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7 Sadjad University of Technology, Mashhad, Iran

Abstract

In phase retrieval, the goal is to recover a complex signal from the magnitude of its linear
measurements. While many well-known algorithms guarantee deterministic recovery of the un-
known signal using i.i.d. random measurement matrices, they suffer serious convergence issues
for some ill-conditioned measurement matrices. As an example, this happens in optical imagers
using binary intensity-only spatial light modulators to shape the input wavefront. The problem
of ill-conditioned measurement matrices has also been a topic of interest for compressed sensing
researchers during the past decade. In this paper, using recent advances in generic compressed
sensing, we propose a new phase retrieval algorithm that well-behaves for a large class of mea-
surement matrices, including Gaussian and Bernoulli binary i.i.d. random matrices, using both
sparse and dense input signals. This algorithm is also robust to the strong noise levels found in
some imaging applications.

Source Code

The C source code of the algorithm described in this article is accessible at the IPOL web page
of the article1.
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1 Introduction

This paper considers the fundamental problem of recovering a complex signal, x, from the magnitude
of its linear projections. This problem is called phase retrieval (PR). Indeed, in many imaging setups,
detectors (for instance, CCD cameras) are fundamentally intensity-only. Getting access to phase
measurements may not be possible, or may involve a significantly more complex physical setup, e.g.
with interferometry. Some of these applications include X-ray crystallography [12], X-ray diffraction
imaging [4], optical imagers [26, 14] and astronomical imaging [9]. PR problems in the presence of
additive noise may be formulated [8] as

y = |Hx + w|2, (1)

where y ∈ RM
+ is the known (measured) output, H is the M ×N known complex projection matrix,

x ∈ CN is the unknown input, and w ∈ CM is the “noise” term – upon which some statistical
assumptions are made. Classic phase retrieval techniques look for solutions of Equation (1), with
H ∈ CM×N . Many methods have been reported in phase retrieval, where this measurement matrix H
is the discrete Fourier transform, or a random matrix with i.i.d. Gaussian coefficients. These methods
include, but are not limited to, convex relaxation algorithms such as phaseLift [7] and phaseCut [25],
error reduction algorithms such as Gerchberg and Saxton [11] and Fienup [10] and several variants
of them [17, 18] and spectral recovery methods [1].

Here we are interested in the more challenging problem of recovering x ∈ CN using more general
structures of measurement matrices. Possibly these matrices can be ill-conditioned, such as for
instance with random Bernoulli binary projection matrices H ∈ {0, 1}M×N . This is the situation
we face in real imaging applications using binary intensity spatial light modulators (SLM) such as
digital micromirror devices (DMD) [8]. Using these ill-conditioned matrices one is often faced with
convergence issues with most of the aforementioned algorithms.

Signal recovery using ill-conditioned projection matrices is also a challenging problem in other
signal processing fields, e.g. compressed sensing (CS). In compressed sensing an unknown signal x
is reconstructed by finding solutions to an underdetermined (M � N) linear system, y = Hx + w.
Recently, in compressed sensing, there have been attempts to reconstruct a sparse signal using
generic matrices [24, 5, 16]. Some of the most efficient methods, introduced in the next section,
combine a Bayesian approach with a well-known compressed sensing algorithm, the approximate
message passing algorithm (AMP) [15]. In the context of CS, AMP is an iterative algorithm that
originates from loopy belief propagation, although with a reduced computational complexity. AMP
has been shown to be effective with a minimal number of measurements, while being efficient in
terms of computational complexity. In particular, one of its extensions, called swept AMP (SwAMP),
demonstrates good convergence properties over ill-conditioned noisy matrices [16].

Generalized AMP (GAMP) is an extension of AMP for arbitrary output channels, i.e. y =
q(Hx + w). Following the Bayesian method, GAMP has been extended to the phase retrieval
problem, in an algorithm called phase retrieval generalized AMP (prGAMP) [22]. By utilizing
a magnitude-only output channel over y prGAMP reaches near-optimal results to the classic PR
problem, with a smaller number of measurements. Another instance of Bayesian-based PR approach
is the phase retrieval variational Bayes expectation maximization (prVBEM) [8] approach, based on a
mean-field variational Bayes technique. prVBEM was originally developed for the task of calibrating
the transmission matrix of a strongly scattering material, using binary measurements [8]. Although
prVBEM has both small complexity and robustness to strong noise, its application has only been
demonstrated in the context of light focusing [20].

