
of the image as a dilation of the 3D model along the upper or lower part of the edges. To precisely
measure the gap between the contours induced by this fattening and the exact edges, it is necessary to
have a subpixel knowledge of the position of the edges. For the stereo matching algorithms computing
a disparity map from a pair of images (see Szeliski [24, Chapter 11]), the following information is
added to the ground truths:

• the transformation matrices between the view and the 3D frame of the scene to reconstruct the
epipolar geometry (see Hartley et al. [10, Chapter 6], Szeliski [24, Chapter 2]);

• the disparity map which, for each pixel of an image I1, indicates its position in the image I2;

• the occlusion map which, for each pixel of I1, indicates if it is visible or not in I2.

State of the art datasets for stereo algorithms are sometimes incomplete. This is why we present
in this paper an approach to ground truths creation filling some of the gaps. To this aim, we use
synthetic scenes produced by a renderer where the geometry of objects in the scene, the optical
characteristics of cameras and the variety of scenes are controllable. We tried to make the most of
the geometric information obtained by ray tracing by exploiting the ray tracing spatial oversampling.

This article is organized as follows. Section 2 is devoted to an analysis of the state of the art of
databases widely used by the scientific community for stereo algorithms evaluation. Having motivated
our approach in Section 3 and briefly described the principle of ray tracing in Section 5 we detail in
Section 6 the noise estimation method in image pairs, in Sections 7, 8 and 9 the creation of point
clouds, disparity maps and occlusion maps, respectively. Finally, Appendix B describes the features
of the image database files.

2 State of the Art

A large number of databases on computer vision are accessible to the scientific community. Riemen-
schneider [19] drew up an almost exhaustive list. We shall limit our study to databases relating
primarily to image matching algorithms and 3D reconstruction algorithms. Regarding matching,
two types of ground truths databases were devised over the recent years. The first are derived from
images acquired in a real environment while the latter are produced from synthetic scenes.
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2.1 Stereo Ground Truths in Real Environment

The Middlebury Dataset. Scharstein et al. [21] of Middlebury College were among the first
to generate stereo pairs accompanied by ground truth. They have published five datasets with
disparity maps over the last 15 years. From 2003 Scharstein et al. [22] produced pairs whose disparity
estimation is obtained by illuminating the scene with a coherent light. Specifically the scene was
illuminated several times by projecting different bar patterns. As a result each pixel of the stereo
pairs was marked with a unique multi-spectral signature. Measurement of disparities using an ad hoc
algorithm was then much easier. The authors did not, however, describe this registration algorithm.

Until 2013 the disparity maps are accurate up to one pixel. By improving the illumination device,
including the projection of colored bar patterns defined by the method of Gupta et al. [9], and post-
processing of the acquired images, Scharstein et al. [20] have provided a set of 33 scenes with subpixel
disparities, some of which achieve 0.2 pixel accuracy. This method, however, due to the complexity
of its implementation, encounters a number of problems [22, Section 4.1] such as:

• some pixels have partial occlusion;

• some pixels have no signature because of shadow and reflection effects;

• the presence of aliasing or blurring in signatures;

• some signatures are inconsistent because of the illumination changes;

so that it takes at least twenty steps to process the raw data [20, Figure 3] to obtain the disparity
maps.

The KITTI Vision Benchmark Suite. Geiger et al. [7] proposed an image database acquired
from a vehicle with different sensors namely two high resolution cameras, a laser scanner and a GPS
location system. This database serves as a tool for benchmarking and ranking matching algorithms.
They provide a training set of nearly 200 stereo pairs with ground truths composed of disparity,
occlusion and optical flow maps.

However, these ground truths were obtained from the scans of a rotating 3D laser scanner, so
that the laser sampling does not correspond to the pixel sampling of the image. Nearly half of the
pixels of the image have no ground truth, and it must be deduced by interpolation. In addition,
disparities and optical flow maps have integer values.

Image Sequence Analysis Test Site (EISATS). Reinhard Klette et al. [13] proposed ten stereo
sequences acquired from cameras and a laser scanner mounted on vehicles. Most of these scenes are
grayscale and made in a real environment. Among them, the sequence 1 has car kinematics ground
truths, sequence 2, in synthetic images, has temporal optical flow between frames, and sequence 6
has disparity and depth maps deduced from the scan, but relatively noisy and incomplete.

HCI Robust Vision. The Heidelberg Collaboratory for Image Processing project [14, 17] proposed
a set of stereo sequences in road urban environment. The dataset does not contain ground truths
because it is primarily a project for the final evaluation of algorithms.

2.2 Stereo Ground Truths in a Virtual Environment

University of Tsukuba Stereo Flow. Martull et al. [16] produced a 1800 stereo pairs dataset of
640× 480 photo-realistic images with ground truths including: disparity, occlusion and discontinuity
maps as well as the position and orientation of the cameras. The pairs were extracted from a 3D
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synthetic scene representing an office created with the Autodesk Maya 2012 software then textured
using real and synthetic textures. These maps are pixel-accurate. It is not possible to use such a
database for a tenth-pixel or even a quarter-pixel benchmark because this operation would imply
reducing the images’ size, which is already small.

