
Published in Image Processing On Line on 2017–10–29.
Submitted on 2017–01–15, accepted on 2017–10–10.
ISSN 2105–1232 c© 2017 IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
https://doi.org/10.5201/ipol.2017.201

2
0
1
5
/
0
6
/
1
6

v
0
.5
.1

IP
O
L

a
rt
ic
le

c
la
ss

Multi-Scale DCT Denoising

Nicola Pierazzo, Jean-Michel Morel, and Gabriele Facciolo

CMLA, ENS Paris-Saclay, Cachan, France
{Nicola.Pierazzo,morel,facciolo}@cmla.ens-cachan.fr

This IPOL article is related to a companion publication in the SIAM Journal
on Imaging Sciences:
Gabriele Facciolo, Nicola Pierazzo, Jean-Michel Morel, “Conservative Scale
Recomposition for Multiscale Denoising (The Devil is in the High Frequency
Detail)” SIAM Journal on Imaging Sciences, vol. 10, no. 3, pp. 1603–1626,
2017. https://doi.org/10.1137/17M1111826

Abstract

DCT denoising is a classic low complexity method built in the JPEG compression norm. Once
made translation invariant, this algorithm was still proven to be competitive at the beginning
of this century. Since then, it has been outperformed by patch based methods, which are far
more complex. This paper proposes a two-step multi-scale version of the algorithm that boosts
its performance and reduces its artifacts. The multi-scale strategy decomposes the image in a
dyadic DCT pyramid, which keeps noise white at all scales. The single scale denoising is then
applied to all scales, thus giving multiple denoised versions of the low frequency coefficients
of the denoised image. A “multi-scale fusion” of these multiple estimates avoids the ringing
artifacts resulting from the pyramid recomposition. The final algorithm attains a good PNSR
and much improved visual image quality. It is shown to have a deficit of only 1dB with respect
to state of the art algorithms, but its complexity is two orders of magnitude lower.

Source Code

The C++ source code, the code documentation, and the online demo are accessible at the
IPOL web page of this article web site1 Compilation and usage instruction are included in the
README.txt file of the archive.

Keywords: multi-scale; image denoising; DCT denoising

1https://doi.org/10.5201/ipol.2017.201

Nicola Pierazzo, Jean-Michel Morel, and Gabriele Facciolo, Multi-Scale DCT Denoising, Image Processing On Line, 7 (2017), pp. 288–
308. https://doi.org/10.5201/ipol.2017.201

https://doi.org/10.5201/ipol
https://doi.org/10.5201/ipol
http://creativecommons.org/licenses/by-nc-sa/3.0/
https://doi.org/10.5201/ipol.2017.201
http://www.siam.org/journals/siims.php
https://doi.org/10.1137/17M1111826
https://doi.org/10.5201/ipol.2017.201
https://doi.org/10.5201/ipol.2017.201

Multi-Scale DCT Denoising

1 Introduction

DCT denoising is a classic low complexity algorithm, that nonetheless was still proven to outper-
form more recent multi-scale wavelet denoising algorithms [14, 19]. A reference interpretation and
implementation is proposed in [20], where the efficiency of the algorithm is boosted by its translation
invariant implementation: all patches of given size (between 4× 4 and 16× 16) are denoised. Then
the result of this denoising is aggregated by taking as final result at each pixel the average of all
values given by all denoised patches containing this pixel. The recommended patch size in [20] is
16× 16.

Since the processing of each pixel involves pixels at a distance smaller than 16, the low frequency
noise is not handled. For severely noisy images, this residual low frequency noise becomes con-
spicuous, particularly in smooth or flat image regions. This points to the Achilles’ heel structural
drawback of this simple and powerful algorithm: it operates at a single scale and does not attack
low frequencies.

In this paper we propose a two-step and multi-scale version of DCT denoising that keeps all
features of its single scale single-step version, but improves notably its performance. Our method for
transforming a single scale denoising algorithm into a multi-scale algorithm is detailed in a companion
SIIMS paper [7], where the method is applied to six different denoising algorithms. Here we limit
ourselves to a detailed description of the method applied to DCT denoising, and we deliver in that
way a well performing algorithm with surprisingly low complexity.

Multi-scale principles for denoising have already been explored in the literature. Multi-scale
image processing is justified by the classic assumption [9] that the statistics of natural images are
invariant to a change of scale [12]. The scale invariance assumption is invoked by most multi-scale
algorithms [16, 2, 22].

Yet existing multi-scale approaches either end up changing the noise structure at lower frequen-
cies [2, 6], or require a non-standard denoising algorithm [17, 21]. An example of approach spe-
cific to a particular denoising algorithm is [15], which is a two-scale extension of EPLL [21]. It
could nevertheless be understood as a general multi-scale framework applicable to any single scale
variational method. Similar in that respect to DCT denoising, the wavelet-based denoising algo-
rithms [4, 8, 16, 13] always perform some sort of transform thresholding. This entails annoying
“ringing” or “butterfly” artifacts attributable to Gibbs effects caused by harsh frequency cut-offs.
This remains true of sophisticated algorithms involving a wavelet multi-scale transform like [18],
where the KSVD algorithm is applied on a wavelet image decomposition. There have also been
attempts to post-process ringing artifacts by a variational method [5].

We shall use the multi-scale framework proposed in [7], that can be applied to any existing single-
scale denoising algorithm. The framework is not computationally demanding as it uses a simple
global DCT transform to extract successive subsampled images. The benefit of DCT subsampling
is that it does not change the structure of white noise, which allows to use any denoising algorithm
without adaptation. Each level of the resulting image pyramid is then denoised independently and
the results combined. This is in contrast with multi-scale schemes that operate on the differences
between consecutive scales. The proposed multi-scale fusion avoids the ringing artifacts indirectly
caused by the denoising of the coarse scale images. It does so by dropping the high frequency
components from the subsampled images of the pyramid.

