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Abstract

We present a method for the automatic estimation of two-parameter radial distortion models,
considering polynomial as well as division models. The method first detects the longest dis-
torted lines within the image by applying the Hough transform enriched with a radial distortion
parameter. From these lines, the first distortion parameter is estimated, then we initialize the
second distortion parameter to zero and the two-parameter model is embedded into an iterative
nonlinear optimization process to improve the estimation. This optimization aims at reducing
the distance from the edge points to the lines, adjusting two distortion parameters as well as the
coordinates of the center of distortion. Furthermore, this allows detecting more points belonging
to the distorted lines, so that the Hough transform is iteratively repeated to extract a better
set of lines until no improvement is achieved. We present some experiments on real images with
significant distortion to show the ability of the proposed approach to automatically correct this
type of distortion as well as a comparison between the polynomial and division models.

Source Code

The source code, the code documentation, and the online demo are accessible at the IPOL web
page of this article1 In this page, an implementation is available for download. Compilation and
usage instructions are included in the README.txt file of the archive.

Keywords: lens distortion; wide-angle lens; Hough transform; line detection; iterative opti-
mization
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An Iterative Optimization Algorithm for Lens Distortion Correction Using Two-Parameter Models

1 Introduction

Radial distortion is considered as the most important type of distortion for cameras. It causes barrel
distortion at short focal lengths as well as pincushion distortion at longer focal lengths. This is
mainly due to the imperfection of the lens and the misalignment of the optical system. This type of
distortion can be embedded in the well-known pinhole camera model [12] by means of a distortion
model.

The general equation of a lens distortion model is given by the equation(
x̂− xc
ŷ − yc

)
= L(r)

(
x− xc
y − yc

)
, (1)

where (xc, yc) represents the distortion center, (x, y) is a point in the image domain, (x̂, ŷ) is the
transformed point, r = ‖(x, y)− (xc, yc)‖, and L(r) represents the shape of the distortion model. Two
radial lens distortion models are the most frequently applied in computer vision due to their excellent
trade-off between accuracy and easy calculation: the polynomial model and the division model. The
polynomial model, or simple radial distortion model [16], is formulated for two parameters as

L(r) = 1 + k1r
2 + k2r

4. (2)

Two-parameter models have been used in the literature due to their simplicity and accuracy
([3], [18]). In [3], an algebraic method is proposed which is suitable for correcting significant radial
distortion. Moreover, it is highly efficient in terms of computational cost. An on-line demo of the
implementation of this algebraic method can be found in [4].

The division model was initially proposed in [20], but has received special attention after the
research by Fitzgibbon [13]. For the case of two parameters, it is formulated as

L(r) =
1

1 + k1r2 + k2r4
. (3)

The main advantage of the division model is the requirement of fewer terms than the polynomial
model to cope with images showing severe distortion. Therefore, the division model seems to be more
adequate for wide-angle lenses (see a recent review on distortion models for wide-angle lenses in [17]).
The work we present in this paper can be considered as an extension of the IPOL paper in [1], where
we studied the case of the one-parameter division model. The main novelties with respect to [1] is
that in this paper we use a two-parameter lens distortion model, the distortion center location is
optimized and we study the problem in the case of polynomial as well as division models. To deal
with two-parameter models requires a different approach concerning parameter estimation.

For both models, L(r) can be estimated by considering that 3D lines must be projected onto 2D
straight lines, and minimizing the distortion error, which is given by the sum of the squares of the
distances from the points to the lines [11]. In [5], [7] and [22], the user must identify some known
straight lines, so that no calibration pattern is required and the methods are robust and independent
of the camera parameters. However, these methods are slow when we deal with a large set of images.
Different strategies to find out aligned structures in an image are possible. In [10], a parameterless
method to detect segments which guarantees that no more than one segment on the average will
be wrongly detected (false positive) is discussed. This work is based on the Helmholtz principle
which states that any observed (in an image) geometric structure is perceptually meaningful if the
expectation of its occurrences (false alarms) is small in a random image. This approach has been
extended in [14, 15], where the authors introduce the LSD (Line Segment Detector) method. This
method detects segments in an image in a very effective and fast way. In our case, as we deal with
distorted lines, we use an extension of the Hough transform which allows extracting aligned structures
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distorted by a one-parameter distortion model. This method extends the standard Hough space by
including a distortion parameter in the voting matrix, which results in a better recognition of the
existing straight lines and has become a usual approach in automatic lens distortion estimation.

