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Abstract

We address the problem of mitigating the visually displeasing effects of cradling in X-ray images
of panel paintings. The proposed algorithm consists of three stages. In the first stage the
location of the cradling is detected semi-automatically and the grayscale inconsistency, caused
by the thickness of the cradling, is adjusted. In a second stage we use a blind source separation
method to decompose the X-ray image into a so-called cartoon part and a texture part, where
the latter contains mostly the wood grain from both the panel as well as the cradling. In the
third and final stage the algorithm tries to learn the distinction between the texture patterns
that originate from the cradling and those from other components such as the panel and/or the
painting. The goal of the proposed research is to improve the readability of X-ray images of
paintings for art experts.

Source Code

The source code and an online demonstration of the algorithm described in this article are
accessible at the IPOL web page of this article1.
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Figure 1: Left: Schematic illustrating the lattice of crossed perpendicular wooden members: members parallel to the
panel wood grain are glued first; transverse members are slotted in. Right: Cradle member cross section profiles: regular
rectangular profile (top) and irregular “T-shape” profile (bottom).

1 Introduction

Until about 1950 cradling was common practice for the restoration and preservation of paintings on
wooden panel. This conservation procedure was often conducted on old master paintings from the
12th till the 17th century, when paintings on wood, and particularly on oak panel, were common. The
procedure consists of permanently fixing hardwood slats or lattices to the back of a thinned panel,
usually in the same direction as the wood grain of the panel, whilst the secondary perpendicular
slats remain loose allowing for some degree of movement in the panel, which may warp, subject to
changing levels in humidity. Figure 1 illustrates how cradles are attached to a panel painting together
with two cross section profiles that are commonly used for the cradle members.

X-ray radiographs provide conservators and art historians with information related to the three-
dimensional structure of a painting, not just its surface. The highly penetrating power of the X-rays
provides information about structural aspects of the paintings and therefore make this investigative
technique an important aid for modern-day conservators and art historians. However, due to their
thickness, the cradling appears as a bright and highly visible grid, obscuring the viewing of the
painting by art experts. Figure 2 depicts a 16th century painting of Bernard van Orley, currently in
the collection of the North Carolina Museum of Art, entitled The Pentecost where the cradling is
very prominent in the X-ray image of the painting. Hence we propose a semi-automatic procedure
to remove these highly unwanted artifacts from X-ray images that is able to make the distinction
between textures originating from different sources and subsequently isolate and remove the texture
caused by the cradled parts, while leaving the texture from other components within the painting
untouched. In practice, experienced conservators still do this manually, using Adobe PhotoshopTM,
which is a time-consuming process, applied to only a limited number of paintings among the large
museum collections. The algorithm presented here is an extension of our original cradle removal
algorithm presented in [8].

Section 2 provides a detailed explanation of the different steps of our algorithm. Experimental
results on a variety of paintings on panel with different cradling are contained in Section 3.

1https://doi.org/10.5201/ipol.2017.174
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Figure 2: Van Orley’s The Pentecost (1525). Left: visual photograph. Right: X-ray image clearly showing the cradle
structure.

2 Cradle Removal Algorithm

The cradle removal consists of two parts: a correction of the pixel intensity due to the thickness
of the cradle member and a texture removal part that clears the X-ray from the wood grain of the
cradle. The pipeline of this two-step removal process is presented in Figure 3 and Algorithm 1.

Figure 3: Cradle removal algorithm flowchart.

2.1 Cradle detection and intensity adjustment

This step attempts to correct the pixel intensities of cradle members, the most prominent artifact in
X-rays of cradled paintings on panel. In order to achieve this, an accurate localization of the cradle
segments is necessary, followed by a sequential removal of horizontal, vertical and cross sections.

2.1.1 Detection

The detection process is broken down into two steps. First, a coarse estimation is made of the cradle
piece positions. In a second step, this estimation is refined by identifying the tilting/angle with
the horizontal or vertical for each cradle segment. Since the detection of vertical and horizontal
cradle pieces is identical, the following paragraphs will only focus on the detection of vertical cradle
members. The same operations are applied for the detection of horizontal cradle pieces but on a
rotated image by 90◦.
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Algorithm 1: Overview of the cradle removal algorithm

Data: Grayscale X-ray image I with cradle
Result: Grayscale X-ray image without cradle

// Step 1: Cradle detection and intensity adjustment

Mask ← cradleDetection(I) ; // Coarse estimation of cradle pieces - Section 2.1

Mask ← refineCradleLocation(I,Mask) ; // Refinement of cradle position -

Section 2.1

for all horizontal/vertical segments ∈Mask do
(Ip, Ic)← samplePixelPairs(I, Mask) ; // Section 2.1.1