Our second improvement of DCT denoising is based on a 2-step oracle method, which idea is to use
a first denoised image as an oracle to estimate the empirical Wiener factors of the DCT coefficients in
the second step. Note that a local DCT is used by the algorithm to denoise the image patches. The
multi-scale scheme instead uses a global DCT transform. Iterating a denoising algorithm in order to
use the result of the former step as oracle for the next step is also a classic tool that mitigates the
ill-posed character of the denoising problem. We refer to [11] for a review and for the proposal of an

289

Nicola Pierazzo, Jean-Michel Morel, and Gabriele Facciolo

Algorithm 1: two-step DCT Denoising

1 Function DCTdenoising2step(Y, σ, s)
input : noisy image Y , noise level σ, and patch size s
output: denoised image

2 G← DCTdenoisingHard(Y, σ, s)
3 return DCTdenoisingWiener(Y,G, σ, s)

oracle method for DCT denoising.

Section 2 describes the single scale DCT denoising extended with an oracle step (also called
Wiener step). Section 3 describes the DCT-based multi-scale framework and applies it to DCT
denoising. Section 4 evaluates the PSNR gain obtained for each considered improvement, namely
the Wiener step and the multiscale framework, depending on the patch size. It also illustrates on
several images the visual quality gains of the final method. Implementation details are presented in
Section 5 and Section 6 is a conclusion.

2 Oracle DCT Denoising

The simplest DCT denoising algorithm as described by Yu and Sapiro in [20] consists in a threshold
of a patch-wise DCT of the image and aggregation of the resulting patches. Color images are first
pre-processed to de-correlate the input colors. Color patches are then processed channel-wise but
their adaptive aggregation weights are computed over all the channels. Algorithm 2 summarizes the
method, and the details about the DCT transform convention used in it are recalled in Section 5.

Let us note that although thresholding the DCT of a single patch introduces ringing artifacts, it
has been observed that the patch-wise aggregation limits them in the final result.

Oracle. The use of an oracle is an improvement of the DCT denoising algorithm which was men-
tioned in [11] but not integrated into [20]. A guide image (or oracle) is a clean but not completely
restored result, which allows to estimate the spectra of the patches in the Wiener filtering step as
shown in Algorithm 3. The resulting two-step DCT denoising algorithm is summarized in Algo-
rithm 1, and its improvement can be corroborated in Figure 7 and Table 2.

Adaptive aggregation. Adaptive patch aggregation [11, 3] allows to further reduce the halo effects
near the contrasted image edges (as shown in Figure 1) while keeping essentially the same PSNR.
Since denoised patches representing a contrasted edge always end up containing some ringing, it is
preferable to give more weight to other overlapping patches that do not contain the edge. Adaptive
aggregation does this by effectively giving more weight to patches that have a sparser representation
in the DCT domain. This permits to reduce the ringing effects near image edges. In the Appendix A
we justify in detail our choice of aggregation weights.

For the hard thresholding pass of the algorithm the aggregation weights are set, as in [3], by
counting the number NP of nonzero DCT coefficients (excluding the zero frequency) in the patch
after thresholding. These aggregation weights are then given by

(1 +NP)−1 , (1)

where the one is added to prevent the dividing by zero (but it is an arbitrary choice). Indeed, the
number of non-zero coefficients will be small for the flat patches, compared to patches containing

290

Multi-Scale DCT Denoising

Algorithm 2: DCT Denoising - Hard thresholding

1 Function DCTdenoisingHard(Y, σ, s)
input : noisy image Y , noise level σ, and patch size s
output: denoised image

2 X,W ← 0
3 Y ← DecorrelateColors(Y)
4 for each patch domain Ωpatch ⊂ Ω of size s× s do // Ω is the image support

5 btmp ← 0 // color patch temp variable

6 NP ← 0
7 for each color channel c do

8 b̂← DCT(ExtractPatch(Y,Ωpatch, c)) // uses DCT/IDCT defined in (10)-(11)

9 for ω ∈ ({0, · · · , s− 1} × {0, · · · , s− 1}) do // scan patch frequency domain

10 if ω 6= ~0 then // don’t filter the zero frequency

11 if |̂b(ω)| < 3σ then b̂(ω)← 0
12 else NP ← NP + 1 // # of nonzero coefficients of b̂

13 btmp[c]← IDCT(̂b) // store channel c of color patch

14 X(Ωpatch)← X(Ωpatch) + btmp · (1 +NP)−1

15 W (Ωpatch)← W (Ωpatch) + (1 +NP)−1 // Adaptive weights, see Section A

16 X ← X/W
17 return UndoDecorrelateColors(X)

edges. Therefore the flat patches will be privileged in the aggregation thus reducing the ringing
introduced by the denoised edge patches.

The weights for the second step (lines 17 and 18 of Algorithm 3) are set to the squared `2-norm
of the Wiener coefficients ρP (defined in Algorithm 3, line 13) but excluding the zero frequency. To
avoid dividing by zero we define the weights as

(1 + SP)−1 . (2)

This is similar to what is used in the BM3D Algorithm [3]. The justification for this choice of weights,
as well as an empirical exploration of other weighting strategies, is presented in Appendix A.

For color images the aggregation weights of a patch are computed by counting NP or SP over all
the channels.

Filtering of the zero frequency. Finally, a small, but important difference in Algorithms 2 and 3
with respect to the one described in [20] is that the zero frequency (which contains the mean of the
patch) is not altered by the thresholding or shrinkage. The justification for this is that the quadratic
mean is already the optimal estimator of the patch mean value, so thresholding or shrinking would
just bias it toward zero. This is because the sparsity prior, applied to all the other oscillatory
coefficients, does not apply on the mean value.

3 The Multi-scale Framework

Figure 2 shows the frequency distribution of the result of DCT denoising on an image composed
only of white noise, together with the results for our multi-scale version of the very same algorithm.