MPI Sintel Flow. The MPI Sintel database [28, 2] is a set of sequences and images picked from
an animated film containing varied and realistic environments. Its features are: long movements,
non-rigid moving objects, specular reflections, camera shake and other atmospheric effects. It is
mainly dedicated to the optical flow evaluation: objects and characters are moving from one image
to another. The database consists of 35 excerpts split into a training set (23 sequences) and an
evaluation set (12 sequences). Optical flow, (poorly) estimated edges, occlusion maps and rendering
effects are indicated there. This database cannot be used for the evaluation of stereo algorithms
which assume rigid deformations between images.

2.3 Ground Truths Dedicated to 3D Reconstruction.

The following bases cannot be used for stereo matching in itself, but for the next step which, is to
build surfaces from point clouds estimated by matching.

Middlebury College. Middlebury College [23] proposes two scanned objects (a Roman temple
and a dinosaur) through 395 different points of view but whose acquisition was not coupled with
a camera. The laser scanner used was moved to cover a hemisphere. However, only 80% of the
hemisphere of the Roman Temple object is exploitable.

Stanford University. The Stanford 3D Scanning Repository database [3] is a set of a dozen 3D
scans of objects which contains the coordinates of 3D points and the triangulations of the mesh.

University of Utah. Berger et al. [1] studied the problem of surfaces reconstruction. To this end
they simulated the acquisition of data from a laser scanner to reproduce realistic point clouds. They
propose a set of 5 items scanned synthetically and for each of these, 48 point clouds. However, the
views of these clouds are always the same, only the sampling changes.

Institut Farman. Digne et al. [6] have produced a 3D points dataset composed of nearly 200
scenes of items that have been both scanned by a 3D high precision scanner laser and photographed
by a CCD camera. Each of the 11 items presented was scanned under 18 views. The high-precision
images are accompanied by 3D point coordinate files.

3 Our Approach

As we can see, databases acquired in a real environment suffer from a lack of accurate information.
This is due to difficulties in handling and synchronizing acquisition devices. On the contrary, images
obtained by synthesis like for Sintel or Tsukuba provide accurate and complete sets. These however
do not reach subpixel precision regarding the edges and they are more oriented towards optical flow
estimation. Nevertheless the use of synthetic scenes takes on its full meaning because it can precisely
control many parameters and work on more realistic scenarios.

Our approach is to use images produced by the renderer and also to exploit the data generated
during rendering. When creating an image, the renderer generates, for each pixel p, a number N(p) of
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rays that will intersect the objects in the scene at 3D points P(p, n) with depth rn for n = 1, . . . , N(p).
The color characteristics of these points are then averaged to determine the final color of p. We will
give more details in Section 5 on the calculation of these colors and the underlying mathematical
model. These contributions thus form for each pixel a cloud of 3D points and therefore, in their
entirety, an oversampling of the objects in the scene much more important than the oversampling of
the image itself. This set of data is the starting point to create precisely all ground truths that we
need and that are the subject of the next sections. Table 1 summarizes the main properties of the
bases previously mentioned as well as ours, entitled “CMLA dataset”.

Table 1: Comparison of ground truths present in the bases described above, including ours (CMLA) for the evaluation of
stereovision algorithms.

Middlebury KITTI EISATS HCI Tsukuba Sintel Inst. Farman CMLA

images
resolution

8 bits 8 bits 8 bits 12 bits 8 bits 8 bits 8 bits floating 16
bits

rigid de-
formations

Y Y N N Y N Y Y

noise esti-
mate

N N N N N N N Y

noise es-
timate of
3D points
position

N N N N N N N Y1

optical
flow map

N Y Y N N Y

depth map N Y Y N N N N Y

disparity
map preci-
sion

' 0.2 pix. 1 pix. � 1 pix. 1 pix. 1 pix. N ' 10−6

pix.1

occlusion
map

partially Y N N Y Y N Y

The creation of synthesized images and ground truths led us to choose the rendering engine
LuxRender [27]. This software presents many advantages. It is a clone of the software PBRT
developed by Pharr et al. [27] whose design is very detailed and whose interest is to rely on physical
characteristics of materials such as metals and photometric features of the light sources so that the
rendering is very realistic. It also provides natively floating 16-bit EXR or 16-bit PNG image formats
as well as a depth map. Finally, it may be coupled to the 3D builder software Blender2.

4 Notations

Table 2 presents the list of notations used in this article. The points may be indexed A, I or C
depending on whether they are considered into the absolute RA, the camera RC or the RI image
frame (see Figure 1). By convention, the parallel planes (OI , ~xI , ~yI) and (OC , ~xC , ~yC) are oriented in
the opposite direction (i.e. ~xI = −~xC and ~yI = −~yC).

1Precision is only limited by the numbers representation in single-precision floating-point format.
2Blender - a 3D modelling and rendering package [11], Blender Foundation, http://www.blender.org.
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Table 2: Main notation.