(p1, p2)← fitMultiplicativeModel(Ip, Ic) ; // Solution to Equation (3)
if outliers(p1, p2) ; // If the regression is mis-fitted

then
p1 ← fitAdditiveModel(Ip, Ic) ; // Solution to Equation (4)
p2 ← 1;

end
I ← intensityAdjusment(I, Mask, p1, p2);

end
for all cross sections ∈Mask do

(p1, p2)← interpolateFromJointSegments(I, Mask) ; // Solution to Equation (6)
I ← intensityAdjusment(I, Mask, p1, p2);
I ← handleOverCorrection(I, Mask);

end

// Step 2: Wood Grain separation

(I text, Icart)←MCA(I) ; // MCA algorithm (Algorithm 2)

for all cradle pieces ∈Mask do
(ycradle, ynon−cradle)← sampleShearletCoefficients();
(Γ,Λ)← gibbsSampling(ycradle, ynon−cradle) ; // Train the sparse dictionaries,

equations (11), (12)
I ← woodGrainSeparation(I, Λ, Γ) ; // Separation based on learnt dictionaries

end
return I;

Coarse estimation: For the detection of vertical cradle members, a horizontal gradient operation
is performed using a convolution operator with the kernel [−1,−1, .. − 1, 1, . . . , 1, 1]T of size 40,
determined heuristically. The width of the cradle pieces in our tested X-ray images range from 100
to 2000 pixels, and a kernel size of 40 pixels proved to be sufficient in all cases. The resulting pixel
responses are summed column-wise. As cradle members always have higher pixel intensity values
than the rest of the X-ray image, the cradle pieces can efficiently be localized by identifying minima-
maxima pairs from the sum of pixel responses. The resulting signal is smoothened with a moving
average filter with size s = round(max(#rows,#cols)/230), but restricted to a maximum of 10 and a
minimum of 3. The smoothed signal is then normalized by extracting the mean of the signal. Local
maxima/minima are considered to be valid candidates if they are sufficiently large in magnitude
relative to the global maximum/minimum. In our implementation, we set the threshold to half the
magnitude of the highest intensity peak. Candidate minima/maxima peaks are then paired up to
determine cradle member locations. Let P = {p1, p2, . . . , pN} be the sorted list of maxima/minima
peak column indices. For every minimum pi in P , we pair it with the first maximum pj≥i in the
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list, with the resulting (pi, pj) pairs marking the location of the vertical cradle members. Special
attention needs to be given to cases where a vertical cradle member is located on the very edge of the
image, resulting in a missing minimum or maximum. Such cases arise when the leftmost candidate
point corresponds to a maximum (i.e. the cradle piece is on the left edge of the X-ray and p1 is a
maxima peak) or the rightmost point corresponds to a minimum (i.e. the cradle piece is on the right
edge of the X-ray and pN is a minima peak). In such cases, we insert an auxiliary peak p0 = 0 as
an additional minimum or pN+1 = #cols as a new maximum, effectively marking the image border
as the starting/finishing position of these special cradle pieces. An example of the whole process is
given in Figure 4

Figure 4: Coarse estimation of cradle segment positions using a horizontal gradient operation. Left: original X-ray. Middle:
result after vertical edge detection. Right: plot of edge detection coefficients, summed along the columns and smoothed.
Points in red mark the start/end of cradle pieces and gray marking their location.

In highly contrasted or noisy X-ray images, the automatic cradle member detection described
above can return more or less cradle members than the actual amount. To address this issue, an
alternate mode of detection was implemented. Namely, the method allows a user to specify the
number of cradle members prior to detection. In this case, instead of fixing the threshold for peaks
at half the global maximum/minimum (as it is done for the fully automatic method), minima/maxima
pairs are selected iteratively based on their likeliness of marking the location of cradle members. The
‘cradle likeliness’ of a minimum/maximum pair is evaluated as the sum of absolute values of the
peak magnitudes. At each iteration, the most likely minimum/maximum pair is found, added to the
list of cradle pieces and removed from the list of peaks (corresponding to potential cradle member
locations). This process is repeated until the desired number of peaks is reached. This method
results in a more robust cradle member detection. However, in some rare cases it can occur that the
actual cradle member positions are still erroneously detected.

Refinement step: The cradle member positions are refined further by identifying the tilting angle
of the cradle members, as they are rarely perfectly horizontal or vertical. The most likely rotation
angle can be determined by using the Radon transform on the gradient image. The algorithm
calculates the energy of the gradient image along lines of different angles, where the energy is defined
as the sum of the gradient filter responses along the lines at a given angle. Practically, we limit the
set of angles to a [−5, 5] degree range with increments of 0.1 degrees, corresponding to a total of 101
possible angles. The tilting angle of the cradle edge is then considered to be the one with the highest
energy.

Segmentation and masking: In practice, the location of each cradle piece is stored in a mask,
where each pixel (x, y) is labeled depending on whether it is part of a vertical or horizontal cradle
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member or both. This provides a straightforward segmentation of cradle pieces into horizontal,
vertical and cross-sections, as shown in the results in Figure 5.

Figure 5: Left: mask marking cradle piece locations. Right: horizontal (blue), vertical (red) and cross-section (yellow)
cradle segments, as derived by the algorithm.