In this paper we mix the idea of SwAMP with phase retrieval strategies, in order to solve Equa-
tion (1) over a wide class of measurement matrices, such as random i.i.d. Bernoulli binary matrices.
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This new algorithm is called prSAMP, which was briefly introduced in [20]. In the context of com-
pressive imaging though scattering material [14], we here show that prSAMP can effectively deal
with the phase-less recovery problem (1) using intensity-only SLM. This yields to these two different
problems in the calibration and recovery steps: 1) complex input and binary measurement matrix, i.e.
x ∈ CN and H ∈ {0, 1}M×N , and 2) binary input and complex measurement matrix, i.e. x ∈ {0, 1}N
and H ∈ CM×N . Obviously, the special case of input and matrix both being complex, as addressed
by most PR algorithms, is also solvable by the algorithm.

2 Notation

In this section a brief summary of the notations that is used throughout the paper is provided. As
usual, scalars, vectors and matrices are written in small regular-face, small bold-face and capital
bold-face letters, respectively. The ith entry of a vector x is denoted by x[i] and the ith column of
matrix H by h[i]. The × and � operators stand for vector and element-wise multiplication. We also
use (.)◦2 and � for element-wise square power and division. In algorithms, a function p is represented
as @p, that is defined either in text or in another algorithm. Additionally, in assignment statements,
when the left hand side is a vector, it implicitly denotes parallel computation of all vector entries.
Otherwise, in sequential calculations we have distinct entries assignments.

3 prSAMP Algorithm

In this paper we propose a new phase retrieval method that is a mixture of two recent CS and PR
ideas, in addition to some modifications in order to work for 2D image recovery. The first part is
swept approximate message passing algorithm (SwAMP) [16], which is one of the many variants of
approximate message passing (AMP) [15] for compressed sensing.

AMP

In the context of CS, AMP is an iterative algorithm that reconstructs a sparse signal x from a set
of under-determined linear noisy measurements, y = Hx + w, where w ∼ N (0, σ2). Figure 1 shows
the statistical approach in the AMP method [13], where the algorithm starts from initial posterior
estimates of signal average and variance, x0

a and x0
v. It then follows three main steps iteratively:

1) calculate output mean and variance variables, ω and v; 2) calculate input maximum likelihood
terms, r and s, which are also called AMP Gaussian fields; and 3) use AMP denoisers to update
input signal mean and variance, xa and xv. The AMP denoisers carry prior knowledge of the input
unknown signal. Later in this paper we define two denoisers for binary and Gaussian random signals.

These steps of the main iteration loop of AMP can be formulated as follows,

vt = |H|2xt−1
v , (2)

ωt = Hxt−1
a − (y− ωt−1)� vt � (vt−1 + σ2)−1, (3)

st = [|H∗|2(vt + σ2)−1]−1, (4)

rt = xta + st �H∗[(y− ωt)� (vt + σ2)−1], (5)

[xta, x
t
v] = pin(rt, st), (6)

where � and (·)−1 respectively denote element-wise product and inversion, (·)t is a time index, (·)∗ is
the conjugate-transpose, and pin denotes the AMP denoiser based on the desired signal prior, which
returns both the mean and variance estimate of the unknown signal.
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Figure 1: Approximate message passing algorithm using a Bayesian statistical approach.

AMP has been shown to converge to the optimal solution, while working with i.i.d. Gaussian mea-
surement matrices [2]. However, it does not necessarily converge for generic possibly ill-conditioned
measurement matrices [6]. This is where the idea of SwAMP brings up.

SwAMP

SwAMP is a simple change in step 2 of AMP. Instead of standard parallel calculation, a sequential,
or swept, random update of AMP maximum likelihood variables is suggested which shows signif-
icant stabilization of the AMP loop while working with different non i.i.d. and/or ill-conditioned
measurement matrices [16].