291

Nicola Pierazzo, Jean-Michel Morel, and Gabriele Facciolo

Algorithm 3: DCT Denoising - Wiener

1 Function DCTdenoisingWiener(Y,G, σ, s)
input : noisy image Y , guide image G, noise level σ, and patch size s
output: denoised image

2 X,W ← 0
3 Y ← DecorrelateColors(Y)
4 G← DecorrelateColors(G)
5 for each patch domain Ωpatch ⊂ Ω of size s× s do // Ω is the image support

6 btmp ← 0 // color patch temp variable

7 SP ← 0
8 for each color channel c do

9 b̂← DCT(ExtractPatch(Y,Ωpatch, c)) // uses DCT/IDCT defined in (10)-(11)

10 ĝ ← DCT(ExtractPatch(G,Ωpatch, c))
11 for ω ∈ ({0, · · · , s− 1} × {0, · · · , s− 1}) do // scan patch frequency domain

12 if ω 6= ~0 then // don’t filter the zero frequency

13 ρP (ω)←
(
|ĝ(ω)|2

|ĝ(ω)|2 + σ2

)
14 b̂(ω)← b̂(ω) ρP (ω)
15 SP ← SP + ρP (ω)2 // squared `2-norm of ρP excluding ρP (~0)

16 btmp[c]← IDCT(̂b) // store channel c of color patch

17 X(Ωpatch)← X(Ωpatch) + btmp · (1 + SP)−1 // weight by non-divergent inverse of SP

18 W (Ωpatch)← W (Ωpatch) + (1 + SP)−1

19 X ← X/W
20 return UndoDecorrelateColors(X)

Because of the limited size of the patches used by the denoising methods we note that they under-
perform on low frequencies. For instance, we see that the lowest frequency “visible” with a 4 × 4
patch is half the Nyquist rate (one fourth for 8× 8 patches), as a result the lower frequencies are not
well denoised.

Given a multi-scale image representation a straightforward way to improve the denoising perfor-
mance is to apply the denoising algorithm at each scale, and then to recompose the image, always
preferring the low frequency coefficients from the lower scales.

There are two restrictions to this. First, to be able to adapt trivially each original one-scale
algorithm, we need every layer of the multiscale representation to keep a white Gaussian additive
noise. Second, we need a practical and effective rule to recompose an output image from the denoised
results at different scales. We now sketch the solution analyzed in detail in [7].

A way to address both requirements is to use a DCT Pyramid. The Discrete Cosine Transform,
or DCT given in (3) is a real separable orthogonal transform. For 2-D signals, the isometric DCT
can be computed by applying (3) to the rows and the columns (see Section 5). Its inverse is the

292

Multi-Scale DCT Denoising

no aggregation weights (27.89 dB) aggregation weights (27.99 dB)

Figure 1: Detail of a result from MS DCT denoising with 8 × 8 patches computed without and with aggregation weights
for a noise level σ = 50. Note the reduced oscillations in the sky.

IDCT (4). For k = 0, · · · , N − 1 and j = 0, · · · , N − 1,

Yk =αk 2
N−1∑
j=0

Xj cos

[
π

(
j +

1

2

)
k

N

]
, with αk =

{√
1/(4N), k = 0√
1/(2N), k = 1 . . . , N − 1

(3)

Xj =β0 Y0 +
N−1∑
k=1

βk 2Yk cos

[
π

(
j +

1

2

)
k

N

]
, with βk =

{√
1/N, k = 0√
1/(2N), k = 1 . . . , N − 1.

(4)

The DCT of an image is displayed in Figure 2 with its low frequency coefficients in the upper-left
corner. It transforms additive Gaussian white noise into additive Gaussian white noise. The DCT
transform can be used to form a multi-scale representation of an image. The down-sampling of the
image is simply done by extracting the low frequencies from the DCT transform of the image, and
by computing the IDCT on just those frequencies. Each layer of the pyramid has half the width and
half the height of the previous one.

Using (3) and (4) for this procedure guarantees that white Gaussian noise remains so under the
DCT transform, so the noise model remains the same in every layer of the pyramid. A scaling factor
is used (Algorithm 4 lines 14 and 25) to guarantee that the values of the image remain on the same
range after resizing, which also implies that the standard deviation of the noise gets halved at each
successive scale.

Thus, no particular adaptation of the initial single scale denoising algorithm is needed to denoise
the coarse layers. Recomposing the pyramid is trivial, since it can be reduced to substituting the
low frequencies of a layer with the frequencies of the coarser layer.

The drawback of this substitution is that, since each layer is essentially the result of the convolu-
tion of the previous one with a sinc-like function, ringing artifacts due to the Gibbs effect unavoidably
appear in the coarse levels of the pyramid. But, this is not a problem for the pyramid representa-
tion in itself since these Gibbs artifacts are usually compensated during the recomposition by the
complementary oscillations resulting from the high pass filtering of the higher resolution layers. The
problem occurs because the high-frequency (and low amplitude) oscillations in the lower resolution
levels of the pyramid are likely to be damaged or even removed by the denoising method. Thus, in a
näıve recomposition the oscillations resulting from the high-pass will no longer be compensated, and
the Gibbs artifacts become visible [7]. In essence the Gibbs artifacts in the lower resolution levels
of the pyramid are crucial for recomposing an artifact-free pyramid, but they are removed by the
denoising algorithms!

293

Nicola Pierazzo, Jean-Michel Morel, and Gabriele Facciolo

Algorithm 4: Pseudo-code for the Multi-Scale Framework.

1 Function MultiScale(input, σnoise, nscales, frec)
2 for l← nscales − 1, . . . , 0 do
3 layer ← ExtractScale(input, l)

// Because of integer parts noise reduction may not be an exact power of 2,

// hence the noise scaling ratio below uses the pixel count instead of 2−l

4 tmp← Denoise(layer, σnoise

√
Numpix(layer)
Numpix(input)

)

5 if l == nscales − 1 then result← tmp
6 else result←MergeCoarse(tmp, result, frec)

7 return result

8 Function ExtractScale(image, l)
9 w, h← Size(image)

10 wout ← bw/2lc
11 hout ← bh/2lc
12 freq ← DCT(image) // uses DCT/IDCT defined in (10)-(11)

13 tmp← Zeros(wout, hout)

14 scaling ←
√

wout ·hout
w ·h

15 for i← 0, . . . , hout − 1, j ← 0, . . . , wout − 1 do
16 tmp[i, j]← freq[i, j] · scaling
17 return IDCT(tmp)

18 Function MergeCoarse(image, coarse, frec)
// Note that the coarse and input images have different sizes

19 freq ← DCT(image) // uses DCT/IDCT defined in (10)-(11)

20 tmp← DCT(coarse)
21 w, h← Size(coarse)
22 wout, hout ← Size(image)
23 wrec ← w · frec
24 hrec ← h · frec
25 scaling ←

√
wout ·hout

w ·h

26 for i← 0, . . . , hrec − 1, j ← 0, . . . , wrec − 1 do
27 freq[i, j]← tmp[i, j] · scaling
28 return IDCT(freq)

294

Multi-Scale DCT Denoising

D
C

T
4

1 scale 2 scales 3 scales

0

2

4

6

8

10

D
C

T
8

1 scale 2 scales 3 scales

0

2

4

6

8

10

Figure 2: DCT transform amplitude of results of the multiscale DCT denoising algorithm applied to an image of pure white
noise. The columns correspond to different numbers of scales. Notice the remaining low frequency noise in the upper left
corner of the single scale results (first column). As expected, in the multi-scale results the residual noise is much lower. The
results in the first row are computed with DCT denoising using 4× 4 patches and using a recomposition factor frec = 0.9,
while for the second row 8× 8 patches are used with frec = 0.5.