A fully automatic distortion correction method, which also embeds the radial distortion parameter
into the Hough transform for a better detection of straight lines, is presented in Lee et al. [19]. It
is applied to endoscopic images captured with a wide-angle zoomable lens. In this case, a one-
parameter division model is used to deal with the strong distortion caused by the wide-angle lens.
The method is adapted to include the effects related to the variation of the focal length due to
zooming operations. It is intended for real time applications, once mapped to a GPU computing
platform, and the distortion parameter is estimated by optimizing the Hough entropy in the image
gradient space.

In [2], an efficient method to detect lines in images showing significant lens distortion is discussed.
Once a set of straight lines has been detected, an algebraic lens distortion model with two distortion
parameters is applied to estimate and correct the distortion. The method is inspired by Cucchiara et
al. [9] and states the problem in a new three-dimensional space, which includes orientation, distance
to the origin and also radial distortion. It is tested on a set of real images and, for all the cases,
the lens distortion is effectively removed. Furthermore, it outperforms the results obtained using the
standard Hough transform. However, since the polynomial distortion model is used, the method fails
in the case of a strong distortion produced by wide-angle lenses, where the division model would
provide better performances.

In this work, we deal with division and polynomial models to correct the radial distortion in
images. Based on the Hough voting scheme, we define a way to automatically compare the accuracy
of both models. One of the main differences with the models mentioned above is that we use two-
parameter models which, as discussed below, perform better when dealing with strong distortions
caused by wide-angle lenses. In order to increase the number of straight lines which are extracted, a
nonlinear iterative optimization method is applied to refine the candidate values for the distortion
parameters. Not only is the proposed method useful to detect lines in single images, but it may also
be applied to a video sequence to correct the frames through a tracking process. Algorithm 1 and
Figure 1 summarize the main stages of the proposed method.

Algorithm 1: Summary of the lens distortion method described in Figure 1

check input params( input params );

// STAGE 1: Detect edges with Canny

contours ← Canny( input image, ... ) ; // Algorithm 2

edge cleaned ← Clean contours( contours ) ; // Cleaning process, Algorithm 3

// STAGE 2: Detect lines with the improved Hough transform

i primitive ← Hough( edge cleaned, current model ) ; // Algorithm 4

// STAGE 3: Apply the iterative optimization process

final model ← iterative optimization( edge cleaned ) ; // Algorithm 5

// STAGE 4: Correct the image distortion using the estimated model,

Algorithm 8

undistorted ← undistort image inverse( input image, final model ) ; // Algorithms 22, 23

undistorted.write;

In the first stage of the algorithm, we extract the edges using the Canny edge detector. The
thresholds for the Canny algorithm are provided in terms of percentiles of the gradient norm of the
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Figure 1: Summary of the lens distortion method.

image. Moreover, for each edge point, we estimate the edge orientation using the image gradient.
As we are looking for aligned structures, we introduce an edge cleaning procedure to reduce the
number of “locally non-aligned” edge points. To do that, we remove isolated edge points, edge
points which present a high variation of edge orientation in a neighborhood and, optionally, to speed
up the algorithm (especially for large images), we can reduce the number of edge points in each
neighborhood by keeping in each neighborhood the point with lowest edge orientation variation.

In the second stage, we extract a one-parameter distortion model and the most voted lines using
the extended Hough transform and the method proposed in [2].

