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Abstract

In this work, we present an implementation of discontinuity-preserving strategies in TV-L1

optical flow methods. These are based on exponential functions that mitigate the regularization
at image edges, which usually provide precise flow boundaries. Nevertheless, if the smoothing is
not well controlled, it may produce instabilities in the computed motion fields. We present an
algorithm that allows three regularization strategies: the first one uses an exponential function
together with a TV process; the second one combines this strategy with a small constant that
ensures a minimum isotropic smoothing; the third one is a fully automatic approach that adapts
the diffusion depending on the histogram of the image gradients. The last two alternatives are
aimed at reducing the effect of instabilities. In the experiments, we observe that the pure
exponential function is highly unstable while the other strategies preserve accurate motion
contours for a large range of parameters.

Source Code

The source code, its documentation and the online demo are accessible at the IPOL web page
of this article1. In this page an implementation is available for download.

Keywords: optical flow; motion estimation; regularization strategies; discontinuity-preserving

1 Introduction

Optical flow is a key problem in computer vision that provides consistent motion information from
a video sequence. Traditionally, variational methods have been the most accurate and widely used
techniques. Their solutions are posed as a minimization problem of an energy functional expressed as
a weighted sum of a data and a smoothness terms. The first puts into correspondence the information
between the pixels of consecutive images while the second involves a diffusion process for creating
more continuous vector fields.

The smoothness term ensures that our solution is unique under the premise that neighboring pixels
present a similar motion but, on the other hand, is critical to preserve correct motion boundaries.
This topic is important in optical flow studies due to the fact that it is not easy to introduce a simple
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Figure 1: From left to right: The original image; instabilities over the computed flow field due to a
wrong parameter; well-defined motion contours using our automatic strategy; the color scheme used
for motion representation.

diffusion mechanism to overcome this problem. Many strategies have been proposed to cope with
motion discontinuities since the method of Horn and Schunck [8]. This technique hardly preserves
flow boundaries as can be seen in the IPOL article by Meinhardt-Llopis et al. [9].

In 1986, Nagel and Enkelman [13] introduced a diffusion tensor that uses the information of
the image gradient for regularization. It enables anisotropic diffusion along object contours and
isotropic smoothing in homogeneous regions. This tensor was used in Alvarez et al. [2] with a linear
scale-space formulation for dealing with large displacement. Black and Anandan [4, 5] introduced
robust functionals in the regularization term, which produce piecewise continuous motion fields and
were more insensitive to image noise than previous approaches. The generalization in the use of L1

functionals was proposed in several works, such as in Brox et al. [6] and Zach et al. [18]. These two
methods have been analyzed in the IPOL articles by Sánchez et al., [15] and [16], respectively.

These strategies produce piecewise smooth motion fields but, since they do not use any image
information in the regularization process, their flow edges do not usually coincide with the object
boundaries. This problem can be solved with a decreasing function that uses the gradient information
to stop the regularization at image contours. This idea originally comes from Alvarez et al. [1] and
is often used in the recent literature [17, 14]. It is a simple solution and, probably, one of the best
current alternatives. Nevertheless, it also presents a strong dependency with respect to the parameter
of the decreasing function. As we have seen in Monzón et al. [11], if the parameter is underestimated,
the result does not improve the basic TV approaches. On the other hand, when it is overestimated,
the decreasing function may cancel the regularization and the problem becomes ill-posed.

We see an example of this situation in Figure 1. The second image shows a result where many
instabilities appear in the form of blobs at the object limits. In this solution, a wrong setting has
cancelled the smoothing in regions where the image gradients are high, providing poor results. The
third image depicts a good result because of a correct selection of the discontinuity parameter.

Monzón et al. [10] explored two mechanisms to overcome these drawbacks: on the one hand, they
proposed a simple approach that ensures a minimum isotropic smoothing when using decreasing
functions; on the other hand, they use a strategy that looks for the best parameter configuration
preserving motion contours while avoiding instabilities.