2.1.2 Intensity adjustment

Once all the pixels that are part of cradle members are identified, their grayscale value can be
adjusted. To this end, we define a model that is inspired by the physical properties of X-rays. The
attenuation of X-rays as they pass through a material with absorption d can be expressed as

I = I0 exp(−λd), (1)

where I0 is the initial X-ray beam intensity and λ is the decay factor of the X-ray. The absorption d
depends on the thickness of the wood and the paint material that the X-ray penetrates through, thus
it is spatially dependent on the cradle location and the paint composition. Since an X-ray image is
brighter in places with higher attenuation, we assume that the X-ray image I is obtained by a linear
transformation of I as I = AI + C, where C is the saturation pixel value and A < 0 is a negative
factor.

Suppose (Ic, Ip) to be a pair of pixel intensities associated with the same painting content, with
and without cradle. It follows from Equation (1) that

C − Ic = (C − Ip)e−λdc = (C − Ip)C0(dc), (2)

where dc is the cradle absorption and C0(dc) = e−λdc < 1 is the attenuation function. Rewriting
Equation (2), we have the following linear model of Ic and Ip

Ip =
1

C0

(Ic − C) + C =
1

C0

Ic + C

(
1− 1

C0

)
= p1Ic + p2. (3)

In short, as derived from the physical properties of gamma radiation propagation through matter,
the relationship between a cradled pixel and its de-cradled version is linear and should be unique to
all pixels where the thickness of the cradle is the same.

By sampling cradled and non-cradled pixels around the edges of each cradle piece, we are aiming
for an accurate estimation of parameters (p1, p2) to apply the right correction for each cradle segment.
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By calculating the regression parameters independently for each segment, as opposed to calculating
a single model globally, we are obtaining better visual results. A single, global model would assume
the thickness of the wood to be the same for all cradle pieces, which is rarely the case. A global
model is also more vulnerable to artifacts in the X-ray, such as nails, metallic parts, or just in
general overexposed/underexposed parts of the X-ray that are not part of the painting or cradle, but
introduce errors to the regression. By fitting a separate set of regression parameters for each cradle
segment, a better model can be fitted for each of these segments and all possible errors are kept local.

Note that most of the time, a misfitted regression model can be detected and partially corrected
for. From Equation (3), we expect the constant term p2 to be negative (cradled pixels have higher
intensity than non-cradled ones) and that the multiplicative term p1 is within a reasonable range.
Based on experimental evaluation, we found that the correct values for p1 lie within the range of
0.9− 1.2. When this is not the case we are confident that (p1, p2) were wrongly fitted and we revert
to a more simple additive model of the form

Ip = Ic + p, (4)

where p, similarly to the multiplicative model, is derived from the cradled/non-cradled sample pairs.
While there is usually a sufficient number of sample pairs to accurately estimate the regression

parameters for horizontal and vertical segments, the cross section segments are much more challenging
due to the varying thickness of the wood and the low number of non-cradled samples in those
particular areas. Hence, cross section segments are not fitted with their own local model, but
instead, their correction is interpolated from neighboring horizontal/vertical segments, which will be
explained in more detail later on in this section.

Figure 6: Left: cradle segment with out-of-focus (blurry) edges, marking the location for sampling cradled (blue) and
non-cradled (orange) pixels. Middle: plot of paired cradle (blue)/non-cradle (orange) samples from the left edge of the
cradle segment. Right: plot of paired cradle(blue)/non-cradle (orange) samples from the right edge of the cradle segment.

Correcting horizontal/vertical segments: Cradle/non-cradle pixel pairs are sampled on both
sides of the edge of cradle pieces as the proximity of these pixels makes it more likely that they
represent the same paint material. On the other hand, in order to correctly estimate grayscale
correction, sample pairs need to be sufficiently far from the edges of the cradle as the wood tends
to be thinner there and the X-ray might suffer from parallax. This also means that edge sections
need to be corrected separately from the middle regions of a cradle. Sample pairs are taken at a
distance from the cradle edge, corresponding to 10% of the cradle width, in order to avoid sampling
from badly exposed edge regions of the cradle. We compute the median of the samples in 10%
cradle width segments, as this operation is less sensitive to outliers than the sample mean. Figure 6
shows an example of the sampling location and the obtained sample pairs. We use the cradle/non-
cradle sample pairs obtained this way to approximate the multiplicative model regression parameters
(p1, p2) from Equation (3), or, if this is not possible, we revert back to a simplified additive model as
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given by Equation (4). For the example in Figure 6, both the multiplicative and additive models are
very similar (Figure 7), both of them being prone to the noise in the dataset, resulting in the blurry
artifact after removal.

Figure 7: Fitting of the model. Left: cradled/non-cradled sample pair cloud from Figure 6, with multiplicative model (red)
and additive model (green). Middle: original X-ray patch before correction. Right: corrected patch using multiplicative
model.