‖.‖2 `2 norm
∝ proportional to
RA = (OA, ~xA, ~yA, ~zA) absolute and direct frame, of origin OA, corresponding to a

3D scene (see Figure 1)
RC = (OC , ~xC , ~yC , ~zC) direct frame related to the camera defined in the synthetic

3D scene, whose origin OC is its focal point
RI = (OI , ~xI , ~yI) direct frame related to image Ω whose origin OI is the image

upper left corner
P = (x, y, z)T 3D geometric point of the synthetic 3D scene
p = (x, y)T point belonging to an image
Ω the digital image considered as a matrix of pixels (in the

electronic sense), that is to say the rectangular surface of
width LI = LI∆l and height HI = HI∆l with ∆l = 1 by
convention

I = J0, . . . , LI−1K×J0, . . . , HI−1K the discretized digital image regarded as the matrix of the
sampling points of Ω

LI number of columns of the image
HI number of rows of the image
NI = LI ×HI image size
i integer index along ~xI axis
j integer index along ~yI axis
u the ideal digital image considered in terms of RGB colors

defined on I with values in R3
+

ũ u estimate obtained by ray tracing
Ω(i, j) = [(i, j), (i, j + 1), (i+ 1, j +
1),(i+ 1, j)]

the square surface, strictly speaking, the pixel

p = (i, j) the pair of integer indices, appointed pixel for convenience
associated with the point p = (i, j)T of image I and to sur-
face Ω(i, j) of image Ω

N(p) the number of contributions associated with the pixel p
cn = (xn, yn)T position, expressed in the reference frame RI , of the nth

contribution of p
rn depth of the nth contribution of p
υn = (υRn , υ

G
n , υ

B
n ) color of the nth contribution of p

V(p) neighborhood of p corresponding to the smallest square con-
taining contributions and center (i+ 0.5, j + 0.5)T

5 Principle of Ray Tracing

In its general representation, a 3D scene is described by a set of meshes to which are associated
photometric properties, one or more light sources, one or more cameras characterized by their optical
properties, and optionally air or dynamic characteristics. The photorealistic rendering consists in
calculating within each pixel a color as accurate and realistic as possible on the basis of the above
parameters. Rendering is an attempt to solve the light transport equation as it was formulated by
Kajiya [12]. Veach [25, Chapter 8] demonstrated that this equation could be reformulated by the
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integration problem

u(x, y) =

∫
ω

f(γ, x, y)dµ(γ), (1)

where u is the image, (x, y) the position expressed in image frame RI , ω is the set of paths of all
possible lengths carrying the light, µ is a measure on ω and f is the function of light contribution.
The function f depends on photometric parameters (scattering, absorption and reflection spectra)
associated with the objects encountered on path γ. With this formulation, color u(x, y) can be
approximated by the equation

1

N(x, y)

N(x,y)∑
n=1

υn(xn, yn), (2)

where υn(xn, yn) = f(γn) is the color obtained by (xn, yn) the starting point of path γn and N(x, y) is
the number of rays. This quantity is computed by an iterative method of the type of the Monte-Carlo
integration.

More precisely (see Figure 1) from each pixel p, a number N(p) of rays are sent that intersect the
objects in the scene at 3D points P(p, n) for n = 1, . . . , N(p). These rays originate in the focal plane
at positions cn = (xn, yn) located in a neighborhood V(p) related to pixel p and pass through the
focal point OC of the camera. We define the neighborhood V(p) as the smallest square containing all
the points cn and centered at (i+ 0.5, j + 0.5)T where (i, j) are the integer coordinates of the upper
left pixel corner. Every contribution cn is associated to a color υn derived from the photometric
parameters of the scene and to a depth rn defined as the distance ‖P(p, n)−OC‖2.

OI

~yI

~xI

focal plane

g

f

P

OA ~xA

~yA

~zA

OC

~zC

~xC

~yCp

Figure 1: Schematic diagram of the formation of an image by a pinhole camera. RA = (OA, ~xA, ~yA, ~zA) is the absolute
coordinate frame of the 3D scene, the direct frame RC = (OC , ~xC , ~yC , ~zC) is linked to the camera and RI = (OI , ~xI , ~yI)
to the image. The red line, perpendicular to both the focal plane (OI , ~xI , ~yI) and plane (OI , ~xC , ~yC), is the focal length f
connecting focal point OC with the image center g. The camera’s line of sight is (OC , ~zC). The 3D geometric point P is
projected on the image point p.

The integration process is iterative. At each iteration k, (i.e. each pass k) a non accumulated
image uk is computed and averaged with the preceding images uk−l for l = 1, . . . , k. We have for
all p, N(p) =

∑K
k=1N

k(p) where Nk(p) is the number of rays shot at k. Note that, in practice,
the renderers sometimes use anti-aliasing, motion blur or defocus filters which involve neighboring
pixels of p, induce a change in the final color ũ(p) and adapt the effective size of neighborhood
V(p). We consider two types of distributions within the pixel: a pseudo-random distribution of the
contributions (see Figure 2-left) which is used to render the color image, and a distribution on a
regular grid (Figure 2-right) which is used to produce disparity and occlusion maps. In the first case,
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the law defining the distribution might be specified as a scene parameter (e.g. PBRT [18, Chapter 7]).
In the second case, N is an integer square fixed for all p which implies that the contribution positions
into the pixel p = (i, j)T are given by(

xn
yn

)
=

(
i
j

)
+

1√
N

(
λ+ 0.5
µ+ 0.5

)
,∀(λ, µ) ∈ {0, . . . ,

√
N − 1}2. (3)

i i+ 1
j

j + 1

i i+ 1 i+ 2
j

j + 1

Figure 2: Left: an example of a pixel p such that N = 30, where the contributions cn are distributed according to a random
process simulated by the renderer. This kind of distribution is used for the creation of the high resolution image. Right: an
example of a pixel whose contributions are evenly distributed when N = 9. This regular distribution is used for the creation
of ground truths as disparity maps, occlusion maps and points clouds.