Here, we present an implementation of this method, including these two alternatives. In the
experiments, we observe the severe instabilities that the exponential function produces if the discon-
tinuity parameter is not correctly chosen and the benefits of using these two strategies. We analyze
their behavior with respect to the smoothness parameter.

1https://doi.org/10.5201/ipol.2016.172
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2 Robust Discontinuity-Preserving Optical Flow Methods

Let Ic1, I
c
2 : Ω ⊂ R2 → Rc be an image sequence, with x = (x, y)T ∈ Ω, {Ic}c=1,...,C and C the number

of channels. The optical flow is defined as a dense mapping, w(x) = (u(x), v(x))T , between two
consecutive images, where u(x) and v(x) are the horizontal and vertical displacements, respectively.

We assume that the brightness and gradient constancy assumptions [6, 16] are also fulfilled in a
multi-channel scheme [12]. Then, according to this notation, our energy functional reads as

E(w) =

∫
Ω

ψ

(
C∑
c=1

(Ic2(x + w)− Ic1(x))2

)
+ γ

∫
Ω

ψ

(
C∑
c=1

|∇Ic2(x + w)−∇Ic1(x)|2
)

+ α

∫
Ω

ψ
(
Φ(∇I1) ·

(
|∇u|2 + |∇v|2

))
dx, (1)

with ψ (s2) =
√
s2 + ε2 and ε := 0.001 as a prefixed small constant to ensure that ψ is strictly convex.

Parameters γ and α weigh the gradient and smoothness terms, respectively. Φ(∇I1) is a smoothness
function that provides three regularization strategies. We study them in Section 4.

One finds the minimum of (1) by solving the associated Euler-Lagrange equations that yield a
system of reaction-diffusion PDEs,

0 =ψ′D ·

(
C∑
c=1

(Ic2(x + w)− Ic1(x)) · Ic2,x(x + w)

)

+ γ ψ′G ·

(
C∑
c=1

((
Ic2,x(x + w)− Ic1,x(x)

)
· Ic2,xx(x + w) +

(
Ic2,y(x + w)− Ic1,y(x)

)
· Ic2,xy(x + w)

))
−α div (ψ′S · ∇u) ,

0 =ψ′D ·

(
C∑
c=1

(Ic2(x + w)− Ic1(x)) · Ic2,y(x + w)

)

+ γ ψ′G ·

(
C∑
c=1

((
Ic2,x(x + w)− Ic1,x(x)

)
· Ic2,xy(x + w) +

(
Ic2,y(x + w)− Ic1,y(x)

)
· Ic2,yy(x + w)

))
−α div(ψ′S · ∇v), (2)

with ψ′(s2) = 1
2
√
s2+ε2

. Notice that the influence of the data term is proportional to the number of

channels. We compensate this situation by adapting the smoothness parameter as α = α′ ·C, where
α′ is an input parameter. In order to simplify these equations, we use the notation

ψ′D :=ψ′

(
C∑
c=1

(Ic2(x + w)− Ic1(x))2

)
,

ψ′G :=ψ′

(
C∑
c=1

|∇Ic2(x + w)−∇Ic1(x)|2
)
,

ψ′S :=Φ(∇I1) · ψ′
(
Φ(∇I1) ·

(
|∇u|2 + |∇v|2

))
. (3)

The above equations are nonlinear because of the argument w and function ψ′; so, in order to
linearize the equations, we follow the same strategy of [16], enclosing our numerical scheme in two
fixed point iterations. We introduce a first index, n, to remove the nonlinearity in w, using first
order Taylor expansions
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I(x + wn+1) ≈I(x + wn) + Ix(x + wn)dun + Iy(x + wn)dvn

Ix(x + wn+1) ≈Ix(x + wn) + Ixx(x + wn)dun + Ixy(x + wn)dvn

Iy(x + wn+1) ≈Iy(x + wn) + Ixy(x + wn)dun + Iyy(x + wn)dvn.

(4)

As proposed in [6], we work with motion increments (dun, dvn), so the optical flow can be iteratively
estimated as un+1 = un + dun and vn+1 = vn + dvn.