In the third stage, a two-parameter model is embedded into an iterative nonlinear optimization
process to improve the one-parameter solution obtained in the previous step. This minimization aims
at reducing the distance from the points to the lines, adjusting two distortion parameters as well as
the coordinates of the center of distortion. Furthermore, this allows detecting more points belonging
to the distorted lines, so that the Hough transform is iteratively repeated to extract a better set of
lines until no improvement is achieved. Finally, in the fourth stage of the algorithm, we correct the
lens distortion of the image using the estimated model.

This paper is organized as follows: in Section 2, we present the details of the algorithm we propose.
In Section 3, we study the complexity of the algorithm. In Section 4, we show some experiments
to illustrate the performance of the proposed method, including a comparison between division and
polynomial models. Finally, in Section 5, we present our main conclusions.

2 The Algorithm

2.1 Stage 1: Edge Detection using the Canny Method

In the first stage, we use the Canny edge detector to extract the collection of edge points used to
estimate the distorted lines. The Canny edge detector, described in [8], tries to fulfill three conditions:
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good detection, good location and only one response to a single edge.

Figure 2: Edge detection using the Canny method.

Our implementation of the Canny algorithm (see Figure 2) can be divided into the following
steps:

1. Gaussian convolution: First, the input image is smoothed using an approximation of the
recursive filter proposed in [6]. This is a fast approximation to the Gaussian convolution.

2. Image Gradient: With the smoothed image, we compute the gradient using two 3 × 3 con-
volution masks that satisfy that the gradient norm is invariant under rotations of 45 degrees
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3. Setting Canny thresholds: The low and high thresholds used by the Canny method are

represented as percentiles of the gradient norm.

4. Non-maximum suppression: We look for local maxima of the gradient norm in the gradient
direction. If the gradient norm value of a local maximum is greater than the high threshold,
it is classified as an edge, otherwise, the local maximum will be marked for the subsequent
hysteresis process.
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5. Hysteresis implementation: All the pixels where the value of the gradient norm is between
the thresholds will be considered as edges if they are connected to edge pixels. After that, their
neighborhood is recursively explored. Finally, the edges are stored in a structure with their
orientations.

Finally, to simplify the edge points collection and to eliminate potential outliers, we optionally
apply a cleaning procedure to the edge point collection. Since we are interested in extracting lines
from these edge points, we remove points where the edge orientation varies in a significant way
in a neighborhood of the point. For each point p we use as measure of edge orientation stability,
EOSM(p), the following expression

EOSM(p) =
∑

q∈Edge points ∩ Neighborhood(p)

cos(αp)cos(αq) + sin(αp)sin(αq)

=
∑

q∈Edge points ∩ Neighborhood(p)

cos(αp − αq),

where αp, αq are the edge point orientations. We point out that the lower EOSM(p), the more
variation of the edge orientation exists in the neighborhood of p. In particular, an image corner will
have a smaller value of EOSM(p) than a straight edge point. Then, we remove points that do not
belong to edge line segments by only keeping edge points with a minimum value of EOSM(p) (given
by a threshold). Moreover, to speed up the algorithm we fix a minimum distance between edge
points and we remove any edge point q such that EOSM(q) < EOSM(p) and q belongs to a square
neighborhood of p with a radius given by such minimum distance. This procedure depends on the
order we go through the edge points but, in practice, such order has not a significant influence in the
algorithm outcome. Algorithm 3 describes in more detail the steps of this edge cleaning procedure
using the parameters described in Table 4. We point out that, using the cleaning procedure, we can
significantly reduce the number of edge points and, therefore, the computational cost of the algorithm
is also reduced.

A practical example of the cleaning process is presented in Figure 3. From the original image
(Figure 3(a)), we obtain the edges by using the Canny method (Figure 3(b)) with the parameters
described in Table 3. Afterward, the points p with high EOSM(p) value are removed (Figure 3(c))
according to the parameters shown on Table 4 and, finally, only the points with lowest EOSM(p)
value within their neighborhood are kept (Figure 3(d)), setting the minimum distance between con-
tour points to one.