To extend the AMP framework to our PR problem of Equation (1), we first use the generalized
AMP (GAMP) [21] which is an extension of AMP for arbitrary output channels, i.e. y = q(Hx+w).
This adds an output function, @pout, which is dependent on the stochastic description of q(.). Normal
CS problems follow an additive white Gaussian noise (AWGN) channel as output prior. For the
PR case, we follow what is proposed in a GAMP-based phase retrieval algorithm, which is called
prGAMP [22] and formulates @pout as q(|z|) = |z| and q(|z|) = |z|+ w.

prSAMP

Algorithm 1 describes the phase retrieval version of SwAMP, denoted as prSAMP, which combines
the swept update ordering and the phase retrieval output channel in the AMP iteration. Beside
the intensity measurements, y, and the measurement matrix, H, the algorithm has a few other
input parameters. These include the two stopping parameters, maximum number of iterations, tmax,
and the precision threshold, ε. The algorithm stops if it reaches tmax iterations or if the difference
between two successive estimations is less than ε, ‖xta−xt−1

a ‖22 < ε. The other parameter is v0. During
prSAMP iterations, variance terms may become negative or very small. This prevents the algorithm
to improve its current estimation which happens often during the first iterations. In these cases the
bad variance values replace by v0. There are also two damping parameters, α and α2d. Damping is
necessary in case of ill-conditioned matrices. We use the first damp factor for the s and r variables
in step 2 and the second for 2D signals. If the input signal is actually the vectorized version of a 2D
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image, after step 3 we add one step to take into account the 2D relation between xa elements. Here,
we employ a simple damping with respect to ot which is the local median in iteration t, but more
sophisticated 2D priors may be established for better smoothness in the recovered signal. Finally, we
have input and output prior functions and their associated parameters, which are defined in separate
algorithms. In this paper we are interested in two different scenarios: 1) binary projection matrix
and complex input signal; and 2) complex projection matrix and binary input. The two associated
input priors are explained in Algorithms 3 and 4.

In the main loop, the algorithm starts by estimating the output average and variance terms, ωt

and vt. Then the output prior is applied over these variables to calculate the gt and dgt mean
and variance terms. In the case of phase retrieval, these are defined distinctly in Algorithm 2,
but in normal compressed sensing with additive white Gaussian noise (AWGN) the calculation is
straightforward. The AWGN output prior indicates (y−ω)/(v + ∆) and −1//(v + ∆) for variables
g and dg, respectively.

In the second step, we have the sequential swept iteration for maximum likelihood terms, s
and r. It has been claimed in the SwAMP original paper that random computation of involved
variables results in better convergence, therefore we also follow the same method. After each index
i is calculated from the input signal, the updates should apply over the output channel variables.
Finally, the estimate of the unknown input signal is returned as the xta variable.

Considering a circular Gaussian additive white noise in measurements, |y| follows a Rician prob-
ability density function which is the basis for a PR output channel derivation in the prGAMP
paper [22]. We also follow the same formulation. Algorithm 2 explains the PR output prior. Here,
@I0(.) and @I1(.) functions are respectively 0th and 1st-order modified Bessel functions of first kind.

As we mentioned earlier, in this paper we are interested in solving the PR problem in two cases:
1) a calibration step with x ∈ CN and H ∈ {0, 1}M×N and 2) a recovery step with x ∈ {0, 1}N
and H ∈ CM×N . Therefore, a Gaussian input prior for the calibration phase is a reasonable choice,
as described in Algorithm 3. Furthermore, a possible binary prior is given in Algorithm 4 for the
reconstruction step.

4 Implementation

To reconstruct the complex signal x (up to a global phase) using its intensity-only projections, the
size M of the measurement vector should be at least 2N – it has been established recently that, in a
generic case, M ≤ 4N measurements are required [3] to recover a unique x. This means that prSAMP
follows a computational complexity of O(N3) which is a bottleneck for real-time imaging. Due to
the sequential nature of the swept loop we can not solve this scaling issue directly but there are
two possibilities to alleviate it: 1) in the calibration phase, since different rows of the measurement
matrix are inherently independent, the algorithm is fully parallel. In the supplementary files, two
extensions of prSAMP using OMP and MPI parallel tools, are provided; 2) the other enhancement
option is an idea we call block-based phase retrieval [19]. This block-based PR method starts by
splitting the M ×N input problem into K, mi × ni sub-problems, where