We introduce a second index, m, that accounts for the nonlinearities of the ψ′ function. Then,
we obtain the system of equations (5) combining both fixed point schemes, which is solved using the
successive over-relaxation (SOR) method. This is an iterative procedure that solves linear systems
of equations, resulting in faster convergence.

0 =(ψ′B)n,m ·

(
C∑
c=1

(
Ic2(y) + Ic2,x(y)dun,m+1 + Ic2,y(y)dvn,m+1 − Ic1(x)

)
· Ic2,x(y)

)

+ γ (ψ′G)n,m ·

(
C∑
c=1

(
Ic2,x(y) + Ic2,xx(y)dun,m+1 + Ic2,xy(y)dvn,m+1 − Ic1,x(x)

)
· Ic2,xx(y)

+
C∑
c=1

(
Ic2,y(y) + Ic2,xy(y)dun,m+1 + Ic2,yy(y)dvn,m+1 − Ic1,y(x)

)
· Ic2,xy(y)

)
− α div

(
(ψ′S)n,m · ∇(un,m + dun,m+1)

)

0 =(ψ′B)n,m ·

(
C∑
c=1

(
Ic2(y) + Ic2,x(y)dun,m+1 + Ic2,y(y)dvn,m+1 − Ic1(x)

)
· Ic2,y(y)

)

+ γ (ψ′G)n,m ·

(
C∑
c=1

(
Ic2,x(y) + Ic2,xx(y)dun,m+1 + Ic2,xy(y)dvn,m+1 − Ic2,x(x)

)
· Ic2,xy(y)

+
C∑
c=1

(
Ic2,y(y) + Ic2,xy(y)dun,m+1 + Ic2,yy(y)dvn,m+1 − Ic2,y(x)

)
· Ic2,yy(y)

)
− α div

(
(ψ′S)n,m · ∇(vn,m + dvn,m+1)

)
, (5)

with y = x + wn,m.

The unknowns dun,m+1 and dvn,m+1, in pixel (i, j), are expressed as a function of the remaining
terms and their values are iteratively updated until the method converges to a steady state solution.
In this sense, we introduce an additional fixed point iteration scheme, s, for the SOR method.

Among other kinds of schemes, the partial derivatives are approximated using central differences
and we discretize the divergence using three variables, as follows

div
(
(ψ′S)n,m · ∇(un,m + dun,m+1)

)
= div ((ψ′S)n,m · ∇un,m) + div

(
(ψ′S)n,m · ∇dun,m+1

)
≈ div u+ (div du− div d · dun,m+1

i,j,n ), (6)

where div u discretizes the first divergence term, div d and div du correspond to the second term. In
the second term, div du stands for the values corresponding to the neighbors of du, and div d stands
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0
(ψ′S)i,j+1 + (ψ′S)n,mi,j

2
0

(ψ′S)i−1,j + (ψ′S)n,mi,j
2

−
(ψ′S)i+1,j + (ψ′S)i−1,j + (ψ′S)i,j+1 + (ψ′S)(ψ′S)i,j−1 + 4(ψ′S)n,mi,j

2

(ψ′S)i+1,j + (ψ′S)n,mi,j
2

0
(ψ′S)i,j−1 + (ψ′S)n,mi,j

2
0

Table 1: Coefficients of the diffusion tensor stencil.

for the coefficients accompanying du at the current pixel, dun,m+1
i,j . These variables are given by

div u :=
(ψ′S)i+1,j + (ψ′S)n,mi,j

2

(
un,mi+1,j − u

n,m
i,j

)
+

(ψ′S)i−1,j + (ψ′S)n,mi,j
2

(
un,mi−1,j − u

n,m
i,j

)
+

(ψ′S)i,j+1 + (ψ′S)n,mi,j
2

(
un,mi,j+1 − u

n,m
i,j

)
+

(ψ′S)i,j−1 + (ψ′S)n,mi,j
2

(
un,mi,j−1 − u

n,m
i,j

)
, (7)