2.2 Stage 2: Initial Estimation of the One-Parameter Lens Distortion
Model using the Improved Hough Transform

Once the edges have been detected and cleaned, the next step consists in detecting the straight lines
present in the image. To this aim, we use the technique proposed by Alemán-Flores et al. [2, 1].

In both articles, the authors propose a modified Hough transform in order to detect straight lines
in the input image. These lines are distorted by the effect of the lens distortion in the projection
of 3D straight lines onto a 2D image. Tackling the detection of straight lines with the traditional
Hough transform provides a wrong result, because the distorted lines are split and detected as several
straight lines.

The approach proposed by the authors is based on including the distortion as a new dimension in
the Hough space. Therefore, a straight line in this space is represented by three parameters: distance
to the origin, orientation and distortion. This new representation transforms the two-dimensional
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Algorithm 2: Edge detection using Canny method, described in Figure 2

input : input ; // gray-scale input image.

per low, per high ; // Percentage for the LOW and HIGH threshold in [0,1].

output: output ; // image with edges.

sine, cosine ; // Orientation of the edges.

edges ; // (x,y) coordinate of the edges.

gauss conv(input, blurred image) ; // Gaussian convolution

grad(blurred image, x grad, y grad) ; // Compute the gradient

foreach p ∈ Image domain do

gradient norm(p) ←
√
x grad(p)2 + y grad(p)2;

end

// Compute the thresholds using the STL::nth element function

low threshold ← nth element( gradient norm, per low · Number pixels );
high threshold ← nth element( gradient norm, per high · Number pixels );

// Non-maximum suppression

foreach p ∈ Image domain do
if p is a local maximum of the gradient norm in the direction of maximum variation of the
gradient norm then

if gradient norm(p) ≥ high threshold then
p is classified as EDGE

else
p, a gradient local maximum, is classified as a potential edge point in the hysteresis
process

end

end

end

// Hysteresis process of the Canny method

foreach p ∈ Image domain do
if p is classified as EDGE then

// Explore recursively p neighborhood in order to consider contiguous

points. Any contiguous point which is a gradient local maximum and

whose gradient norm is bigger than low threshold is classified as

EDGE

end

end

// Fill the output images taking into account the EDGE classification

foreach p ∈ Image domain do
if p is classified as EDGE then

output(p) ← 255;

cosine(p) ← x grad(p)
gradient norm(p)

; // Orientation of the EDGE

sine(p) ← y grad(p)
gradient norm(p)

;

edges.add(p) ; // Position of EDGE

else
output(p) ← 0;

end

end
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Algorithm 3: Cleaning process.

input : p, αp ; // edge point coordinates and orientations.

neighborhood radius ; // radius of neighborhood to take into account.

min neighbor points ; // minimum number of contour points in a

neighborhood.

min orientation value ; // min average scalar product of neighborhood point

orientation

min distance point ; // minimum distance between contour points.

output: // edge points cleaned.

foreach p ∈ Edge points do
// We compute a measure of edge orientation stability in a square

neighborhood of point p.
EOSM(p) ← 0, number neighborhood points(p) ← 0;
for q ∈ neighborhood(p) AND q ∈ Edge points do

EOSM(p) ← EOSM(p) + cos(αp) · cos(αq) + sin(αp) · sin(αq);
number neighborhood points(p) ← number neighborhood points(p) + 1;

end

end

// Remove points from edge collection according to the minimum neighborhood

points and stability of point orientation (corners are removed)

foreach p ∈ Edge points do
if number neighborhood points(p) < min neighbor points OR
EOSM(p) < number neighborhood points(p) ·min orientation value then

remove point (p);
end

end

// Remove isolated points using an iterative procedure. To speed up the

procedure we allow only 4 iterations.

while the number of edge points removed is bigger than 0 do
// We compute the number of points in the neighborhood