∑K−1
i=0 ni = N , mi = dαnie

and α = M/N . The K sub-problems are then solved in parallel. Finally, all the partial results are
merged with a few extra global measurements, by applying a low-dimension global phase tuning step.
In this way the order of the prSAMP algorithm breaks down into O(N3/K2). This comes at a price
of being able to design the measurement matrix in a general block-diagonal manner which is the case
in any physical systems where one can probe the whole object by parts. Block-based prSAMP is
extended in the supplementary files using Matlab.
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Algorithm 1: prSAMP

input : Measurements y ∈ RM
+ , projection matrix H ∈ {0, 1}M×N or H ∈ CM×N , initial

unknown input signal mean x0
a ∈ CN or x0

a ∈ {0, 1}N , initial input signal variance
x0
v ∈ RN

+ , maximum number of iterations tmax, precision threshold ε, negative variance
substitute vo, damping factor α, 2D signal damping factor α2d, input prior function
@pin, output prior function @pout, input prior parameters θin, output prior
parameters θout

output: Final input signal mean xta, final input signal variance xtv
N ← length(x0

a)
g0 ← 0, s← 0 r← 0
for t = 1 to tmax do

v(t,0) = H◦2 × xt−1
v Output variance estimate

ω(t,0) = H× xt−1
a − v(t,0) � g(t−1,N) Output average estimate

[g(t,0),dg(t,0)] = @pout(y,v
(t,0),ω(t,0),θout, vo) Output channel prior

τ ← Random-Permutation([1, . . . , N ]) Random permutation to calculate AMP Gaussian fields

for k = 1 to N do
i = τ [k]

s[i] = αs[i] + (1− α)(−dg(t,k−1)T × h[i]◦2)−1 Maximum likelihood of signal variance

if s[i] < 0 then
s[i]← vo Correct negative variance values

r[i] = αr[i] + (1− α)(xt−1
a [i] + s[i](g(t,k−1)T × h[i]) Maximum likelihood of signal average

[xta[i], x
t
v[i]] = @pin(r[i], s[i],θin, vo) Calculate input prior function

Apply update of i-th input element over output channel variables.

v(t,k) = v(t,k−1) + h[i]◦2 � (xtv[i]− xt−1
v [i])

ω(t,k) = h[i]� (xta[i]− xt−1
a [i])− (v(t,k) − v(t,k−1))� g(t,0)

[g(t,k),dg(t,k)] = @pout(y,v
(t,k),ω(t,k),θout, vo)

if α2d > 0 then
xta = α2dx

t
a + (1− α2d)o

t Damping of 2D signal according to the local median.

if |xta − xt−1
a |/N < ε then

break Convergence control

return xta, x
t
v

5 Parameter Study

There are two groups of parameters: first, the main prSAMP parameters and second, priors parame-
ters. Depending on prior knowledge of input and output signals, x and y, we may require to provide
parameters like, noise variance in measurements, ∆, an estimation of input sparsity level, ρ, or input
mean and variance, m and σ, in case of Gaussian input prior. Beside these obvious prior-dependent
parameters, there are a few main parameters that play an important role in the algorithm conver-
gence. The initial estimation of the unknown input signal, x0, and the damping factor, α, are the
two more important ones.

As it is well-known the compressive phase retrieval problem generally suffers from convergence
to local minima [24]. Empirical studies show that the situation is worse while working with ill-
conditioned non-Gaussian i.i.d. random matrices [16]. In case of Gaussian input signals, like what we
have in the calibration phase, using a pseudo random generator to initialize x0

a seems a reasonable
choice. Afterwards if the algorithm diverges, a complete restart with a new random initial vector is
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Algorithm 2: Phase retrieval output prior (@pout)

input : y,v,ω,θ, vo
output: g,dg
∆← θ[0] An initial estimation of variance of noise in output channel

ε← θ[1] A parameter that controls small values of average and variance terms

ω[ω < ε]← ε Prevent appearance of very large values in g variable.

φ = 2y � |ω| � (∆ + v)
R0 = @I1(φ)�@I0(φ)
R0[φ = 0]← 1
g = ω � (∆ + v)� (y � |ω| �R0 − 1) Estimate of average output signal

ṽ = y◦2 � (1−R◦2
0 )� (1 + ∆� v)◦2 + ∆.v � (∆ + v)

ṽ[ṽ < ε]← v0
dg = 1� v � (ṽ � v − 1) Estimate of variance of output channel

return g,dg

Algorithm 3: Gaussian input prior (@pin)

input : r, s,θ, vo
output: xa, xv
ρ← θ[0], m← θ[1],v ← θ[2], ε← θ[3] Gaussian input parameters: input sparsity level, ρ, average

and variance estimations, m and v, and ε to control small values of variance terms.