div du :=
(ψ′S)i+1,j + (ψ′S)n,mi,j

2
dun,m+1

i+1,j +
(ψ′S)i−1,j + (ψ′S)n,mi,j

2
dun,m+1

i−1,j +

(ψ′S)i,j+1 + (ψ′S)n,mi,j
2

dun,m+1
i,j+1 +

(ψ′S)i,j−1 + (ψ′S)n,mi,j
2

dun,m+1
i,j−1 , (8)

div d :=
(ψ′S)i+1,j + (ψ′S)n,mi,j

2
+

(ψ′S)i−1,j + (ψ′S)n,mi,j
2

+

(ψ′S)i,j+1 + (ψ′S)n,mi,j
2

+
(ψ′S)i,j−1 + (ψ′S)n,mi,j

2
. (9)

These expressions are the same for the other component of the optical flow, changing u by v. Their
mask representation is shown in Table 1. If we define y = x + wn,m and separate the parts of the
equation that remain constant during the SOR iterations, we may define the variables

Au :=− (ψ′B)n,m ·

(
C∑
c=1

(Ic2(y)− Ic1(x)) · Ic2,x(y)

)
+ α div u

− γ (ψ′G)n,m ·

(
C∑
c=1

(
Ic2,x(y)− Ic1,x(x)

)
· Ic2,xx(y) +

(
Ic2,y(y)− Ic1,y(x)

)
· Ic2,xy(y)

)
,

Av :=− (ψ′B)n,m ·

(
C∑
c=1

(Ic2(y)− Ic1(x)) · Ic2,y(y)

)
+ α div v

− γ (ψ′G)n,m ·

(
C∑
c=1

(
Ic2,x(y)− Ic1,x(x)

)
· Ic2,xy(y) +

(
Ic2,y(y)− Ic1,y(x)

)
· Ic2,yy(y)

)
,

Du :=(ψ′B)n,m ·
C∑
c=1

Ic2,x(y) + γ (ψ′G)n,m ·
C∑
c=1

(
Ic2,xx(y) + Ic2,xy(y)

)
+ α div d,

Dv :=(ψ′B)n,m ·
C∑
c=1

Ic2,y(y) + γ (ψ′G)n,m ·
C∑
c=1

(
Ic2,xy(y) + Ic2,yy(y)

)
+ α div d,

D :=(ψ′B)n,m ·
C∑
c=1

(
Ic2,x(y) · Ic2,y(y)

)
+ γ (ψ′G)n,m ·

C∑
c=1

(
Ic2,xx(y) + Ic2,yy(y)

)
· Ic2,xy(y). (10)
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We compute expressions like Ic2(x+wn,m) using bicubic interpolation. Putting all together, we arrive
at the SOR method (index s), which is given by

dun,m,s+1 :=
(1− w) dun,m,s + w (Au−D · dvn,m,s+1 + α div du)

Du
,

dvn,m,s+1 :=
(1− w) dvn,m,s + w (Av −D · dun,m,s+1 + α div dv)

Dv
, (11)

with w ∈ (0, 2) the SOR relaxation parameter. In our implementation, we choose w = 1.9 by default.
This numerical approximation is calculated until the method converges to a steady state solution or
exceeds a maximum number of iterations. The stopping criterion is

1

N

∑
i,j

((
dus+1

i,j − dusi,j
)2

+
(
dvs+1

i,j − dvsi,j
)2
)
< ε2, (12)

with N the number of pixels in all frames and ε the stopping criterion threshold. The iterative
process stops when condition (12) is true or a maximum number of iterations is reached. Once it has
converged, we go to the next inner iteration, m, and restart the variables in (10). If the parameters
are correctly chosen, the method converges in few iterations.