6 Noise Estimation

We present in this section several noise estimators applied to the raw images or to the images
requantized between 0 and 255. We consider the general case, that is to say when the distribution of
contributions is random. If the number of passes of the rendering is insufficient, the rendering noise
is important, especially in dark areas (see Figure 3). However, it is possible to quantify the average
noise of the pixels and to deduce the computation time required to obtain an image with a given
average noise variance. Indeed, unbiased renderers are designed so that at the end of the last pass
each pixel p has received approximately the same number of N(p) contributions. We see the image
as a random vector and define the average noise variance as follows.

Definition 1. The average noise variance for image u = (U1, . . . ,U3NI ) where Un are the random
variables associated with the channels pixels is

var(u) =
1

3NI

3NI∑
n=1

var(Un). (4)

Let vk = (X 1
k , . . . ,X 3NI

k ) be the random vector representing the non accumulated image at the
kth iteration. It is assumed that the renderer has the following statistical properties:

• the iterations are homoscedastic (all random variables in the sequence have the same finite
variance)

∀n,∀k,∀l 6= k, var(X n
k ) = var(X n

l ), (5)

• the iterations are time-independent

∀n,∀k, ∀l 6= k, cov(X n
k ,X n

l ) = 0, (6)
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• the iterations are spatially independent

∀k,∀n,∀m 6= n, cov(X n
k ,Xm

k ) = 0. (7)

During rendering, images vk are filtered by an anti-aliasing filter modeled by a convolution with a
normalized kernel h leading to image uk, namely

uk = vk ∗ h, (8)

and denoted by the same convention uk = (Y1
k , . . . ,Y3NI

k ). We assume that rendering is linear and
unbiased, that is to say that the image ūk obtained after k passes as the output of ray tracing, is
equal to the average of k images that would have been calculated independently during a single pass
by k ray tracings. This leads to

ūk =
u1 + · · ·+ uk

k
. (9)

By the variance additivity of temporally independent random variables we deduce that each pixel n
of ūk = (Ȳ1

k , . . . , Ȳ3NI
k ) is subjected to a noise variance

var(Ȳn
k ) =

var(Yn
k )

k
, (10)

and at infinite time, by the law of large numbers, ūk converges towards the non noisy image u. The
noiseless image being inaccessible over time, one can nevertheless estimate the noise variance of the
final image ūK from the mean squared error (MSE) compared to an intermediate image ūk under the
following proposition whose proof is given in Appendix A.1:

Proposition 1. Let ūk and ūK be two images rendered respectively after k and K iterations, k < K.
The estimated average variance of noise for the rendered image ūK corresponds to

var(ūK) ' k

K − kMSE(ūk, ūK), (11)

where the mean square error (MSE) is defined by

MSE(ūk, ūK) =
1

3NI

E‖ūk − ūK‖22. (12)

Since the obtained raw image ūK is expressed directly from the spectral properties of materials,
the values of its pixels are not limited to [0, 255] but belong to [0,+∞) so that the value of the
empirical variance (11) is not very intuitive. We therefore propose a normalized representation of
the variance with respect to the [0, 255] range based on the coefficient of variation [26, p. 22]:

Definition 2. The normalized variance with respect to the range [0, 255], of image ūK is defined by

ς2(ūK) =
127.5 · var(ūK)

µ(ūK)
, (13)

where µ(ūK) is the mean of ūK.

To provide stereo algorithms with images whose dynamics are contained in the range [0, 255] while
avoiding saturation, we applied to the raw image ūK the histogram equalization algorithm by Lisani
et al. [15] whose interest is to use only three input parameters; we note by fL this transformation.
We propose the following relation for the noise estimate for the new fL(ūK) image (see the proof in
Appendix A.2):
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Proposition 2. The variance of image ūK requantized by Lisani et al.’s transformation fL corre-
sponds to

var(fL(ūK)) =
k

3NI(K − k)

3NI∑
n=1

α2
n(ūk(n)− ūK(n))2, (14)

where αn is the slope of fL (denoted as mk in [15, Section 2]).

Finally, we define the signal to noise ratio of the images ūK and fL(ūK) from the definition by
Gonzalez et al. [8, Equation 5.8-5], replacing the estimated variance of denominator of Equation 5.8-5
by the estimated variance (11):

Definition 3. The signal to noise ratio (SNR) of a given image v is defined as

SNR(v) =
‖v‖2√

3NIvar(v)
. (15)

Figure 3: Example of residual noise in a shaded portion of the scene made for different durations. From left to right, the
images were generated respectively for the periods T = 1, T = 4 and T = 16. Between two successive images the noise
standard deviation is divided by a factor of 2.

7 Generation of the 3D Point Clouds

We describe in the following paragraph the geometric relationship between the point of the 3D scene
P and its projection p on the image plane according to the pinhole camera model [25, Chapter 2].
The relationship between these two points is given by two transformation matrices whose dimensions
are 4 × 4 by convention. The matrix RAC of inverse RCA is called the rigid displacement matrix
and is used to express the frame RA compared to the camera frame RC . Its coefficients depend on
three rotations of the axes of the camera in the frame RA, represented by the matrix RCA and the
translation TCA = (tx, ty, tz)

T of focal point OC relatively to OA. Its homogeneous formulation is

RAC =

(
RCA −TCA

0 1

)
and its inverse is RCA =

(
R−1CA 0

0 1

)(
I +TCA

0 1

)
. (16)