In the solution proposed in [7] the original single scale algorithm is applied on the first level of
the DCT image pyramid, and therefore to all frequencies. But it is also applied to the down-sampled
images. Thus we get two different denoised estimates for the image low frequencies.

Avoiding Gibbs effects amounts to discard the higher frequencies of the denoised down-sampled
image, and to replace them by the corresponding medium frequencies of the denoised upper layer.
This effectively restores the frequency cut-off (and Gibbs effects), which are needed for an artifact-
free recomposition of the pyramid. In short, we only keep the lower frequencies of the coarser layers
(except of course for the highest level), as detailed in Algorithm 4. The recomposition factor parame-
ter frec ∈ (0, 1] controls the fraction of low frequencies at each scale being used in the recomposition.
That is, setting frec = 1 keeps all the frequencies of each level.

The support function ExtractScale(image, l) in Algorithm 4 is used to extract a specific level
from the DCT pyramid. The level 0 is the input image itself, and every other level is half the size
of the previous one. Conversely, the support function MergeCoarse(image, coarse, frec) is used
to join together two different levels. The low frequency coefficients of image get replaced by the
ones from coarse, in a ratio proportional to frec. Finally, MultiScale(input, σnoise, nscales, frec)
performs the whole denoising process, using the previous two functions. Here Denoise(image, σ) is
the denoising algorithm that is used with the framework.

Note that the multi-scale recomposition factor aims at reducing the Gibbs artifacts resulting
from the global DCT subsampling (used for building the pyramid). While the adaptive aggregation
weights reduce the Gibbs artifacts due to the patch-wise DCT denoising. Figure 3 illustrates the
contributions of these modifications in the case of a synthetic image.

295

Nicola Pierazzo, Jean-Michel Morel, and Gabriele Facciolo

1 scale 5 scales, frec = 1.0 5 scales, frec = 0.5
n
o
a
d
a
p
ti
v
e
a
g
g
r.

a
d
a
p
ti
v
e
a
g
g
r.

Figure 3: Gibbs artifacts reduction obtained by the multi-scale recomposition factor and the adaptive aggregation weights.
The images show the results of the oracle DCT denoising with 8× 8 patches applied to a synthetic image (not shown), for
a noise with σ = 70. Images are monochrome but rendered with false colors to improve visualization. The recomposition
factor frec = 1.0 implies that the high frequencies of lower scales are preserved, while frec = 0.5 (optimal value for this
method according to Table 1) uses only the lower frequencies. Note how the horizontal and vertical streaks (ringing artifacts)
visible in the results with frec = 1.0 (central column) are largely attenuated in the right-most column. (This is better seen
in the electronic version.) Note that both the adaptive aggregation and the multiscale recomposition contribute to the
reduction of the ringing artifacts.

4 Experiments

The first task is to fix the parameters of the multiscale framework, namely the fraction frec of low
frequencies at each scale being used in the recomposition and the number of scales involved in the
multiscale framework, both depending on the noise level. We show in Figure 4 the result for four noise
levels, σ = 10, 30, 50, 70, 90. The images display the average PSNR gain obtained with different
parameters of the multi-scale framework applied to the DCT denoising algorithm with different patch
sizes. The integers on the left of each figure (1, 2, . . . , 5) represent the number of scales nscales used
in Algorithm 5. The value at the bottom is the fraction frec of low frequencies at each scale being
used in the recomposition. These figures were obtained from experiments on a choice of noiseless
test images displayed in Figure 5. The optimal parameters vary depending on the patch size and
the noise level. This is particularly true for the results obtained using 16 × 16 patches, which can
be worse than the single scale ones for many configurations of the Multi-Scale Framework (see the
negative PSNR gains in Figure 4) Nevertheless, since the parameters are quite stable across noise
levels we choose to fix them for all noise levels as shown in Table 1.

Table 1: Optimal parameters, found by the experiments shown in Figure 4, for the multiscale DCT denoising with different
patch sizes.

Patch size w Scales s Recomposition factor frec
4× 4 5 0.8
8× 8 5 0.4

16× 16 4 0.2

The PSNR comparative results are given in Table 2. The table includes the results obtained on

296

Multi-Scale DCT Denoising

0.10.20.30.40.50.60.70.80.91.0
1
2
3
4
5

DC
T4

PSNR for = 10

-0.5
-0.2
0
0.2
0.5

0.10.20.30.40.50.60.70.80.91.0
1
2
3
4
5
PSNR for = 30

-2
-0.8
0
0.8
2

0.10.20.30.40.50.60.70.80.91.0
1
2
3
4
5
PSNR for = 50

-3
-1
0
1
3

0.10.20.30.40.50.60.70.80.91.0
1
2
3
4
5
PSNR for = 70

-3
-2
0
2
3

0.10.20.30.40.50.60.70.80.91.0
1
2
3
4
5
PSNR for = 90

-4
-2
0
2
4

0.10.20.30.40.50.60.70.80.91.0
1
2
3
4
5

DC
T8

-0.08
-0.04
0
0.04
0.08

0.10.20.30.40.50.60.70.80.91.0
1
2
3
4
5

-0.4
-0.2
0
0.2
0.4

0.10.20.30.40.50.60.70.80.91.0
1
2
3
4
5

-0.7
-0.4
0
0.4
0.7

0.10.20.30.40.50.60.70.80.91.0
1
2
3
4
5

-1
-0.5
0
0.5
1

0.10.20.30.40.50.60.70.80.91.0
1
2
3
4
5

-1
-0.7
0
0.7
1

0.10.20.30.40.50.60.70.80.91.0
1
2
3
4
5

DC
T1

6

-0.01
-0.005
0
0.005
0.01

0.10.20.30.40.50.60.70.80.91.0
1
2
3
4
5

-0.06
-0.03
0
0.03
0.06

0.10.20.30.40.50.60.70.80.91.0
1
2
3
4
5

-0.1
-0.06
0
0.06
0.1

0.10.20.30.40.50.60.70.80.91.0
1
2
3
4
5

-0.2
-0.1
0
0.1
0.2

0.10.20.30.40.50.60.70.80.91.0
1
2
3
4
5

-0.3
-0.1
0
0.1
0.3

Figure 4: Average PSNR changes (in dB) obtained with different parameters of the Multi-Scale Framework applied to the
DCT denoising algorithm for different noise levels. The integers on the left of each figure (1, 2, . . . , 5) represent the number
of scales nscales used in Algorithm 5. The bottom row of each graphic corresponds to the single-scale algorithm for which
∆PSRN = 0. The value at the bottom is the fraction frec of low frequencies at each scale being used in the recomposition.