Correcting segment edges: As discussed earlier, the corrective models described in Equation (3)
and Equation (4) no longer hold for pixels that are part of the edges of the cradle segment and these
areas need to be treated separately. To solve this problem, the algorithm performs an estimation of
the edge profile of the cradle segment. Pixels along the cradle edges within an area of ±10% of the
cradle width are summed along the tilting direction of the segment, normalized by the number of
pixels and the resulting intensity distribution, as presented in Figure 8, is then used to correct pixels
around the edges. Let Iinner be the intensity of the innermost pixels of the edge intensity distribution,
and Iouter the intensity of the outermost pixels. We can use the derived corrective model for Iinner, as
those pixels are sufficiently far from the edges, and no correction is necessary for the outermost pixel
intensity Iouter, as it contains no cradle. For all other pixel positions, we use a linear interpolation of
the form

Ĩedge =
Iedge − Iouter
Iinner − Iouter

(p1Iinner + p2), (5)

where Iedge is the normalized pixel intensity as given by the edge profile and Ĩedge is the corrected
value.

Note that this approach does not correct based on the individual pixel intensities around the
edges, but rather on the general shape of the cradle edge. We found this approach to be less prone
to outliers and less likely to introduce artifacts.

Figure 8: Edge profile estimation on a cradle segment. Left: left edge profile. Middle: X-ray of cradle segment, with zones
used for edge profile estimation marked in orange. Right: right edge profile.
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Correcting cross section: As mentioned earlier, sampling cradled/non-cradled pixels for cross-
sections is difficult. Instead of fitting their own regression models, we will use the multiplicative
models of the joint horizontal/vertical cradle segments instead. For each pixel of the cross section,
we correct its intensity by a weighted average of the neighboring cradle segment models, with the
weights determined by the distance from the segments. More specifically, let (p1i , p

2
i ) be the regression

parameters for the multiplicative model of some neighboring segment i and I(x, y) be the intensity
of a pixel at position (x, y) in the cross-section, then the corrected intensity Ĩ(x, y) is defined as

Ĩ(x, y) =

∑
iwi(x, y)(p1i I(x, y) + p2i )∑

iwi(x, y)
(6)

where wi(x, y) = 1/(1 + di(x, y)) with di(x, y) being the `1-norm distance between point (x, y) and
the closest pixel to it in segment i.

Handling over-corrections: Sometimes there is a small gap between the sliding and fixed cradle
members. These gaps manifest themselves in X-ray images as thin elongated areas at the cross-
sections with lower intensities relative to other cradled parts. When correcting these pixels assuming
the same thickness as the rest of the cradle, a black segment is introduced, resulting in an unwanted
artifact, as shown in Figure 9.

Figure 9: Overcorrection at cross-segments. Left: original X-ray at cross-section. Middle: over-corrected cross-section
artifact. Right: cross-section after artifact removal.

To correct this artifact, we work on rectangular sub-selections covering the horizontal/vertical
cradle segment intersections. First, we verify if the algorithm introduced any artifact by summing up
pixel intensities along the intersection, confirming if there are any significant outliers/darker regions.
We use the median pixel intensity times 0.7 as our threshold value to determine if there are any black
segments and if so, how wide they are.

If a black segment is detected, the correction proceeds as follows. Given the selected segment
containing the artifact (Figure 10a-left) and the removed cradle component for that segment (Fig-
ure 10a-right), the locations of the dark pixels due to overcompensation are determined. First, the
segment is separated into a low-pass (Figure 10b-left) and high-pass component (Figure 10b-right)
by using a top-hat transform. Frequency components, parallel to the dark edge, are zeroed out in
the high-pass component and the difference between this filtered image and the original high-pass
component (Figure 10c-left) is then used as input to a watershed algorithm to accurately mark the
location of the overcompensated pixels (Figure 10c-right). The watershed algorithm starts from the
lowest intensity location of the difference image (Figure 10c-left) and marks all neighboring pixels
with intensities below 0. The final step calculates the optimal multiplicative factor for the cradle
component of the marked pixels. The thickness of the wood varies greatly from X-ray to X-ray
for these marked regions, hence the need for an adaptive correction factor that does not simply re-
place the dark pixels with the original X-ray pixel intensities, but a partial correction instead. The
resulting image and cradle component is shown in Figure 10d.
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Figure 10: a) Left: image segment with dark edge from over-correction. Right: cradle component over the same segment.
b) Left: low-pass component of image segment. Right: high-pass component of image segment. c) Left: difference image
of high-pass and filtered high-pass. Right: position marking location of pixels to be corrected. d) Left: image segment after
correction. Right: cradle component after correction.

2.2 Wood grain removal

While the first part of the algorithm addresses removing the grayscale difference caused by the cradle
members, the texture caused by the wood-grain of the cradle is still present in the corrected image,
as visible in Figure 9. These artifacts are removed in the second step of the algorithm that consists
of two parts: a Morphological Component Analysis (MCA) [3] part separates the wood grain-like
texture component from the rest of the image and a Sparse Bayesian Model based learning part
further separates the texture into the wood grain of the cradle and the wood grain of the painting.

2.2.1 Morphological Component Analysis

Morphological Component Analysis (MCA) is a method that allows to separate features contained
in an image provided that these features present different morphological properties. The algorithm
decomposes an image into a texture and piecewise smooth (cartoon) part, as shown in Figure 11.
MCA was successfully applied previously for the removal of wood grain texture to improve crack
detection in X-ray images [5].