The second invertible matrix corresponds to the calibration matrix RCI of the camera. This matrix
is upper triangular, and in its simplest formulation [24, Equation 2.59], depends only on the focal
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length f and the coordinates g|I = (gx, gy)
T of the center of the image, when it originates from the

top left corner OI . Its homogeneous formulation is

RCI =


f 0 gx 0
0 f gy 0
0 0 1 0
0 0 0 1

 and its inverse is RIC =


1/f 0 −gx/f 0
0 1/f −gy/f 0
0 0 1 0
0 0 0 1

 . (17)

Point PA = (xA, yA, zA)T is expressed in homogeneous coordinates as P̃A = (xA, yA, zA, 1)T . Sim-
ilarly pI = (xI , yI)

T is associated with p̃I = (xI , yI , 1, α)T . By convention (see [18, p. 75]) the point
p̃I has a weighted homogeneous coordinates representation denoted p̃w

I = (wIxI , wIyI , wI , wIα)T

where wI and α are not zero (the term α does not play a direct role in the transformations below).
Calculating p̃I knowing P̃A is as follows. Denoting P̃C = (xC , yC , zC , 1)T = RACP̃A yields

p̃I ∝ p̃w
I = RCIRACP̃A, (18)

= RCIP̃C . (19)

Developing (19) from the definition of RCI (17) allows us to see that wI = zC and to deduce that

p̃I =
1

zC
RCIP̃C . (20)

To find the 3D geometric point PA related to contribution pI , of which we know the position in the
image and distance r = ‖PC‖2, one uses Thales’ theorem which applies here to the pinhole cameras

zC =
rf

‖f 2 + 〈pI − gI ,pI − gI〉‖2
. (21)

By inverting Equation (20) then applying the transformation RCA (16) we finally obtain

P̃A =
rf

‖f 2 + 〈pI − gI ,pI − gI〉‖2
RCARICp̃I . (22)

The choice of the distribution of contributions to be taken into account a priori depends of the
application for which point clouds are intended. The case of regular and single pixel distributions
(N = 1) seems better suited to serve as ground truth for stereovision algorithms. Indeed, the cloud
of 3D points represents the ideal cloud that we can hope to rebuild from a stereoscopic pair. The
cases with regular or irregular N � 1 that result in an over-sampling of the volume of the scene seem
more intended to mesh or 3D surface reconstruction algorithms tests.

Figure 4 (right) shows an example of a 3D reconstruction without artifacts from the image of the
depths of contributions shot from the pixel center (left). Note that the calculation of the average
depths of contributions of a pixel is to be avoided and is only of interest to provide noisy data. Indeed,
it induces in the 3D reconstruction significant errors for the pixels on the boundaries representing
close objects placed in front of a long shot because their 3D points have no physical reality (see
Figure 4, center of the picture).

8 Construction of the Disparity Map

In the case of two points of views, the map of disparities D1 on the image I1 of the camera C1 measures
for each of its pixels p, the displacement D1(p) = (dx(p), dy(p))

T in image I2 associated with camera

11
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Figure 4: Example of 3D reconstruction of a scene from the image depths (left). Rebuilding from the average of the depths
of a pixel produces artifacts (middle image). Using regular ray tracing in each pixel defined by Equation (3) eliminates these
artifacts (right).

C2 (see Figure 6). Frames associated with I1, I2, C1 and C2 are noted Ra = (Oa, ~xa, ~ya, ~za) for all
a ∈ {I1, I2, C1, C2}.

The knowledge of matrices RAC1 ,RC1I1 ,RAC2 ,RC2I2 and of the distance r = ‖PC1‖2 of the 3D
point P associated to pI1 allows to precisely calculate D1(p) by back-projecting P on I2 (see Figure 5).
Considering the ray shot from the center of Ω(p) that is to say pI1 = (i+ 0.5, j + 0.5)T and denoting
q̃I2 = (xI2 , yI2 , wI2 , αI2)

T the projection of P on I2, we obtain from (18) and then from (22)

q̃I2 ∝ q̃w
I2

= RC2I2RAC2P̃A, (23)

=
rf

‖f 2 + 〈pI1 − gI1 ,pI1 − gI1〉‖2
RC2I2RAC2RC1ARI1C1p̃I1 , (24)

q̃I2 =
1

wI2

q̃w
I2
. (25)

This defines the disparity map calculated at the center of the pixel

D1(i, j) =

(
1 0 0 0
0 1 0 0

)
(p̃I2 − p̃I1), ∀i, ∀j. (26)

P

p q

I1 I2

x

z

y

r

D1(p)

Figure 5: Computation of the disparity of p from the back-projection of P on I2.

In the particular case where there is a fronto-parallel displacement of the camera, the map has
no dy component. This displacement corresponds to a translation in ~xC1 of frame RC1 thus giving

12
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frame RC2 . In order to set a priori the disparity dx(p) of a pixel p whose associated distance r is
known, one must calculate the OC2 position. This change only affects the translation vector TC2A

component of matrix RC2A since the rotation matrix RC2A remains unchanged. Under the Thales
theorem applicable to pinhole cameras we have

xO2

dx(p)
=

r

‖f 2 + 〈pI1 − gI1 ,pI1 − gI1〉‖2
, (27)

where xO2 is the abscissa of OC2 in RC1 , therefore

ÕC2C1 =

(
rdx(p)

‖f 2 + 〈pI1 − gI1 ,pI1 − gI1〉‖2
, 0, 0, α

)T

, (28)

for α 6= 0. According to the definition of TC2A, the relation

TC2A =

1 0 0 0
0 1 0 0
0 0 1 0

RC1AÕC2C1 (29)

then allows to construct the appropriate matrix RC2A to shift dx(p).
In this case the stereo pairs were generated from a fronto-parallel movement. From a reference

view, three shifted points of view were created so that the disparities dx are of maximum value of
1, 10 and 50 pixels respectively. Note that the limitations of digital precision in matrix calculations
induce the appearance of tiny displacements in y. Table 6 draws up the maximum amplitude of such
displacement. Disparity maps in y were included in the data set although they may be neglected in
a first approximation as they do not exceed 1.722 · 10−4 pixels.