3 Pyramidal Structure

In order to estimate large displacements, we use a coarse-to-fine scheme based on a pyramidal struc-
ture. We follow the same strategy presented in the IPOL articles [9] and [16]. Before downsampling,
the algorithm smoothes the images with a Gaussian kernel of a standard deviation that depends on
σ ∈ (0, 1). Then, it creates a pyramid of downsampled images using a scale factor η ∈ (0, 1). For a
set of scales s = 0, 1, . . . , Nscales − 1, the pyramid of images is built as

Is(ηx) := Gσ ∗ Is−1(x). (13)

Next, we use bicubic interpolation for sampling the images after the convolution. The value of σ
depends on η and is calculated as

σ(η) := σ0

√
η−2 − 1, with σ0 := 0.6. (14)

Finally, we solve the system of equations at each scale, starting at the coarsest scale, to get successive
approximations of the optical flow. Every scale is initialized using the previous result as

us−1(x) :=
1

η
us(ηx),

vs−1(x) :=
1

η
vs(ηx). (15)

4 Regularization Strategies

The regularization behavior relies on Φ(∇I1). Table 2 shows the three alternatives: the first one
corresponds to the original approximation while the others are the two proposals for solving the
instability problems. In this work, we named the strategies DF, DF-β and DF-Auto, respectively.

The DF-β scheme includes a constant parameter (β) to ensure a minimum isotropic diffusion.
This maintains a sufficient amount of diffusion even when the gradient is very large. On the other

170



Robust Discontinuity Preserving Optical Flow Methods

Strategy Φ(∇I1) Index in the algorithm

DF e−λ‖∇I1‖ 1
DF-β e−λ‖∇I1‖ + β 2

DF-Auto e−λauto‖∇I1‖ 3

Table 2: Regularization strategies. The first alternative offers regularization with a decreasing scalar
function. The second ensures constant diffusion when using the previous scheme. The third provides
an automatic adaptation of the parameter that controls the decreasing scalar function.

hand, the DF-Auto approach differs from the others in that λauto is automatically computed to avoid
instabilities. This is calculated by expanding the smoothness term in (2),

0 ∼=α div (ψ′S · ∇u) ,

0 ∼=α div (ψ′S · ∇v) .

The instabilities normally arise when α · ψ′S ∼= 0. In this sense, one way to avoid the ill-posedness is
to ensure the following condition

α · ψ′S =
α · e−λ|∇I1|√

e−λ|∇I1| · (|∇u|2 + |∇v|2) + ε2
≥ ξ > 0,

with ξ a small constant.
We can impose the following constraint: αe−λ|∇I1| ≥ ξ > 0. Then, we obtain λ as

λ(x) :=
− ln(ξ) + ln(α)

|∇I1(x)|
.

Note that the gradient of the image is a function of x. When the gradient is close to zero, λ tends
to ∞. This calculation must discriminate whether a pixel belongs to an inhomogeneous region or
not. We propose to calculate λauto at each pixel relying on the histogram of the gradient as

λauto := min{λΩ, λ(x)},

where

λΩ :=
− ln(ξ) + ln(α)

|∇I1(x′)|
, (16)

where x′ is such that |∇I1(x′)| is the rank τ × |Ω| among the image gradients and τ := 0.94 is a
suitable value, as seen in Monzón et al. [10].

5 Parameters of the Method

Our algorithm depends on the parameters given in Table 3 and the constants of Table 4. The first
parameter is an integer for selecting the diffusion behavior (see Table 2). The weighting parameters
used in the energy functional are α and γ; λ is used in the non-automatic strategies for controlling
the diffusion at image borders.

The remaining parameters are the following: Nscales, η stand for the number of scales and the
downsampling factor in the pyramidal scheme and σ0 used in the image convolution; the parameters
for the numerical scheme, given by the inner and outer iterations, and the stopping criterion threshold
(ε); β, ξ and τ are constants that support the regularization strategies as explained in the previous
section.

171



Nelson Monzón, Agust́ın Salgado and Javier Sánchez

Table 3: Parameters of the method.
Parameter Explanation
method type Integer that selects the regularization strategy (see Table 2).

α Regularization parameter. It determines the smoothness strength. The
bigger this parameter, the smoother the solutions we obtain. In our
algorithm, it is adapted to the number of channels.

γ Parameter associated with the gradient constancy term in Equa-
tion (1).

λ Used in DF and DF-β methods. It determines the influence of the
exponential function in the regularization. Its value is automatic using
the DF-Auto approach.