σ = v.s/(s+ v)
M = (v.r + s.m)/(s+ v)
β = |m|2/v − |M |2/σ
z = (1− ρ).eβ/2 + ρ.s/(s+ v)
if z < ε then

z ← v0 Prevent appearance of very large values in subsequent variables.

xa = ρ.s.M/(z.(s+ v)) Estimate of input unknown signal

xv = 0.5.ρ.s/(s+ v).(2s+ |M |2)/z − 0.5|xa|2 Estimate of input variance

if xv < ε or xv =∞ then
xv ← vo

return xa, xv

Algorithm 4: Binary input prior (@pin)

input : r, s,θ, vo
output: xa, xv
ρ← θ[0], ε← θ[1] Binary input parameters: input sparsity level, ρ, and ε to control small values of

variance terms.

z = (1− ρ) exp(−|r|2/(2s)) + ρ exp(−|1− r|2/(2s))
if z < ε then

z ← v0 Prevent appearance of very large values in subsequent variables.

xa = z−1ρ exp(−|1− r|2/(2s)) Estimate of input unknown signal

xv = xa − x2a Estimate of input variance

if xv < ε then
xv ← vo

return xa, xv
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necessary. Multiple restarts was first suggested in the prGAMP paper [22]. The solution that yields
the lowest normalized residual, NR = ‖y − |Ax̂|‖22/‖y‖22, is selected as the algorithm output. In
case of other types of input signals, a good initial point would guarantee the algorithm convergence.
For example, in the recovery phase of our optical imager, we employ a low resolution (LR) version
of the input image. This LR signal may be gathered from negative outputs of the DMD array or
numerically estimated based on a specific image database. For signals of length N = 214, a LR
version of 26 is a good starting point. Depending on the initial point confidence, the x0

v variance
vector is selected from the (0, 1] interval. In the calibration and recovery steps we empirically set x0

v

values to 0.5 and 0.1, respectively.

The other important parameter is the damping factor, α. Damping slows down the convergence
rate of the algorithm, and hence prevents being stuck into a possibly wrong local minima, while
still keeping information from previous iterations. Here, α is a scalar from the [0, 1) interval where
0 indicates no damping situation. In case of ill-conditioned measurement matrices we need more
damping. In our experiments we use 0.9 and 0.2 values for the calibration and recovery steps,
respectively.

In case of 2D input signals we have another damping parameter, α2d. In this paper as a 2D prior
we used a simple damping step which mixes the current solution, x[i]ta, with a representative of its
neighborhood, o[i]t. The representative is the median over a 5× 5 block centered at element i. This
may improve by taking into account learned priors like the RBM prior as it is proposed in [23]. The
more sophisticated priors usually come with the price of an offline learning step. Hence, since our
simple damping prior provides satisfactory results, as it is shown in the next section, we left further
improvements to the interested reader.

The other parameters include: maximum number of iterations, tmax, precision factor, ε, and
negative variance factor, v0. The number of iterations is usually a factor of the number of nonzero
elements in the input unknown signal, ρN . In the calibration step, with a full rank input vector,
we set tmax to N/4 empirically. But for small N , it is necessary to let the algorithm pass the initial
oscillations. With small N , we may use tmax ← N .

The precision factor, ε, is another measure of convergence which ensures a minimum difference
between two successive solutions. A difference less than ε indicates that the algorithm is iterating
around a local minimum and, hence, there is no progress.

Finally, a negative variance factor, v0, is employed in case of resulting a negative variance term.
There are various variance variables in the prSAMP algorithm like: s and ω variables in the main
algorithm and ṽ, z and xv variables in priors. These terms have to be positive and not extremely
small. Therefore, in case of negative or very small variance terms, v0 is used as a replacement value.
This parameter should be sufficiently large and in the range of x0v because negative variance indicates
a bad situation in the prSAMP iteration and we should set the variance to a large value to let the
algorithm converge to another mean point.