For practical purposes we indicate in the ground truth the focal f and the median baseline B/H
of each stereo pair, which is calculated from the Thales relationship

xO2

zC(p)
=
dx(p)

f
, (30)

applicable to the pinhole case with fronto-parallel displacement and the following applies

B

H
=

median(|D1|)
f

. (31)

left image I1 right image I2 disparity map D1

Figure 6: Example of disparity map obtained with a stereo pair (I1, I2) for which the camera made a maximal fronto-parallel
displacement of 50 pixels.
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9 Construction of the Occlusion Map

The occlusion map O1 shows for each pixel p of image I1 if the area observed from this pixel has
been occulted or not by another area in front of it, in the I2 image. Knowing the disparity map D2

of I2 over I1, the occlusion map O1 of view I1 is classically defined (see Figure 7) from the following
boolean formulation

O1(p) =

{
1 if ∃q/bD2(q) + qc = p,

0 if p is occulted.
(32)

However if one is limited to using only one contribution per pixel, i.e. N = 1, as in the case of the

I1 I2

D1 D2

O1 O2

scene 3D

6 7 8 4 5

88−1 4 4

0 0 1 1 0

Figure 7: Creation of the occlusion map from the disparity map. The values shown in the line I1 (resp. I2) correspond to
the scene positions of objects projected on image I1 (resp. I2), those below the line D1 (resp. D2) to their position in D2

(resp. D1). Boolean values of the image O1 (resp. O2) indicate whether the objects in I1 (resp. I2) are seen or not in I2
(resp. I1).

disparity, to compute the backward projection P on I2, one experimentally observes (see Figure 8)
a number of I1 pixels that are not considered as visible as they should be. The reason is that
in this case spatial sampling is not dense enough: two different pixels of I1, p1 and p2, can have
the same projected integer coordinates q on I2. The solution to this problem is to use a spatial
oversampling, i.e. N � 1 in back-projecting exhaustively all the contributions of each p of I1 on I2
then to accumulate. In this way the occlusion map is obtained

Õ1(p) =


∑
q

1 ∀q/bD2(q) + qc = p,

0 if p is occulted.
(33)

This formulation has the advantage of offering flexibility in how to create a Boolean occlusion map
because it is sufficient to apply to it a threshold s. We propose finally the relationship

O1(p) =

1 if
∑
q

1 ≥ s, ∀q/bD2(q) + qc = p,

0 if p is occulted.
(34)

Note that if we limit ourselves to a s = 1 threshold, we will tend to over-estimate the visibility because
it only takes one back-projected contribution reaching the pixel to be considered visible in both
images. We generated the Boolean occlusion maps according to Equation (34) setting s = bN(p)/2c
where N(p) = 100 for any p (see Figure 6).
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Figure 8: Example of occlusion map obtained for a stereo pair (I1, I2) for which the camera made a maximum fronto-parallel
displacement of 50 pixels. The left map obtained with N = 1 is not dense enough because level lines of occulted pixels
appear. The middle map obtained by summation from the relation (33) and N = 100, allows the creation of a dense
Boolean map, right after thresholding with s = 50.

10 Conclusion

The qualitative evaluation of very accurate stereoscopic algorithms requires having at one’s disposal
stereo pairs with minimal and quantified noise, accompanied by ground truths as accurate as possible.
We presented a new method of generating ground truths with synthetic images. This approach, which
takes advantage of spatial oversampling ray tracing, allows to make maps of disparities and occlusions
with a level of accuracy which has never been reached before. Furthermore, the iterative creation
of image synthesis during rendering allows us to make an analytical estimate of the residual noise.
This method allows us to offer to the scientific community, a new dataset of 66 reference stereo pairs,
directed to evaluating stereoscopic and 3D reconstruction algorithms.
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A Demonstrations

In the following, we denote respectively X n and Yn the parent random variables of the random
variables X n

k and Yn
k for k = 1, . . . , K.
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A.1 Proof of Proposition 1

Proof. From definition (12) of MSE we have

MSE(ūk, ūK) =
1

3NI

E‖ūk − ūK‖22

=
1

3NI

3NI∑
n=1

E[(Ȳn
k − Ȳn

K)2],

=
1

3NI

3NI∑
n=1

var(Ȳn
k − Ȳn

K) + [E(Ȳn
k − Ȳn

K)]2

=
1

3NI

3NI∑
n=1

var(Ȳn
k − Ȳn

K) + [E(Ȳn
k − Yn)− E(Ȳn

K − Yn))]2

=
1

3NI

3NI∑
n=1

var

[
1

k

k∑
i=1

Yn
i −

1

K

K∑
i=1

Yn
i

]
+ [E(Ȳn

k − Yn)− E(Ȳn
K − Yn))]2.