Table 4: Constant parameters of the method.

Parameter Explanation
Nscales Number of scales in the pyramidal structure. If the flow field is very

small (about one pixel), it can be set to 1. Otherwise, it should be
set so that (1/η)N−1 is larger than the expected size of the largest
displacement. Nscales is automatically calculated so that the image
size, at the coarsest scale, is around 16× 16 pixels.

η Downsampling factor. It is used to downscale the original images in
order to create the pyramidal structure. Its value must be in the
interval (0, 1). With η = 0.5, the images are reduced to half their
size in each dimension from one scale to the following. We fix it to
η := 0.75.

σ0 It is used in the image convolution in Equation (14). We use σ0 := 0.6.
ε Stopping criterion threshold. It is the threshold used to stop the SOR

iterations, given in Equation (12). Its value is ε := 0.001.
inner iter Number of inner iterations in the numerical scheme. It corresponds to

index n in Equation (11). We use inner iterations := 1
outer iter Number of outer iterations in the numerical scheme. It corresponds to

index m in Equation (11). We use outer iterations := 10
β Used in DF-β method. It is a constant that ensures a minimum diffu-

sion. We fix its value to β := 0.001.
ξ Used in DF-Auto method. It is a constant that determines if the

diffusivity is sufficient to avoid the ill-posedness. Its value is ξ := 0.05.
τ Used in DF-Auto method. It is a constant that determines the con-

servative behavior of the automatic λ. It prevents the occurrence of
instabilities. We fix it value to τ := 0.94 (see [10] for a detailed expla-
nation).

6 Algorithm

Next, we describe the algorithm that implements the numerical scheme in Equation (11). The
algorithm takes two color images as input data and computes the optical flow. We separate the
algorithm in two modules: one procedure that computes the optical flow at each scale and the main
algorithm that is in charge of handling the pyramidal structure.

The main Algorithm 1 creates the pyramidal structure, as explained in Section 3, and calls
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Algorithm 2 for computing the optical flow, starting from the coarsest scale. It adapts the result at
each scale to be used as the initial approximation at the following scale.

Algorithm 1: Pyramidal structure management

Input: Ic1, I
c
2, u, v,method type, α, γ, λ,Nscales, η = 0.5, ε := 0.001, inner iter :=

1, outer iter := 10, nchannels
Output: u, v

Normalize multi-channel images between 0 and 2551

Convolve the images with a Gaussian of σ ← 0.82

Create the pyramid of images Ic,s1 , Ic,s2 using η (with s← 0, . . . , Nscales − 1)3

αc ← α· nchannels4

for s← (Nscales − 1) to 0 do5

robust DF methods(Ic,s1 , Ic,s2 , us, vs,method type, αc, γ, λ, inner iter, outer iter)6

if s > 0 then7

us−1(x)← 1
η
us(η x)8

vs−1(x)← 1
η
vs(η x)9

end10

end11

Algorithm 2 calculates Φ using the regularization scheme defined by the parameter method type.
The result is used before the inner-iterations to calculate Equation (3) using procedure exponential -

calculation. When using DF or DF-β strategies, the program looks for the maximum gradient in
every pixel of the multichannel image in order to calculate the exponential function.

On the other hand, for the DF-Auto approach, we use procedure automatic lambda to calculate
λ and the maximum gradient per pixel for the exponential, as in the previous case. This permits
to accelerate the method by doing a unique search over the image. This allows us to solve both
problems at once. Finally, we have used the OpenMP library to parallelize the algorithm making it
faster and achieving fast running times (see the online demo).

7 Experiments

In this section, we compare the strategies described in this work. First, we show their parametric
stability and the effects on the flow contours. Second, we analyze the influence of the smoothness
weight with respect to different values of γ. Parameters α, γ and λ are modified in each experiment.
The optical flows are represented with the color scheme shown in Figure 1. The color represents the
orientation and the intensity its magnitude.