// We remove isolated contour points

end

if min distance point > 0 then
foreach p ∈ Edge points do

max ← EOSM(p);
for q ∈ neighborhood(p) AND q ∈ Edge points do

if EOSM(q) > max then max ← EOSM(q) else remove point (q) ;
end

end

end
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(a) (b)

(c) (d)

Figure 3: Example of the cleaning process after edge detection using the Canny method: (a) input
image, (b) result of the edge detection, (c) edges after cleaning points with a high curvature and (d)
after cleaning points in a neighborhood of 3× 3 pixels.

space of the traditional Hough transform into a three-dimensional one. The new parameter is nor-
malized in order to represent the percentage of variation of the distance between the distortion center
and the furthest corner of the image. A range of values for this normalized parameter is used and,
for every discretized value within this range, the position and orientation of the edge points are cor-
rected. Each corrected point will vote for the lines which are closer and whose orientation is similar.
Moreover, the votes are weighted by the distance between the edge point and the associated line.
The closer the point, the higher the vote.

In order to select the value for the distortion parameter, we search for the value which best corrects
the lines, i.e. which provides the longest lines after correction. To compare the possible values, we
consider the n longest lines for each value and we add the scores of these lines (as explained above,
this score depends on the number of points associated to that line and the distance from points to
the line). This is a measure of the reliability of each value of the distortion parameter which favors
the values for which the longest lines have been detected. The reliability measure vi for ith value of
the first distortion parameter is

vi =
n∑
j=1

sij, (4)

where sij is the total score of the jth line of the ith value. Such score is computed according to the
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collection of edge points which votes to the jth line in the Hough space. Roughly speaking, if linej
is the line equation associated to the jth line, then sij is given by :

sij =
∑

p∈Edge : distance(linej ,Ci(p))<1

1

1 + distance(linej, Ci(p))
,

where Ci(p) is the transformation of point p given by the lens distortion model associated to the ith

value of the distortion parameter. In Equation (4), for each ith value, the n lines in the Hough space
with highest values of sij are used to compute vi.

In Figure 4 we show the flowchart of this stage and we describe the method in Algorithm 4. We
remark that, due to the size of this part of the method, we have divided the procedure in several
subprograms (see Appendix A).

Figure 4: Initial estimation of lens distortion model using the improved Hough transform.
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Algorithm 4: Stage 2. Detecting lines with improved Hough transform, described in Figure 4

input : contours ; // Contour information.

ldm ; // Initial distortion model.

output: i primitive ; // Image primitives where lines and distortion model is

defined.

vimax ; // Maximum of voting score.

// Define score volume size and orientation discretization vector

// Update the contours object with the initial lens distortion model,

Algorithm 10

update contours( · · · );

// Fill the 3D score volume

for i← 0 to depth score do
// Compute the lens distortion parameter value for each iteration,

Algorithms 11, 12

voting( · · · );

// Computation of reliable measure vi given in (4)

// Select the distortion level imax which maximizes vi
end

// Image primitives objects for corrected points and original points

i primitive corrected.lines ← i primitive.lines;
i primitive original.lines ← i primitive.lines;

// Fill the image primitives using the lens distortion model given by imax

// Compute the points of the lines following their distance, Algorithm 13

capturing points( · · · );

// Debugging of the primitives through the orientation of the points,

Algorithm 15

ensure consistent line orientations( · · · );

// Recompute the line equations, Algorithm 19

recompute line equations( · · · );

// Remove lines with a small number of points and merge lines which are too

close, Algorithms 17, 18

remove and join( · · · );

// After removing the lines, we recompute the equations, Algorithm 19

recompute line equations( · · · );

// Update the image primitives and return the maximum voting score vimax

i primitive ← i primitive original;

return vimax ;
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2.3 Stage 3: Iterative optimization

Figure 5: Iterative optimization.