The wood grain texture in the cradled regions of X-rays is typically long, thin and periodic, a
morphological characteristic different from the basic geometric shapes of the painting and the highly
curved brush stroke details. Given this consideration, we choose two dictionaries such that one is
optimal for sparse encoding of wood grain texture and the other is optimal for sparse encoding of
painting content. For the wood grain components, we choose a redundant curvelet transform [7] while
the painting image is represented using the dual-tree complex wavelet transform (DT-CWT) [6].

Given our choice for the dictionaries, the MCA algorithm solves the minimization problem for-
mally defined as

(c∗1, c
∗
2) = argminc1,c2‖c1‖1 + ‖c2‖1 (7)

s.t. I = I text + Icart = Dcurveletc1 +DDT−CWT c2, (8)
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Figure 11: MCA decomposition on the X-ray from Figure 4. Left: cartoon part. Right: texture part.

where the coefficients (c∗1, c
∗
2) are the solutions to the constrained `1-minimization which promotes

the sparse encoding of the image I using the two selected dictionaries Dcurvelet and DDT−CWT and
its decomposition into the texture and image parts I text and Icart, with 7 levels of decomposition for
the curvelet transform and 6 levels of decomposition for the DT-CWT.

Our implementation of the MCA algorithm uses an adaptive thresholding strategy, as proposed
in [3]. The algorithm is applied on blocks of 512 × 512 pixels, with overlaps of 54 pixels between
blocks. This is necessary since performing curvelet and dual-tree wavelet transformations on the
full resolution images would be intractable due to memory restrictions. To avoid artifacts around
the borders of the image, first a reflective border extension is applied to the image resulting from
the first stage of the cradle removal. Let I be an image block of this image and I text and Icart

the initially empty texture and cartoon parts of this block. The residual image Ires is defined as
Ires = I − I text − Icart. In each iteration of the MCA algorithm the texture and cartoon parts are
updated as

I texti+1 = D−1curvelet(Ftext(Dcurvelet(I
text
i + Iresi ), δi)) (9)

Icarti+1 = D−1DT−CWT (Fcart(DDT−CWT (Icarti + Iresi ), δi)), (10)

whereDDT−CWT andDcurvelet are the decomposition operators for the specified dictionaries, D−1DT−CWT

and D−1curvelet are the reconstruction operators and Ftext(, δ) and Fcart(, δ) are thresholding opera-
tors with threshold δ for the texture and cartoon parts. Note that decomposition coefficients from
DDT−CWT and Dcurvelet must return normalized values for both dictionaries in order to compare
coefficients across different dictionaries. This is achieved by dividing all decomposition coefficients
by their respective sub-band energy after decomposing a common reference image (i.e. a 2D Dirac
pulse) with the two dictionaries.

The filtering thresholding operators Ftext(, δ) and Fcart(, δ) simply zero out all coefficients of norm
smaller than δ. This forces morphological features that are strongly represented in one dictionary
to be picked up by that respective dictionary, achieving the desired separation. Low frequency
components have a similarly good sparse representation under any of the two dictionaries, resulting
in these components being picked up by both dictionaries. Since we know that the wood grain is
only present in the higher frequencies, we will force our implementation of MCA to automatically
assign low-pass components to the cartoon part, by having the operator Ftext(, λ) to also zero out
low–pass coefficients of the texture dictionary.
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The threshold value δ, initially set to δ0 = min(max(Dcurvelet(I),max(DDT−CWT (I)), is updated
at each iteration according to an exponential decay formula δi+1 = δi∗λ, with λ = (δ0/10−7)1/(1−100) a
constant determined by the maximum number of iterations (100 in our case), and the target threshold
to be reached by the 100th iteration (10−7 in our case). The algorithm stops when the maximum
number of 100 iterations is reached or the residual error is below 5 ∗ 10−4. The pseudo code of the
MCA algorithm is given in Algorithm 2.

The resulting block-based MCA decomposition results are then put together into a single global
texture and cartoon part, as shown in Figure 11. In order to avoid edge artifacts and ensure smooth
transitions between blocks, the first half of the pixels in the overlapping regions are copied from the
first block while the second half originate from the second block.

Algorithm 2: MCA algorithm pseudo code

Data: Result image I from Stage 1
Result: I text and Icart images resulting from separation

δ ← min(max(Dcurvelet(I)),max(DDT−CWT (I)) ; // Initial threshold for coefficients

λ← (δ/10−7)1/(1−100); // Step size for threshold

I text ← 0; Icart ← 0;
Ires ← I;
err ← ‖I‖; // Initial residual error set to image norm

for iter=1:100 do
Ctext ← Dcurvelet(I

text + Ires) ; // Normalized curvelet decomposition

foreach c ∈ Ctext do
if ‖c‖ < δ OR c is low-pass ; // Set all low-pass and below threshold λ
then

c← 0 ; // coefficients to 0

end

end
I text ← D−1curvelet(C

text) ; // Reconstruct using filtered coefficients

Ccart ← DDT−CWT (Icart + Ires) ; // Normalized DT-CWT decomposition

foreach c ∈ Ccart do
if ‖c‖ < δ ; // Set all coefficients below threshold λ to 0

then
c← 0;

end

end
Icart ← D−1DT−CWT (Ccart); // Reconstruct using filtered coefficients

δ ← δ ∗ λ; // Update threshold

Ires ← I − Icart − I text;
err ← ‖Ires‖; // Update residual error

if err < 5 ∗ 10−4 ; // Check stopping criteria

then
return I text, Icart;

end

end

return I text, Icart;
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2.2.2 Bayesian Sparse Factor Model

The texture component resulting from the MCA decomposition contains a mixture of high-frequency,
elongated objects, including wood grain, brush strokes, cracks and other elongated painting elements.
In order to isolate the wood grain of the cradle, we employ a Bayesian sparse factor model that is
able to learn a sparse representation of the wood grain only component and effectively separate it
from the texture component.