Algorithm 5: Multiscale DCT Denoising

1 Function MultiscaleDCT(Y, σ, s, nscales, frec)
input : noisy image Y , noise level σ, patch size s,

number of scales nscales, and multiscale recomposition factor frec
output: denoised image

2 for l← nscales − 1, . . . , 0 do
3 Yl ← ExtractScale(Y, l)
4 Xl ← DCTdenoising2step(Yl, σ/2

l, s)
5 if l == nscales − 1 then combined← Xl

6 else combined←MergeCoarse(Xl, combined, frec)

7 return combined

the training dataset of Figure 5 and on a set of test images with very low noise shown in Figure 6. A
first observation is that the second step based on the oracle given by the first step improves the PSNR
for larger patch sizes. The best result in terms of PSNR is obtained by the multiscale strategy with
8 × 8 patches, but the PSNR difference with respect to the single scale algorithm on large 16 × 16
patches seems almost negligible. Only for small or moderate patch sizes the multiscale strategy
improves substantially the PSNR with respect to the 2-step single-scale DCT denoising. Yet the
visual experiments that can be made with the on-line demo, which are exemplified in Figure 7, tell
us another story. Indeed they show a significant quality gain by using a small (4 × 4) or moderate
(8 × 8) patch size and with the multiscale strategy, particularly on flat or smooth image regions,
where ringing and color spot artifacts can be conspicuous and annoying. In addition, the algorithm
using the large 16 × 16 patches has about the same complexity as NL-Bayes, which is four times
slower than using 8× 8 patches with the multiscale strategy.

Figure 8 shows image details (taken from the set of test images in Figure 6) comparing the results
of single- and multi-scale DCT denoising using 4×4 patches. Our choice of an important noise σ = 40
is made on purpose, as most state of the art algorithms start producing artifacts around this value.
In all these examples, the multi-scale version shows a spectacular improvement over the single-scale
version. One can observe a removal of spurious oscillations (ringing effects) in smooth regions (water,
glass) and a significant gain in detail sharpness.

297

Nicola Pierazzo, Jean-Michel Morel, and Gabriele Facciolo

Figure 5: Images used to find the best parameters of the multi-scale algorithm. The size of each image is about 1.5
Megapixels.

Figure 6: Images with very low noise used to test the multi-scale algorithm. The size of each image is about 1.5 Megapixels.

Table 2: Average PSNR (in dB) of DCT denoising without oracle (1step), with oracle (2step), and with multiscale (algo-
rithms 2, 1, 5), using patches of sizes 4×4, 8×8, and 16×16, with the corresponding optimal parameters. The experiments
correspond to a noise with standard deviation σ = 50.

Train Set (Fig. 5) Test Set (Fig. 6)
Algorithm PSNR (dB) Gain wrt 1step PSNR (dB) Gain wrt 1step

DCT4 1step 26.3 - 26.7 -
DCT4 2step 26.0 -0.3 ± 0.2 26.3 -0.3 ± 0.2
MS DCT4 1step 28.2 +1.9 ± 1.3 28.2 +1.5 ± 0.8
MS DCT4 2step 28.5 +2.2 ± 1.3 28.5 +1.8 ± 0.8
DCT8 1step 27.9 - 28.0 -
DCT8 2step 28.1 +0.2 ± 0.1 28.3 +0.3 ± 0.1
MS DCT8 1step 28.4 +0.5 ± 0.5 28.4 +0.4 ± 0.2
MS DCT8 2step 28.8 +0.9 ± 0.6 28.9 +0.8 ± 0.3
DCT16 1step 28.2 - 28.3 -
DCT16 2step 28.6 +0.3 ± 0.1 28.7 +0.4 ± 0.1
MS DCT16 1step 28.2 -0.0 ± 0.1 28.4 +0.1 ± 0.0
MS DCT16 2step 28.6 +0.4 ± 0.2 28.8 +0.5 ± 0.1

298

Multi-Scale DCT Denoising

original noiseless noisy (σ = 50, 15.0 dB) NL-Bayes (28.11 dB)

DCT4 1step (26.10 dB) DCT4 2step (25.84 dB) MS DCT4 2step (27.75 dB)

DCT8 1step (27.32 dB) DCT8 2step (27.63 dB) MS DCT8 2step (27.99 dB)

DCT16 1step (27.41 dB) DCT16 2step (27.77 dB) MS DCT16 2step (27.73 dB)

Figure 7: Results and PSNR of DCT denoising without oracle (1step), with oracle (2step), and with multiscale (algo-
rithms 2, 1, 5), using patches of sizes 4× 4, 8× 8, and 16× 16. For each patch size the optimal parameters from Table 1
were used.

299

Nicola Pierazzo, Jean-Michel Morel, and Gabriele Facciolo

Original Noisy, σ = 40 DCT Denoising MS DCT Denoising

Original Noisy, σ = 40 DCT Denoising MS DCT Denoising

Original Noisy, σ = 40 DCT Denoising MS DCT Denoising

Original Noisy, σ = 40 DCT Denoising MS DCT Denoising

Original Noisy, σ = 40 DCT Denoising MS DCT Denoising

Figure 8: Results of single- and multi-scale DCT denoising with 8× 8 patches applied to different images. In all cases one
can observe a removal of spurious oscillations in smooth regions (water, glass) and a gain in detail sharpness.