Once the one-parameter model and the set of initial primitives have been obtained, two tasks
are iteratively carried out in this stage. Firstly, we optimize the lens distortion model including the
second distortion parameter and the distortion center. Secondly, with the optimized two-parameter
lens distortion model, we apply the Hough transform with the aim of detecting points that were not
considered before.

The optimization of the lens distortion model is performed by minimizing the distance from the
corrected primitive points to the lines. If we denote by d the tuple (k1, k2, xc, yc), which defines the
distortion model by its parameters and distortion center, this minimization consists in reducing the
energy

E(d) =
Nl∑
j

N(j)∑
i

distance (Cd(xji), linej)
2 , (5)

where Nl is the number of lines, N(j) is the number of points of the jth line, and Cd(xji) represents
the corrected points associated to linej, using the model given by d. The initial value for k1 is given
by the final value obtained in the previous step, whereas the initial value for k2 is 0. The center of
distortion is initialized at the geometric center of the image. The Taylor expansion of E(d) around
the initial approximation d0 is given by

E(d) = E(d0) + (∇E(d0))T (d− d0) +
1

2
(d− d0)T∇2E(d0)(d− d0) + . . . (6)
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Algorithm 5: Stage 3. Iterative optimization, described in Figure 5

input : contours ; // The edges of the input image.

i primitives ; // The previous collection of lines.

opt center ; // Option for the center optimization.

output: i primitives ; // The collection of lines optimized.

best model ← previous model ← i primitives.ldm;
previous ip ← i primitives;
TOL ← 10−2;
fails ← 0;
next num points ← best num points ← num points ← count points (i primitives);

while next num points ≥ (num points · (1 + TOL)) OR fails < 3 do
error ← energy minimization( previous model, i primitives, opt center ) ; // Algorithm 7

// Call Hough with the model computed before

i primitives ← Hough( contours, previous model ) ; // Algorithm 4

local num points ← count points (i primitives);

if local num points > next num points then
// We update the primitives only if Hough provides a better result

if local num points > best num points then
previous ip ← i primitives;
best num points ← local num points;
best model ← previous model;
final error ← error;

end

else
fails ← fails+1;

end

num points ← next num points;
next num points ← local num points;

end

// We take the last and best image primitives object and model

i primitives ← previous ip;
i primitives.distortion ← best model;

// We return the average error

return final error
best num points

;
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Since we want to minimize this energy, we derive the previous expression and make it equal to 0

∇E(d) ≈ ∇E(d0) +∇2E(d0)(d− d0) = 0. (7)

Therefore,
∇2E(d0)(d− d0) = −∇E(d0), (8)

where

∇E(d0) =


∂E(d0)
∂k1

∂E(d0)
∂k2

∂E(d0)
∂xc

∂E(d0)
∂yc

 , (9)

∇2E(d0) =


∂2E(d0)

∂k21

∂2E(d0)
∂k1∂k2

∂2E(d0)
∂k1∂xc

∂2E(d0)
∂k1∂yc

∂2E(d0)
∂k2∂k1

∂2E(d0)

∂k22

∂2E(d0)
∂k2∂xc

∂2E(d0)
∂k2∂yc

∂2E(d0)
∂xc∂k1

∂2E(d0)
∂xc∂k2

∂2E(d0)
∂x2c

∂2E(d0)
∂xc∂yc

∂2E(d0)
∂yc∂k1

∂2E(d0)
∂yc∂k2

∂2E(d0)
∂yc∂xc

∂2E(d0)
∂y2c

 . (10)

We optimize the values of the tuple d using the following iterative scheme

dn+1 = dn + (∇2E(dn) + γId)−1(−∇E(dn)), (11)

where γ is used to control the convergence of the minimization as follows: γ is updated in each
iteration to ensure that E(dn+1) < E(dn). Usually, its value is higher when we are far from the
solution and decreases when we approach it. We observe that we look for local minima of the energy
E(d) because, in general, the global minima of this energy can be attained at singular configurations
(especially when a very small number of primitive points are used). To avoid such singular solutions,
we check, using the results of theorems 1 and 2 showed in the companion paper [21], if the lens
distortion transformation is one-to-one and, otherwise, we reject the proposed solution (the details of
the algorithm for checking the invertibility of the lens distortion models are described in Algorithm 6).