We make the following assumptions for our theoretical framework:

1. The wood grain texture within cradle segments is homogenous;

2. The panel content is similar in the cradled and non-cradled regions;

3. The wood grain texture and the panel content are sufficiently different to be separable;

Assumption 1 holds reasonably well in practice, with the same piece of cradle typically having
identical wood grain characteristics. As the wood grain might vary from cradle segment to cradle
segment, the homogeneity assumption is restricted to within cradle segments only. Assumption 2
arises naturally as the panel painting content is independent of the cradling at the back of the panel.
Finally, Assumption 3 is necessary in order to be able to separate wood grain from the rest of the
painting content and is generally satisfied in all cases where the cradle wood grain can distinctively
be identified visually.

We tackle this source separation problem by using a Bayesian dictionary learning approach.
Assuming a sparse representation of both the wood grain of the panel and the cradle is possible,
our aim is to learn the sparsifying dictionaries for both components. To make such an approach
viable, we need an efficient sparse representation of the wood grain signal, for which we will be
using the shearlet decomposition. The shearlet decomposition, conceptually related to wavelets,
generates a multi-resolution representation of an image. For an L level shearlet decomposition,
the linear shearlet transform operator Dshearlet = [Ψ0,Ψ1, . . . ,ΨL] is a combination of L curvelet
transform operators. For all resolution levels l, the shearlet transform decomposes the image into
θl equiangular directions so that Ψl = [Ψ0

l ,Ψ
1
l , . . . ,Ψ

θl
l , ], where each Ψk

l ∈ Rn×n is generated by a
direction k spatial convolutional operator at level l.

The wood grain texture of the cradle has a preferred direction, dictated by the wood fiber. All
wood grain is contained in the horizontal and vertical direction of the high-frequency shearlet coeffi-
cients. Hence, we will train our separation algorithm on the reduced set of coefficients, corresponding
to horizontal/vertical directions, as determined by the cone of influence of the shearlet transform.
For a shearlet decomposition with 5 levels, we have {1, 4, 8, 16, 32} directions per decomposition
level, out of which we select the {0, 1, 3, 7, 15} coefficients per resolution level for horizontal/vertical
directions, resulting the total of 26 coefficients, forming the feature set for the separation algorithm.

The model: Given the previously described set of coefficients yi for cradled or non-cradled pixel
samples, our sparse factor model is formalized as

yi = Ληi + εi, if yi is not cradled; (11)

yi = ycri + yncri = Γξi + Ληi + εi, if yi is cradled; (12)

where Λ and Γ are the sparse dictionaries of the painting and cradle parts, ηi and ξi are the linear
combinations of these dictionary elements for the signal yi, εi is the error term. Under this model,
the wood grain of cradled samples is given by ycri = Γξi and painting content by yncri = Ληi. In order
to guarantee that the algorithm only separates the wood grain, the error term εi is considered to also
be part of the painting part.

35
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Proposed Bayesian approach: Most of the literature assume existing bases or dictionaries such
as wavelets, shearlets and DCT, but research has demonstrated the significance of learning a (usually)
overcomplete dictionary matched to the signals of interest [1, 4], while simultaneously encouraging a
sparse representation. These methods have demonstrated state-of-the-art performance in applications
such as denoising, super resolution and inpainting. However, many of these algorithms portray
restrictions, e.g. the noise variance is often assumed to be known and the size of the dictionary is
usually set beforehand. To mitigate the aforementioned limitations, dictionary learning was posed
as a factor-analysis problem where the factor loadings correspond to the dictionary atoms.

For the generic form of a latent factor model, as expressed in Equation (11), the dictionary matrix
Λ is called the factor matrix and the elements in the coefficient vector ηi are called the factor scores.
Equation (12) can also be viewed as a mixed factor model, with an extra factor matrix Γ. In the
Bayesian approach, prior distributions need to be specified for model parameters to enforce model
constraints. In particular, we use the sparse Bayesian infinite factor model formulation introduced
in [2] for Equation (11), and adapt the formulation for Equation (12). Once Λ and Γ are learned
based on cradled and non-cradled data pairs, η, ζ and ε can be estimated by post inference for
Equation (12) on any mixed cradle signal y.