6 Experimental Results

In this section we investigate the application of using the prSAMP algorithm to solve the phase
retrieval problem (1) in two different situations; first, H ∈ {0, 1}M×N , and x ∈ CN and second,
H ∈ CM×N and x ∈ {0, 1}N . Using a binary transition matrix to recover the complex input signal,
Figure 2 shows the phase transition plot for N = 256 and SNR equal to 30 dB (∆ = 10−3). The
error is measured in terms of normalized mean square error (NMSE) between original and recovered
signals after compensating the global phase shift. Each point in the plot is the lowest NMSE obtained
by prSAMP in 50 distinct trials. As a result of the ill-conditioned binary measurement matrix the
damping factor, α, is set to 0.9. A phase transition curve is generated by applying a NMSE threshold
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of 0.2. The plot confirms the recently established rate of M ≥ 4N to reconstruct a dense signal x in
phase retrieval regime. The effect of increasing the number of measurements on the recovered signal
is shown in Figure 3, using the same settings as in the previous experiment and a random input.
Here, we have K = N .

For ρ = 1, the reconstruction performance of prSAMP is studied at four different noise levels
(SNR equal to 30, 20, 10 and 5 dB) and 0.2 ≤ δ ≤ 4.0 in Figure 4. According to this experiment,
in case of strong noisy measurements after δ = 1 adding more samples does not improve the results
significantly.

Figure 2: prSAMP phase transition plot for solving the phase retrieval problem using a binary measurement matrix. Here,
N = 256 and SNR of 30 dB are considered in all the experiments. The performance criterion is NMSE which is selected
out of 50 independent trials. The red dashed line represents a transition from failure to success by applying a threshold of
0.2.

In the second experiment, prSAMP is applied to the problem of reconstructing binary random
input signals. Figure 5 shows the corresponding phase transition plot. Except α, which is set to 0.2,
the other parameters are similar to the first experiment. The recovery error is measured in terms of
best correlation out of 50 runs. Here, the number of necessary measurements for complete recovery
is decreased significantly at different sparsity levels probably due to the binary input prior. This
fact also has been shown in Figure 6 which plots a random binary signal with K = 50 and its two
reconstructions at M = 200 and M = 250. Comparing to Figure 3, a complete recovery is obtained,
using significantly less measurements (M = N).

7 Computational Complexity

Finally, it would be interesting to have a brief discussion on the computational complexity of the
prSAMP algorithm. Even though, as our experiments show, the algorithm performs well for ill-
conditioned matrices and strong noise situations, it does not scale well as the size of the input signal
increases. In Algorithm 1 the number of iterations, tmax, and measurements, M , grow linearly with
the input size N . Therefore, prSAMP has a cubic O(N3) computational complexity. In addition
to this, the amount of data that the algorithm has to handle at least scales with O(N2). This is
challenging with large inputs. In [19] a block-based version of prSAMP has been proposed that can
reduce the computational cost and also the memory requirements of the original prSAMP by several
orders of magnitude.
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Figure 3: An instance signal x ∈ CN (ρ = 1) and its four prSAMP reconstructions at δ = {1, 2, 3 and 4} using a binary
measurement matrix (different offsets are applied for presentation purposes). The real part is plotted and the imaginary
part has similar behavior. Complete recovery happens at δ = 4.

Figure 4: The effect of noise on prSAMP performance, as a function of the measurement sampling factor δ = M/N , using
a binary measurement matrix.

8 Conclusion

In this study, a new phase retrieval algorithm has been proposed, called phase retrieval swept AMP
(prSAMP). prSWAMP is here numerically evaluated in two situations inspired by real imaging setups.
In particular, prSWAMP solves the challenging problem of estimating a complex input signal using
binary input patterns. In reverse, we also show that prSAMP accurately estimates a binary unknown
signal using a complex transmission matrix.
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Figure 5: prSAMP phase transition plot for solving the phase retrieval problem, with a binary input, using a complex
measurement matrix. Here, N = 256 and SNR of 30 dB are considered in all the experiments. The performance criterion is
the correlation, which is selected as the best out of 50 independent trials. The red dashed line represents a transition from
failure to success by applying a threshold of 0.8.

Figure 6: An instance signal x ∈ {0, 1}N (K = 50) and its two prSAMP reconstructions at M = {200 and 250} after
applying a threshold of 0.5.
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