In order to normalize the parameters k1 and k2 so that the method is independent of the image
resolution, and avoid working with too small values, we use the parameter normalization introduced
in the companion paper [21]. Therefore, the minimization is performed in the normalized parameters
p1 and p2 instead of k1 and k2. The value of p1 represents the percentage of correction of the
furthest point in the image from the center of distortion, and p2 represents the same percentage of
correction, but for the midpoint between the center of distortion and the furthest point. This way,
the parameters are easier to interpret and do not depend on the image resolution. In what follows,
we will denote as r1 the distance from the center of distortion to the furthest point in the image
domain and r2 half of this distance. In the case of the polynomial model, we obtain the relation for
p1 and p2 showed in Equation (12), as well as the correspondence for the distortion parameters k1
and k2 in (13).

p1 = k14r
2
2 + k216r42, p2 = k1r

2
2 + k2r

4
2. (12)

k1 =
p1 − 16p2
−12r22

, k2 =
4p2 − p1
−12r42

. (13)

When we deal with the division model, we obtain a similar relation between the distortion parameters
and the normalized ones. In (14), we show the correspondence obtained for p1 and p2, whereas in (15)
we do the same related to k1 and k2.

p1 =
1

1 + k1r21 + k2r41
− 1, p2 =

1

1 + k1r22 + k2r42
− 1. (14)
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k1 =

−p1
1+p1

+ 16p2
1+p2

−12r22
, k2 =

−4p2
1+p2

+ p1
1+p1

−12r42
. (15)

In Algorithm 7 we describe the main ideas of this minimization process.

During this minimization procedure, we consider the same points which were originally detected
as line points. Only the parameters vary in order to obtain a better fitting between the points and the
line equations. However, once the center of distortion and the two distortion parameters have been
optimized, new points could be detected by the Hough transform using the optimized lens distortion
model to correct the distortion. Some edge points which were originally rejected because they did
not match the line equations (especially near the image boundaries, where the effect of the distortion
is more noticeable) can now be added to the set of line points. Therefore, we correct the distortion
of the edge points and apply the Hough transform once again, trying to detect a larger collection
of line points. The introduction of the iterative scheme to recalculate the line points using the
optimized parameters allows detecting new lines and significantly increases the number of points of
the detected lines, especially when the distortion is strong. We point out that this iterative procedure
always converges because we stop the iterations when the global amount of points associated to the
distorted lines does not increase across the iterations. In practice, only a few iterations are required
to attain convergence. In Figure 5 we show the flowchart of the iterative optimization process, and
in Algorithm 5 the method is described. In order to simplify the reading, some of the functions used
in the algorithm are included in Appendix B.

Figure 6: Variation of the number of points throughout the iterative optimization process applied to
the image in Figure 10.

Figure 6 shows the variation of the number of detected points throughout the iterations. As
observed, even from the first iteration, the number of points increases. This is due to the use of the
lens distortion model obtained in the previous iteration for correcting the edge points. As the model
has been optimized, by means of reducing the distance from the corrected points to the associated
straight lines, the improved Hough transform obtains a greater number of points.

2.4 Stage 4: Image Distortion Correction

The correction of the distortion is carried out using the inverse of the lens distortion model. As
explained in the companion paper [21], we have to invert the radial function:

r̂(r, k1, k2) = r · L(r),

340



An Iterative Optimization Algorithm for Lens Distortion Correction Using Two-Parameter Models

Algorithm 6: Checking the invertibility of the lens distortion model

input : ldm ; // Lens distortion model to check.