Following [2], we set up the priors for Equation (11) as

∀i ∈ Dp, p ∈ Z+, k ∈ {1, . . . , K}
ηi,p ∼ N(0, 1)

εi,k ∼ N(0, σ2
k), σ

−2
k ∼ Ga(aσ, bσ)

λk,p | φ(1)
k,p, τ

(1)
p ∼ N(0, (φ

(1)
k,pτ

(1)
p )−1)), φ

(1)
k,p ∼ Ga(ν/2, ν/2)

τ (1)p =

p∏
l=1

δ
(1)
l , δ

(1)
1 ∼ Ga(a1, 1), δ

(1)
l ∼ Ga(a2, l), l ≥ 2.

Suppose the signal yi is normalized to zero mean, unit variance. Then we may assume its factor
ηi and its noise term εi are zero-mean Gaussian random vectors. An inverse gamma prior is used as
the conjugate prior for the noise variance. A multiplicative gamma process shrinkage prior is used
for the entries of Λ, such that Λ may have infinite columns with finite Frobenius norm [2]. The
`2-norm of columns of Λ decreases and the speed of decay is controlled by the global shrinkage prior
τ
(1)
p as long as a2 > 2 and the size of each entry is further controlled by the local shrinkage prior φ

(1)
k,p.

In practice, an infinite matrix Λ is approximated by a finite matrix by omitting columns with an
`2-norm. An advantage of such an “infinite” factor model is that we don’t need to know the number
of factors, or equivalently the size of the dictionary, a priori.

We put the same priors on Λ, ηi and εi in Equation (12) and another set of multiplicative gamma

process shrinkage priors on φ
(2)
k,p, τ

(2)
p , δ

(2)
l for Γ and a normal distribution prior for ξi,

ξi,p ∼ N(κp, 1), κp ∼ N(0, 1).

Gibbs sampler: To fit the Bayesian models in equations (11) and (12), we adopt the Gibbs
sampler proposed in [2] to compute the posterior, cycling through model parameters within each
iteration. The factor matrices Λ and Γ are kept finite in the algorithm by using an adaptive strategy
for truncation of columns, presented in [2]. Let Λk∗1

,Γk∗2 be the truncation of Λ,Γ to k∗1, k
∗
2 columns

respectively, then the Gibbs sampler update steps occur in the following order:

1. π(Λk∗1
| Yp,−), the posterior of the panel specific dictionary given the panel-only pixels Yp

and the other model parameters (represented by the shorthand notation −); Let λTj be the
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jth row of Λk∗1
, D

(1)
j = diag{φ(1)

j,1τ
(1)
1 , φ

(1)
j,2τ

(1)
2 , · · · , φ(1)

j,k∗1
τ
(1)
k∗1
}−1, (y

(j)
p )T be the jth row of Yp and

ηp = [ηi]i∈Dp , then the conditional conjugate posterior of each row λTj is

π(λTj | Yp,−) ∼ Nk∗1

{
Σ(λTj )−1ηp σ

−2
j y(j)p , Σ(λTj )−1

}
,

where Σ(λTj ) = (D
(1)
j )−1 + σ−2j ηpη

T
p .

2. π(Γk∗2 | Yc,−), the posterior of the cradle specific dictionary; Let γj, D
(2)
j , y

(j)
c , ηc and ξ be

defined in the same way as above, then the conditional conjugate posterior of γj is

π(γj | Yc,−) ∼ Nk∗2

{
Σ(γj)

−1ξ σ−2j (y(j)c − ηTc λj), Σ(γj)
−1
}
,

where Σ(γj) = (D
(2)
j )−1 + σ−2j ξξT .

3. The posterior of the inverse of the noise variance,

π(σ−2k | Y,−) ∼ Ga
{
aσ +

Np +Nc

2
, bσ +

1

2
1TNp

(y(k)p − ηTp λk) +
1

2
1TNc

(y(k)c − ηTc λk − ξTc γk)
}
.

4. The posterior of the factor scores,

π(ηi | Yp,−) ∼ Nk∗1

{
Σ(η)−1ΛT

k∗1
Σ−1yi,Σ(η)−1

}
, for Yp non-cradled

π(ηj | Yc,−) ∼ Nk∗1

{
Σ(η)−1ΛT

k∗1
Σ−1(yj − Γξj),Σ(η)−1

}
, for Yc cradled

π(ξj | Yc,−) ∼ Nk∗2

{
Σ(ξ)−1(ΓTk∗2Σ−1(yj − Ληj) + κ),Σ(ξ)−1

}
, for Yc cradled

where Σ = diag(σ2
1, σ

2
2, . . . , σ

2
K), Σ(η) = Ik∗1 + ΛT

k∗1
Σ−1Λk∗1

and Σ(ξ) = Ik∗2 + ΓTk∗2Σ−1Γk∗2 .

5. The posterior of the hyperparameters π(φ
(1)
k,p | −), π(φ

(2)
k,p | −), π(δ

(1)
l | −), π(δ

(2)
l | −) are defined

as in [2].

6. The posterior of κ, the mean of [ξj]j∈Dc ,

π(κj | −) ∼ N((1 +Nc)
−11TNc

ξ(j), (1 +Nc)
−1),

where (ξ(j))T is the jth row of ξ.