300

Multi-Scale DCT Denoising

5 Implementation Details

DCT transform using FFTW. Unlike the implementation of Yu and Sapiro [20] our imple-
mentation of the DCT denoising only uses a small amount of memory to process the image, as the
extraction and processing of each patch is performed in a single loop, which can also be parallelized.
Moreover, using the FFTW library to compute the DCT transforms further accelerates the process.
The processing of large images is parallelized by splitting them into smaller tiles and processing each
tile in parallel.

Isometric DCT transform. The type-II DCT transform implemented in the FFTW library and
its inverse (type-III) are not isometric, so in order to implement the frequency domain denoising
they must be normalized. The FFTW transforms (identified by the w superindex) compute for
k = 0, · · · , N − 1

DCTw(X)k = 2
N−1∑
j=0

Xj cos

[
π

(
j +

1

2

)
k

N

]
, (5)

IDCTw(Y)k = Y0 + 2
N−1∑
k=1

Yk cos

[
π

(
j +

1

2

)
k

N

]
, (6)

which are unnormalized, hence IDCTw(DCTw(X)) = 2N X.

The isometric transforms Y = DCT(X) andX = IDCT(Y) that satisfy Parseval’s equality
∑

k |Yk|2 =∑
j |Xj|2 are obtained as

Yk = DCT(X)k = αk DCTw(X)k = αk 2
N−1∑
j=0

Xj cos

[
π

(
j +

1

2

)
k

N

]
, (7)

Xj = IDCT(Y)j = IDCTw(β · Y)j = β0 Y0 +
N−1∑
k=1

βk 2Yk cos

[
π

(
j +

1

2

)
k

N

]
, (8)

with αk =

{√
1/(4N), k = 0√
1/(2N), k = 1 . . . , N − 1

and βk =

{√
1/N, k = 0√
1/(2N), k = 1 . . . , N − 1.

(9)

The normalization factors corresponding to the 2D-DCT of a N ×M image are given by

Yk,m =αk α
′
m DCT2Dw(X)k,m, (10)

Xj,l = IDCT2Dw(Ỹ)j,l with Ỹk,m = βk β
′
m Yk,m, (11)

where α′ and β′ are defined as in Equation (9) but for the range [0 . . . ,M].

Color transform. Following [20] the orthogonal color transform implemented by the function
DecorrelateColors is specified by Equation (12)YU

V

 =

1/
√

3 1/
√

3 1/
√

3

1/
√

2 0 −1/
√

2

1/
√

6 −2/
√

6 1/
√

6

RG
B

 . (12)

301

Nicola Pierazzo, Jean-Michel Morel, and Gabriele Facciolo

6 Conclusion

We made an attempt at refreshing an old school algorithm, DCT denoising. Three generic tools
applicable to all denoising algorithms were listed in [11] and claimed to boost any denoising algorithm:
these are 1) use a color transform before denoising, 2) use an oracle step, 3) apply aggregation of
estimates (in other terms make the algorithm translation invariant).

A fourth generic tool, the multiscale operation, was proposed in [7]. The DCT denoising version
proposed here benefits now from the four above listed generic tools. In particular, it extends the
DCT denoising version [20] by complementing it with an oracle step and a multiscale structure. The
improvement thus obtained is spectacular. First the visual aspect in smooth image parts is much
improved by the elimination of most ringing effects. Second the new version increases significantly
the PSNR performance of the algorithm and makes it close in performance to the best state of the
art algorithms. There is still an observable gap of about 1dB with respect to these algorithms. Yet
consider what state of the art algorithms do: instead of denoising individually each patch, as DCT
denoising does, they group patches to take advantage of the so-called image self-similarity, and to
denoise them jointly. This is the principle introduced in [1] and used in BM3D [3] and Non-local
Bayes [10], for example. Thus, we may well deduce that this 1dB increment is attributable to the
involvement of image self-similarities. On the other hand the complexity of patch-based algorithms
is higher by about two orders of magnitude. Thus DCT denoising remains a valid competitor for low
cost implementations.

A Adaptive Aggregation Weights

In adaptive aggregation, overlapping denoised patches are treated as independent estimations of each
pixel. Under that assumption, if the variance of each estimator is known, then it is possible to derive
optimal per-pixel aggregation weights that minimize the variance of the aggregated estimator.

Optimal aggregation weights under independence hypothesis. Let us assume that the es-
timates of overlapping patches (of size s × s pixels) are independent and denote them Xi with
i ∈ [1, . . . , s2]. Let us also assume that the variance σ2

i of each Xi is known. Then for a fixed image
pixel p all the overlapping estimates Xi(p) are independent random variables with known variance
σ2
i . We want to determine the optimal weights αi ≥ 0 for the aggregate estimator

∑
i αiXi(p) such

that its variance is minimum:

arg min∑
αi=1

E

(∑
i

αi(Xi(p)− E[Xi(p)])

)2
 . (13)

In the following we shall denote Xi(p) as Xi. Then, developing we have

arg min∑
αi=1

E

[∑
i

α2
i (Xi − E[Xi])

2

]
+ E

[∑
i 6=j

αiαj (Xi − E[Xi]) (Xj − E[Xj])

]
︸ ︷︷ ︸

=0 independence

= (14)

arg min∑
αi=1

∑
i

α2
i E
[
(Xi − E[Xi])

2]︸ ︷︷ ︸
σ2
i

(15)

Note that since αi appear squared in the above equation, there is no need to enforce the positivity as
we can always choose a non-negative weight. The above constrained optimization problem is solved

302

Multi-Scale DCT Denoising

by Lagrange multipliers

L({α}i, λ) =
∑
i

α2
iσ

2
i − λ(

∑
i

αi − 1) (16)

yielding the condition
2αiσ

2
i = λ, ∀i. (17)

By imposing
∑

i αi = 1 and replacing λ = 2(
∑

i σ
−2
i)−1 in (17) we get to the optimal weights

αi =
σ−2i∑
i σ
−2
i

∀i. (18)

Estimator variance. The variance of a patch estimate can be due to the residual noise after
filtering. Since the filtering is done in the frequency domain this leads to oscillatory effects in the
result. For a patch that has undergone hard thresholding (Algorithm 2) if NPi

denotes the number
of nonzero DCT coefficients in the i-th patch after thresholding, then Parseval’s formula yields an
estimate of the variance due to the noise remaining in the patch as σ2NPi

. Plugging this estimate
in (18) we get the aggregation weights

N−1Pi∑
iN
−1
Pi

(19)

that are used in [3] and in Algorithm 2.
A similar reasoning for the Wiener filtering step (Algorithm 3) yields the aggregation weights

‖ρPi
‖−2∑

i ‖ρPi
‖−2

, (20)

where ρPi
denotes the vector (of length s2) formed with the Wiener coefficients ρP (line 13 of Al-

gorithm 3) of the i-th patch. This justifies the choice of aggregation weights in the second step of
BM3D [3]. Let us note that these aggregation weights based on the Wiener coefficients such as NPi

or
ρPi

favor patches with sparser representations in the DCT domain. Also note that the zero frequency
of the DCT should not be considered in NPi

or ρPi
since it does not add variance to the patch.