The hypothesis of an unbiased rendering and relation (6) apply to images (vk)k as well as to images
(uk)k. They imply that

MSE(ūk, ūK) =
1

3NI

3NI∑
n=1

var

[(
1

k
− 1

K

) k∑
i=1

Yn
i −

1

K

K∑
i=k+1

Yn
i

]
+ 0

=
1

3NI

3NI∑
n=1

(
1

k
− 1

K

)2

var

(
k∑

i=1

Yn
i

)
+

1

K2
var

(
K∑

i=k+1

Yn
i

)

=
1

3NI

3NI∑
n=1

(
1

k
− 1

K

)2

kvar(Yn) +
1

K2
(K − k)var(Yn)

=
1

3NI

3NI∑
n=1

var(Yn)

[(
1

k
− 1

K

)2

k +
1

K2
(K − k)

]

=

(
1

k
− 1

K

)
1

3NI

3NI∑
n=1

var(Yn)

=

(
1

k
− 1

K

)
var(ut). (35)

As ut = vt ∗ h and from property (7), we have

var(Yn) = var

[
∞∑

m=−∞

X n−mh(m)

]

=
∞∑

m=−∞

var(X n−m)h2(m) + 2
∞∑

m=−∞

∞∑
l=m+1

h(m)h(l)cov(X n−m,X n−l)

=
∞∑

m=−∞

var(X n−m)h2(m) + 0. (36)
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Introducing var(vt) from Definition 1 and using (36) then

MSE(ūk, ūK) =

(
1

k
− 1

K

)
1

3NI

3NI∑
n=1

∞∑
m=−∞

var(X n−m)h2(m)

=

(
1

k
− 1

K

) ∞∑
m=−∞

h2(m)
1

3NI

3NI∑
n=1

var(X n−m)

=

(
1

k
− 1

K

)
‖h‖22var(vt). (37)

According to the definition of the statistics (9) and to the equivalence between (35) and (37) we have

var(ūK) = var

(
u1 + · · ·+ uK

K

)
=

1

K
var(u)

=
1

K
‖h‖22var(v).

Thus,

var(ūK) =
1

K

(
1

k
− 1

K

)−1
EQM(ūk, ūK)

=
k

K − kEQM(ūk, ūK).

A.2 Proof of Proposition 2

Proof. According to Definition 1, and since the histogram modification corresponds to an affine
transformation of slope αn and bias βn, applied to each pixel, we have

var(fL(ūK)) =
1

3NI

3NI∑
n=1

var(fL(Ȳn
K))

=
1

3NI

3NI∑
n=1

var(αnȲn
K + βn)

=
1

3NI

3NI∑
n=1

α2
nvar(Ȳn

K).

From (10) and relationship E[(Ȳn
k − Ȳn

K)2] = ( 1
k
− 1

K
)var(Ȳn) seen in A.1 we have var(Ȳn

K) =
k

K−kE[(Ȳn
k − Ȳn

K)2] which is then estimated by k
K−k (ūk(n)− ūK(n))2.

B Constitution of the Database

We used seven different synthetic scenes observed from four points of view and named v+000, v+001, v+010

and v+050. Four of these scenes were considered with two different color characteristics: with and
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without reflective materials. In the end, the base consists of 66 stereo pairs. Figure 9 shows the
different scenes for view v+000. The images produced have a size of 960× 540 in portrait mode and
of 540 × 960 in landscape mode. They are offered in three formats, namely: EXR 16-bit, 16-bit
PNG and TIF 16 bit float. The first two mentioned formats come directly from the rendering engine
LuxRender while the third was obtained by a post-processing of EXR images detailed in Section B.3.
Each pixel received an average of over 2 million contributions. The noise estimate was made by
creating, for each of the 11 scenes uK , a identical uk scene but with a rendering duration k much
lower by around 100 000 contributions per pixel and then by applying formula (11). In practice the
rendering duration is the number of contributions per pixel.

Figure 9: All the scenes constituting the dataset. The images of this illustration reflect the views v+000 in PNG 16 bits
created by the render.

bastet_shiny bastet_matte shrub_shiny shrub_matte corridor

pillar_shiny saloon_shiny watch

pillar_matte saloon_matte oranges

B.1 Scene Designers

Table 3 lists the scene designers who must be credited when using the CMLA database.
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Table 3: 3D scenes designers.

Designers Scenes

Peter Sandbacka hotel lobby

Simon Wendsche school corridor

Tahseen Jamal sketch watch , oranges

B.2 File Naming Convention

scene_+000_1.cbs Binary file containing the set of contributions expressed in
frame RA obtained after regular sampling of pixels in the
image (N = 1)

scene_+000_100.cbs Binary file containing the set of contributions expressed in
frame RA obtained after regular sampling of pixels in the
image (N = 100)

scene_+000.mat Binary file containing coefficients of transformation matrices
RIC and RCA

scene_+000.exr Image of view v+000 of scene scene provided by renderer in
EXR format

scene_+000.png Image of view v+000 of scene scene provided by renderer in
PNG 16 bits format

scene_+000.tif Equalized image between [0, 255], according to the modified
algorithm of Lisani et al.

scene_+000.txt Text file that contains various informations
scene_dispx_+000_to_+050.tif Disparity map along x from view v+000 to view v+050

scene_dispy_+000_to_+050.tif Disparity map along y from view v+000 to view v+050

scene_occu_+000_to_+050.tif Occlusion map obtained from (33) after regular sampling
N = 100

scene_occu_+000_to_+050.png Occlusion map obtained from (34) after thresholding s = 50
of the previous map