Implementation details: Similarly to the MCA algorithm, the shearlet transform is applied to the
texture image I text on blocks of 512×512, with overlaps of 80 pixels. I text still contains the reflective
border of 80 pixels from the MCA part to guarantee that we are not introducing edge artifacts around
the border of the image. Wood grain separation is performed one-by-one on each cradle segment due
to memory constraints, as storing all feature vectors for all cradled and non-cradled pixels would be
unfeasible on current hardware.

For each cradle segment, the overlapping blocks containing pixels of the target segment are
identified, creating the set Y s = [ys0, y

s
1, . . . , y

s
Ns

] of shearlet coefficient feature vectors ysi for cradle
segment s. We will note by Y 0 the set of painting coefficient feature vectors, given by all pixels in
the X-ray that do not belong to any cradle segments. The feature vectors Y i are then normalized to
zero mean, unit variance with respect to Y 0. That is, first Y 0 is normalized, for each dimension of
the shearlet coefficients feature vector, followed by the normalization of the cradle segment feature
sets Y s using the mean and variance of set Y 0.
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Depending on the resolution of the images, the number of cradled and non-cradled feature vectors
can still be so large that the Bayesian dictionary learning on the full dataset would be intractable.
This is solved by only running the dictionary learning on a small, randomly selected subset of feature
vectors for both cradled and non-cradled segments. We use a reduced set Ȳ i of 5000 randomly
selected features for the Gibbs sampler. The Gibbs sampler runs for 2400 iterations, with the first
2000 iterations being dropped as part of the burn-in (mixing) phase of the algorithm and the last
400 iteration parameters being saved out as the solutions for Equation (11) and Equation (12). For
each iteration i of these last 400 iterations, the algorithm returns the values for {Λi,Γi, κi, ξi, ηi}.
We consider each of these solutions equally good approximations of the ‘true’ solution, with the best
estimator given by averaging out these solutions during post-inference.

Once the cradle segment model is trained, post-inference takes place. To improve computation
speed, the separation model is only applied to a sub-sampled set of coefficients. These shearlet
coefficients are obtained by sub-sampling only every 9th row/column, in a grid like fashion, resulting
in a subset of the full set of coefficients that is about 80 times smaller. For all shearlet coefficients
of this subset Y s = [ys0, y

s
1, . . . , y

s
Ns

] and segment s, a separation of each coefficient vector ysi is
determined for all 400 solutions, as specified by Equation (12)

ysi,k = ycri,k + yncri,k = Γξk + Ληk + εk, (13)

where 1 ≤ k ≤ 400 is the iteration number and ycri,k and yncri,k are the cradle and non-cradle components
of coefficient vector ysi,k at iteration k. The separation coefficients

ȳcri,k =
400∑
k=1

ycri,k
400

ȳncri,k =
400∑
k=1

yncri,k

400
(14)

are given by averaging over all cradled and non-cradled separations.
Once the post-inference has been applied to the sub-sampled set, a KD-tree is built out of the

sub-sampled coefficients in order to make fast nearest neighbor searches possible. Then for all the
coefficients to be separated, the separation is given by a weighted average of its 5 nearest neighbors
from the sub-sampled set and their separation coefficients. The distance metric used is the standard
Euclidean distance over the 26 dimensional coefficient space.

In the end, all separation coefficients are de-normalized and the shearlet reconstruction of these
coefficients, corresponding to the undesired wood grain of the cradle, is subtracted from the image.

3 Experimental Results

This section contains a number of representative examples of panel paintings on which the cradling
was removed.

4 Conclusions

We proposed an automated algorithm to remove the grayscale inconsistency as well as the texture,
caused by the presence of wooden cradling structures in the X-ray images of paintings. We tested our
digital cradle removal algorithm against a wide range of X-ray images of paintings which we believe
are representative for many use cases.

Focus was on robustness and stability, with our solution handling and adapting to even high noise
levels, artifacts or different cradle deformations, giving perceptually acceptable results and improving
the readability of cradled X-ray images significantly.
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Figure 12: Ghent Altarpiece, panel of the Singing Angels (J. and H. van Eyck). Left: original. Right: decradled.

Figure 13: Saint Jerome in His Study (unknown). Left: original. Right: decradled.
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Gábor Fodor, Bruno Cornelis, Rujie Yin, Ann Dooms, Ingrid Daubechies

Figure 14: The Flight into Egypt (Master of the Female Half-Lengths). Left: original. Right: decradled.

Figure 15: St. Barbara and St. Valentine with Caspar von Laubenberg and His Sons (Master of theLaubenberg Altarpiece).
Left: original. Right: decradled.

40



Cradle Removal in X-Ray Images of Panel Paintings

Figure 16: The Dentist (Jan Miense Molenaer). Left: original. Right: decradled.

In general, the proposed algorithm, using either additive or multiplicative model, provides good
or better results compared to the ones obtained manually by art conservators using Photoshop. The
algorithm not only performs better than best current practices, but it also improves on it by removing
the texture component that is caused by the cradling, which has never been done before. It has the
significant added advantage that in many cases it can be applied fully automatically to the X-ray
image while the manual removal of the cradling structure is a tedious and painstaking process.
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