Figures 2 and 3 show the behavior of the methods with respect to the discontinuity parameter
using the Urban2 and Shaman 2 sequences of the Middlebury [3] and MPI-Sintel [7] datasets, respec-
tively. The first row presents the original image and the average End-Point Error (EPE) evolution
with respect to λ. The second row depicts the true flow, the result of using Brox and the flow
obtained with the DF-Auto approach. The third and fourth rows show the motion fields for the
DF and DF-β strategies when increasing λ. Figures 4 and 5 show similar examples using a pair of
frames from the natural sequences of Rheinhafen and Ettlinger-Tor.

In general, the Brox solutions have problems with motion contours. In fact, the flow discontinuities
are typically not aligned with the object borders except in Urban2. Besides, in the Rheinhafen and
Ettlinger-Tor results, some cars do not appear in the motion field because of a strong regularization.
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Algorithm 2: robust DF methods(Ic1, I
c
2, u, v,method type, α, γ, λ, inner iter, outer iter)

Input: Ic1, I
c
2,method type, α, γ, λ, ε := 0.001, inner iter := 1, outer iter := 10, ω := 0.9

Output: u, v

Compute, for all channels, Ic1,x, I
c
1,y, I

c
2,x, I

c
2,y1

Compute, for all channels, Ic2,xx, I
c
2,yy, I

c
2,xy2

exponential calculation (I1x, I1y, α, λ,method type,Φ)3

for no← 0 to outer iter − 1 do4

Compute Ic2(x + w), Ic2,x(x + w), I2,y(x + w) using bicubic interpolation5

Compute Ic2,xx(x + w), Ic2,xy(x + w), Ic2,yy(x + w) using bicubic interpolation6

Compute the flow gradients ux, uy, vx, vy7

Compute ψ′S using Equation (3) and Φ8

Compute div u, div v, div d using equations (7) and (9)9

(du, dv)← (0, 0)10

for ni← 0 to inner iter − 1 do11

Compute ψ′D, ψ
′
G using Equation (3)12

Compute Au,Av,Du,Dv,D using Equation (10)13

nsor ← 014

while error > ε and nsor < MAXITER do15

du← (1− ω) du+ ω · Au−Ddv+αdiv du
Du

16

dv ← (1− ω) dv + ω · Av−Ddu+αdiv dv
Dv

17

Compute error with Equation (12)18

nsor ← nsor + 119

end20

end21

(u, v)← (u+ du, v + dv)22

end23

The exponential strategies offer an interesting improvement at flow edges. The corners of the
buildings in Urban2 are better preserved compared with the Brox solution and the borders of the
vehicles in Rheinhafen and Ettlinger-Tor sequences are better defined. However, we also observe
a staircasing problem in the floor of the street in Urban2. This negative effect occurs because the
decreasing function depends on the image gradient treating some image borders as flow edges.

These figures are a good example of the good stability of the new proposals in comparison with
the pure exponential function. The errors of the DF method rapidly turn unstable once the best
flow is achieved. However, the instabilities are strongly diminished using the DF-β approach. In the
case of the Urban2 sequence, the method does not completely eliminate the instabilities but they are
strongly reduced.

Interestingly, the DF-Auto method usually calculates good optical flows without relevant blobs.
The automatic parameter adapts its value according to the image gradient. This simplifies the
parametric configuration required by the other alternatives. Besides, according to the EPE graphics,
we see that this strategy usually finds a solution close to the best result.

The graphics of the first and second columns of Figure 6 show the EPE evolution with respect
to α for γ = 0 and γ = 1. The analysis of the Brox method carried out in the IPOL article [16]

174



Robust Discontinuity Preserving Optical Flow Methods

Procedure exponential calculation(Ic1,x, I
c
1,y, α, λ, β,method type,Φ)