B.3 TIF Format Images

The images produced natively by LuxRender are either EXR, or PNG format. But in the first
case the color values are not necessarily limited to [0, 255] and the dynamic is not updated; in the
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second case values are discretized in J0, 65535K and possibly saturated. In order to best preserve
all chromatic information and to offer stereo algorithms the range [0, 255] conventionally used, we
adapted the dynamics of EXR images using a piecewise affine histogram adjustment [15]. It originally
processes only input PNG images in J0, 255K. Changes to this algorithm concern the addition of the
library iio.h allowing image processing in floating point format and normalization in [0, 255] of the
EXR input image. More specifically, the linear transformation applies

v̌ =
255 · v

maxRGB(v)
, (38)

to the input image EXR v, where maxRGB(v) is the maximum of the three channels, then image v̌
is treated with the original algorithm. We take into account this transformation in computing (14).
To apply the same contrast change to all images v of a same scene, we created the image union
V = v+000 ∪ v+001 ∪ v+010 ∪ v+050 then dealt with V using the modified algorithm. The result
Ṽ is then split to retrieve images TIF ṽ+000, ṽ+001, ṽ+010 and ṽ+050. The three parameters of the
equalization method, applied to the different scenes are shown in Table 4.

Table 4: Parameter values used by the modified version of histogram equalization algorithm by Lisani et al., applied to
different EXR images.

Scene minimum slope maximum slope number of control points
bastet_matte 0 20 1000
bastet_shiny 0 100 1000

corridor 0 5 10
oranges 0 2 10

pillar_matte 0 20 1000
pillar_shiny 0 40 1000
saloon_matte 0 20 1000
saloon_shiny 0 40 1000
shrub_matte 0 20 1000
shrub_shiny 0 40 1000

watch 0 5 1000

B.4 Noise Estimates File

The text file scene_+000.txt contains the various noise estimates explained in Section 6 in the
format described in Table 5.

B.5 Disparity Maps in the Vertical Direction

Table 6 shows the maximum amplitude of disparity maps along the y axis. They do not exceed
1, 722.10−4 pixels.

B.6 Binary File Content

Contribution file. The file contains information about the image dimensions, then, for each pixel,
its coordinates, the number N of its contributions cn, finally their xn and yn coordinates and dn =
‖P(p, n)−OC‖. The xn and yn coordinates are already expressed in the image reference frame and
not in the camera frame, so it is not necessary to apply the inverse transformation R−1IC to them.
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Table 5: Content of text file scene +000.txt.

Field Meaning
nlin image rows number
ncol image column number
fov image field of view expressed in degrees
baseline_with_+001 baseline according to (31) between v+000 and v+001 etc.
var_uk variance according to (11)
sigma2 normalized variance according to (13)
var_fluk variance of the quantified image on [0, 255] according to (14)
snr_uk SNR of ūK according to (15)
snr_fluk SNR of fL(ūK) according to (15)

Table 6: Maximum amplitude of disparity maps along the y axis.

Scene v+001 v+010 v+050

shrub_matte,shrub_shiny 3, 197.10−5 3, 958.10−5 1, 122.10−4

bastet_matte,bastet_shiny 1, 331.10−4 2, 602.10−5 1, 722.10−4

corridor 2, 810.10−5 2, 816.10−5 2, 992.10−5

watch 1, 518.10−16 1, 527.10−16 1, 485.10−16

oranges 4, 836.10−6 7, 254.10−6 4, 836.10−6

pillar_matte,pillar_shiny 4, 807.10−6 1, 421.10−7 4, 246.10−6

saloon_matte,saloon_shiny 4, 383.10−6 5, 707.10−5 1, 001.10−4

Both coordinates are decimal because they are subpixel. The format of data in the binary file is the
following, knowing that i and j correspond respectively to the ith line and jth column of nrow×ncol
size image and ncbs represents the maximum number of contributions in the area of the pixel:

int︷ ︸︸ ︷
nrow

int︷ ︸︸ ︷
ncol

int︷ ︸︸ ︷
ncbs

int︷︸︸︷
0

int︷︸︸︷
0

int︷︸︸︷
N

float︷︸︸︷
x1

float︷︸︸︷
y1

float︷︸︸︷
d1 . . . . . .

float︷︸︸︷
xN

float︷︸︸︷
yN

float︷︸︸︷
dN

int︷︸︸︷
0

int︷︸︸︷
1 . . . . . .

int︷︸︸︷
i

int︷︸︸︷
j . . .

Transformation matrices file. The binary file contains two matrices RIC and RCA stored one
after the other in the format:

int︷ ︸︸ ︷
nb rows

int︷ ︸︸ ︷
nb cols

float︷ ︸︸ ︷
RIC [0][0]

float︷ ︸︸ ︷
RIC [0][1]

float︷ ︸︸ ︷
RIC [0][2]

float︷ ︸︸ ︷
RIC [0][3]

float︷ ︸︸ ︷
RIC [1][0] . . .

float︷ ︸︸ ︷
RIC [3][3]

int︷ ︸︸ ︷
nb rows

int︷ ︸︸ ︷
nb cols

float︷ ︸︸ ︷
RCA[0][0] . . .

where int and float have a size of 4 bytes.
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