Practical aggregation weights. The previous derivations are based on the hypothesis of inde-
pendence between estimates of overlapping patches, which is not true. For this reason in practice
other weight choices could give better results. We experimented with different criteria for setting the
estimator variance (in Equation (18)) for the first and second step of the DCT denoising algorithm.
For the first step we concluded that setting the weights based on NPi

as in (19) already yields the
highest PSNR.

For the second step we observed that excluding the zero-frequency from the coefficient vector ρP
yielded slightly higher PSNR, so we denote this modified vector without the zero-frequency by ρ0.
We also observed that patches with higher energy also tend to introduce more oscillatory effects. For
this reason we also considered computing the aggregation weights using the DCT coefficients of the
denoised patch itself but excluding the zero frequency, which we denote b̂0. In addition, functions
other than the squared `2-norm are also explored.

In Figure 9 we summarize the results of various estimators derived from ρ0 and b̂0, and consider
the choice between `2 and `1-norm, squared or not. For the evaluation we used the DCT8 and MS
DCT8 algorithms with two noise levels σ = 30 and 50. We observe that, in terms of PSNR, the
aggregation weights lead to worse results in the case of the non-multiscale algorithm.

From the graphs in Figure 9 we see that, for all the weighting strategies, at least one quartile
of the tests result in a PSNR loss. These images are usually dominated by textures as illustrated

303

Nicola Pierazzo, Jean-Michel Morel, and Gabriele Facciolo

|| 0||1 || 0||2 || 0||21 || 0||22 ||b0||1 ||b0||2 ||b0||21 ||b0||22
aggregation weight

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

P
S
N

R

DCT8

|| 0||1 || 0||2 || 0||21 || 0||22 ||b0||1 ||b0||2 ||b0||21 ||b0||22
aggregation weight

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

P
S
N

R

MS DCT8

Figure 9: Effect of different aggregation weights on the DCT and MS DCT algorithms (with 8 × 8 patches) with noise
σ = 50 and 30. The PSNR increments (red dots) are computed with respect to the output of the algorithm without
aggregation weights for all the images of the training database (Figure 5). The black boxes extend from the lower to upper
quartile values of the data and the orange line marks the mean.

in Figure 11. Figure 10 illustrates the higher quantile which corresponds to images with larger
objects and flat areas. Visual inspection of the results obtained with different weighting strategies
in Figures 9 and 11 reveal that the aggregation weights indeed reduce the ringing. But, in the end,
there is little difference between the different weighting choices. So for the final algorithm we keep
the aggregation weights based on the optimal weight derivation (20).

Acknowledgment

Work partly founded by BPIFrance and Région Ile de France in the framework of the FUI 18 Plein
Phare project, Office of Naval research grant N00014-17-1-2552, ANR-DGA project ANR-12-ASTR-
0035. The authors would also like to thank the anonymous reviewers for their helpful and constructive
comments that greatly contributed to improving the final version of the paper.

Image Credits

Miguel Colom CC-BY

Jean-Michel Morel CC-BY

Jean-Michel Morel CC-BY

Nicola Pierazzo CC-BY

304

Multi-Scale DCT Denoising

original noisy no weights

||ρ0||−11 (+0.06dB) ||ρ0||−12 (+0.06dB) ||ρ0||−21 (+0.08dB) ||ρ0||−22 (+0.08dB)

||̂b0||−11 (+0.10dB) ||̂b0||−12 (+0.10dB) ||̂b0||−21 (+0.09dB) ||̂b0||−22 (+0.04dB)

Figure 10: Effect of different aggregation weights on the MS DCT algorithm (with 8× 8 patches) with noise σ = 50. This
image illustrates a case in which aggregation weights yield an important PSNR increase, usually for images depicting large
and sharp geometric structures. The PSNR increments are computed with respect to the output of the algorithm without
aggregation weights. Visually all the aggregation weights produce similar results, improving notably with respect to the
non-weighted aggregation. The contrast on these crops has been increased to highlight the ringing artifacts (better seen in
the electronic version).

305

Nicola Pierazzo, Jean-Michel Morel, and Gabriele Facciolo

original noisy no weights

||ρ0||−11 (-0.07dB) ||ρ0||−12 (-0.06dB) ||ρ0||−21 (-0.09dB) ||ρ0||−22 (-0.08dB)

||̂b0||−11 (-0.07dB) ||̂b0||−12 (-0.07dB) ||̂b0||−21 (-0.11dB) ||̂b0||−22 (-0.12dB)

Figure 11: Effect of different aggregation weights on the MS DCT algorithm (with 8× 8 patches) with noise σ = 50. This
image illustrates a case in which aggregation weighting results in PSNR loss, usually in images dominated by textures. The
PSNR increments are computed with respect to the output of the algorithm without aggregation weights. For this image all
the aggregation weights produce similar results, which are also barely distinguishable from the non-weighted version. The
contrast on these crops has been increased to highlight the artifacts (better seen in the electronic version).

306

Multi-Scale DCT Denoising

References

[1] A. Buades, B. Coll, and J-M. Morel, The staircasing effect in neighborhood filters and
its solution, IEEE Transactions on Image Processing, 15 (2006), pp. 1499–1505. https://doi.
org/10.1109/TIP.2006.871137.

[2] H.C. Burger and S. Harmeling, Improving denoising algorithms via a multi-scale meta-
procedure, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 6835 LNCS, 2011, pp. 206–215. https:

//doi.org/10.1007/978-3-642-23123-0_21.

[3] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, Image Denoising by Sparse 3-D
Transform-Domain Collaborative Filtering, IEEE Transactions on Image Processing, 16 (2007),
pp. 2080–2095. https://doi.org/10.1109/TIP.2007.901238.