Input: Ic1,x, I
c
1,y, α, λ, β := 0.001,method type

Output: Φ
switch method type do1

case 1:22

βv ← 03

if method type = 2 then βv ← β4

Compute maximum gradiend (gmax)5

foreach pixel p do6

Φ(p)← e(−λ·gmax) + βv7

end8

case 3:9

λΩ ← automatic lambda (Ix, Iy, α, λp, gmax)10

foreach pixel p do11

λauto ← λΩ12

if λΩ > λp(p) then13

λauto ← λp(p)14

end15

Φ(p)← e(−λauto·gmax)
16

end17

end18

end19

Procedure automatic lambda
Input: Ix, Iy, α, τ := 0.94, ξ := 0.05
Output: λΩ, λp, gmax

foreach pixel p do1

gmax(p)← Compute the maximum gradient for each image channel at every pixel2

λ(p)← − log(ξ)+log(α)
gmax(p)3

if max gradient(p) < gmax(p) then max gradient(p)← gmax(p)4

end5

gradient sorted← sort(max gradient)6

pos ref ← τ · image width · image height7

λΩ ← − log(ξ)+log(α)
gradient sorted(pos ref)8

return λΩ9

concluded that γ = 7 provides the best results for the entire Middlebury dataset. We use this value
for the graphics of the third column of Figure 6.

The purpose of this experiment is to observe the dependency of the exponential strategies with
respect to the gradient parameter. We fix λ := 0.2 for DF and DF-β. We use the synthetic sequences
of Grove2 and Urban3 from Middlebury and Alley 1 and Shaman 2 from the Sintel dataset. The

175



Nelson Monzón, Agust́ın Salgado and Javier Sánchez

Original Image Stability analysis (EPE)
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DF (λ = 0.1) DF (λ = 0.5) DF (λ = 1.0)

DF-β (λ = 0.1) DF-β (λ = 0.5) DF-β (λ = 1.0)

Figure 2: Urban2 sequence. First row: original image and its EPE graphic with respect to λ. Second
row: the true flow and the solutions obtained with Brox and DF-Auto methods, respectively. Third
and fourth rows: Flow fields for increasing values of the λ parameter (DF and DF-β approaches,
respectively). We observe fewer artifacts over the flow with the new proposals. The automatic
approach finds a solution with strongly reduced instabilities.

DF, DF-β and DF-Auto methods are represented with a blue, red and green line, respectively.
According to the graphics, we see that the behavior of DF and DF-β are similar in many cases.

The results of DF-Auto are more stable in general, especially in the Urban3 and Shaman 2 sequences.
This means that the search space of the α and γ parameters is reduced for the DF-Auto method, so
these are easier to configure.
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Original Image Stability analysis (EPE)
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Figure 3: Shaman 2 sequence. First row: original image and its EPE graphic with respect to λ.
Second row: the true flow and the solutions obtained with Brox and DF-Auto methods, respectively.
Third and fourth rows: Flow fields for increasing values of the λ parameter (DF and DF-β approaches,
respectively). We can observe that DF-Auto adapts the discontinuity parameter to achieve a good
preservation of the motion contours.
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Original Image Brox DF-Auto

DF (λ = 0.1) DF (λ = 0.5) DF (λ = 1.0)

DF-β (λ = 0.1) DF-β (λ = 0.5) DF-β (λ = 1.0)

Figure 4: Rheinhafen sequence. First row: Original image, Brox and DF-Auto solutions. Second
and third row: Flow fields for increasing values of the λ parameter (DF and DF-β approaches,
respectively). We observe an interesting stability of the λ parameter when using the DF-β approach.
The new proposals present a better definition of the motion contours in comparison to Brox method.
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Original Image Brox DF-Auto

DF (λ = 0.1) DF (λ = 0.5) DF (λ = 1.0)

DF-β (λ = 0.1) DF-β (λ = 0.5) DF-β (λ = 1.0)

Figure 5: Ettlinger-Tor sequence. First row: Original image, Brox and DF-Auto solutions. Second
and third row: Flow fields for increasing values of the λ parameter (DF and DF-β approaches,
respectively). Some cars disappear in the flow because of a strong regularization when using Brox.
However, the exponential methods preserve these vehicles and permit an improvement in the object
borders.
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Figure 6: EPE evolution with respect to α for some Middlebury and Sintel sequences fixing γ with
different values. λ = 0.2 for DF and DF-β methods while it is automatically calculated in DF-Auto.
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