[4] D.L. Donoho and J.M. Johnstone, Ideal spatial adaptation by wavelet shrinkage,
Biometrika, 81 (1994), pp. 425–455. https://doi.org/10.1093/biomet/81.3.425.

[5] S. Durand and J. Froment, Artifact free signal denoising with wavelets, in IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing, 2001. Proceedings.(ICASSP’01),
vol. 6, IEEE, 2001, pp. 3685–3688.

[6] F. Estrada, D. Fleet, and A. Jepson, Stochastic Image Denoising, Procedings of the
British Machine Vision Conference 2009, (2009), pp. 117.1–117.11. https://doi.org/10.5244/
C.23.117.

[7] G. Facciolo, N. Pierazzo, and J-M. Morel, Conservative Scale Recomposition for Multi-
scale Denoising (The Devil is in the High Frequency Detail), SIAM Journal on Imaging Sciences,
10 (2017), pp. 1603–1626. https://doi.org/10.1137/17M1111826.

[8] D. Gnanadurai and V. Sadasivam, Image De-Noising Using Double Density Wavelet
Transform Based Adaptive Thresholding Technique, International Journal of Wavelets, Mul-
tiresolution and Information Processing, 03 (2005), pp. 141–152. https://doi.org/10.1142/

S0219691305000701.

[9] J.. Huang and D. Mumford, Statistics of natural images and models, Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), (1999), pp. 541–547. https:
//doi.org/10.1109/CVPR.1999.786990.

[10] M. Lebrun, A. Buades, and J-M. Morel, Implementation of the Non-Local Bayes (NL-
Bayes) Image Denoising Algorithm, Ipol, 3 (2013), pp. 1–42. https://doi.org/10.5201/ipol.
2013.16.

[11] M. Lebrun, M. Colom, A. Buades, and J-M. Morel, Secrets of image denoising cuisine,
Acta Numerica, 21 (2012), pp. 475–576. https://doi.org/10.1017/S0962492912000062.

[12] A.B. Lee, D. Mumford, and J. Huang, Occlusion models for natural images: A statistical
study of a scale-invariant dead leaves model, International Journal of Computer Vision, 41
(2001), pp. 35–59. https://doi.org/10.1023/A:1011109015675.

[13] H-Q. Li, S-Q. Wang, and C-Z. Deng, New Image Denoising Method Based Wavelet and
Curvelet Transform, WASE International Conference on Information Engineering, 1 (2009).
https://doi.org/10.1109/ICIE.2009.228.

307

https://doi.org/10.1109/TIP.2006.871137
https://doi.org/10.1109/TIP.2006.871137
https://doi.org/10.1007/978-3-642-23123-0_21
https://doi.org/10.1007/978-3-642-23123-0_21
https://doi.org/10.1109/TIP.2007.901238
https://doi.org/10.1093/biomet/81.3.425
https://doi.org/10.5244/C.23.117
https://doi.org/10.5244/C.23.117
https://doi.org/10.1137/17M1111826
https://doi.org/10.1142/S0219691305000701
https://doi.org/10.1142/S0219691305000701
https://doi.org/10.1109/CVPR.1999.786990
https://doi.org/10.1109/CVPR.1999.786990
https://doi.org/10.5201/ipol.2013.16
https://doi.org/10.5201/ipol.2013.16
https://doi.org/10.1017/S0962492912000062
https://doi.org/10.1023/A:1011109015675
https://doi.org/10.1109/ICIE.2009.228

Nicola Pierazzo, Jean-Michel Morel, and Gabriele Facciolo

[14] R. Oktem, L. Yarovslavsky, and K. Egiazarian, Signal and image denoising in trans-
form domain and wavelet shrinkage: A comparative study, in 9th European Signal Processing
Conference (EUSIPCO 1998), Sept 1998, pp. 1–4.

[15] V. Papyan and M. Elad, Multi-scale patch-based image restoration, IEEE Transactions on
Image Processing, 25 (2016), pp. 249–261. https://doi.org/10.1109/TIP.2015.2499698.

[16] J. Portilla, V. Strela, M.J. Wainwright, and E.P. Simoncelli, Image denoising using
scale mixtures of Gaussians in the wavelet domain, IEEE Transactions on Image Processing, 12
(2003), pp. 1338–1351. https://doi.org/10.1109/TIP.2003.818640.

[17] U. Rajashekar and E.P. Simoncelli, Multiscale Denoising of Photographic Images, in
The Essential Guide to Image Processing, 2009, pp. 241–261. https://doi.org/10.1016/

B978-0-12-374457-9.00011-1.

[18] J. Sulam, B. Ophir, and M. Elad, Image denoising through multi-scale learnt dictionaries,
in IEEE International Conference on Image Processing (ICIP), 2014, pp. 808–812. https:

//doi.org/10.1109/ICIP.2014.7025162.

[19] L.P. Yaroslavsky, K.O. Egiazarian, and J.T. Astola, Transform domain image restora-
tion methods: review, comparison, and interpretation, in Photonics West 2001-Electronic Imag-
ing, International Society for Optics and Photonics, 2001, pp. 155–169.

[20] G. Yu and G. Sapiro, DCT image denoising: a simple and effective image denoising algo-
rithm, Image Processing On Line, (2011). https://doi.org/10.5201/ipol.2011.ys-dct.

[21] D. Zoran and Y. Weiss, From learning models of natural image patches to whole image
restoration, in 2011 International Conference on Computer Vision, IEEE, 2011, pp. 479–486.

[22] , Natural images, Gaussian mixtures and dead leaves, in Advances in Neural Information
Processing Systems, 2012, pp. 1736–1744.

308

https://doi.org/10.1109/TIP.2015.2499698
https://doi.org/10.1109/TIP.2003.818640
https://doi.org/10.1016/B978-0-12-374457-9.00011-1
https://doi.org/10.1016/B978-0-12-374457-9.00011-1
https://doi.org/10.1109/ICIP.2014.7025162
https://doi.org/10.1109/ICIP.2014.7025162
https://doi.org/10.5201/ipol.2011.ys-dct

	Introduction
	Oracle DCT Denoising
	The Multi-scale Framework
	Experiments
	Implementation Details
	Conclusion
	Adaptive Aggregation Weights