(width, height) ; // Image size.

output: ; // True if the lens distortion model is invertible or false otherwise

// We obtain the distance from the distortion center to the furthest corner of

the image

r ← get radius(get center(ldm), width, height);
hr ← r

2
;

if get type(ldm) = POLY NOMIAL then
k1 ← p1−16p2

−12hr2 ;

k2 ← 4p2−p1
−12hr4 ;

if
((r2k1 <

−2
3

) AND (9r4k21 − 20r4k2 < 0)) OR ((r2k1 ≥ −2
3

) AND (5r4k2 + 3r2k1 + 1 > 0))
then return true ;

else

k1 ←
−p1
1+p1

+
16p2
1+p2

−12hr2 ;

k2 ←
−4p2
1+p2

+
p1

1+p1

−12hr4 ;

if (−2 < r2k1 < 2) AND (−1− r2k1 < r4k2 <
1−r2k1

3
) then return true ;

if (r2k1 ≥ 2) AND (−1− r2k1 < r4k2 < − r4k21
12

) then return true ;

end
return false;

where r is the distance from an image point (x, y) to the distortion center, which we solve by a Newton
algorithm. To speed up the procedure, instead of computing the inverse of r̂(r, k1, k2) for each point
(x, y) independently, we first calculate the inverse in the discrete set r = 1, 2, 3, . . . , r̂(r1, k1, k2)
(where r1 is the maximum distance from an image point to the distortion center) and then, for any
point (x, y), we compute the inverse of r̂(r, k1, k2) using an interpolation procedure. Figure 7 shows
the flowchart of the distortion correction process, whereas Algorithm 8 describes the method. More
details about the correction of the distortion are given in Appendix C.
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Algorithm 7: The optimization of p1, p2, xc, yc by minimizing E (p1, p2, xc, yc)

input : lines ; // Primitives detected in the image

ldm ; // Lens distortion model given by the parameters p1, p2, xc, yc.
output: ldm ; // The optimized lens distortion model.

h1 ← 10−4; h2 ← 10−2;
γ ← 10.0;
Id(4, 4)← Identity matrix;

convergence it ← 0;
TOL ← 10−4;

// We compute vres values using the relation r1 = 2 · r2
vres(0)← TOL(|p1|+ 2);
vres(1)← TOL(|p2|+ 2);
vres(2)← TOL(|xc|+ 2);
vres(3)← TOL(|yc|+ 2);

while (|vres(0)| > TOL(|p1|+ 1) OR |vres(1)| > TOL(|p2|+ 1)
OR |vres(2)| > TOL(|xc|+ 1) OR |vres(3)| > TOL(|yc|+ 1))
AND convergence it ≤ 100 do

// We compute the gradient vector and the Hessian matrix

gradE ← Compute gradient(p1, p2, xc, yc, h1, h2) ; // Algorithm 20

hessE ← Compute hessian(p1, p2, xc, yc, h1, h2) ; // Algorithm 21

// We solve the equations system by means of Gauss method

vres(4)← Gauss(gradE, hessE + γ · Id);
p1new ← p1 + vres(0);
p2new ← p2 + vres(1);
xcnew ← xc + vres(2);
ycnew ← yc + vres(3);

// We iterate until the energy is reduced and the model is invertible

ldm ← lens distortion model (p1new , p2new , xcnew , ycnew);

if E(p1new , p2new , xcnew , ycnew) < E(p1, p2, xc, yc) AND check invertibility(ldm) then
p1 ← p1new + vres(0);
p2 ← p2new + vres(1);
xc ← xcnew + vres(2);
yc ← ycnew + vres(3);
γ ← γ

10
;

else
γ ← γ · 10;

end
convergence it ← convergence it + 1;

end

// We update the final model

ldm ← lens distortion model (p1new , p2new , xcnew , ycnew);
return min(E(p1new , p2new , xcnew , ycnew), E(p1, p2, xc, yc));
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Figure 7: Image distortion correction.

Algorithm 8: Distortion-free image computation, described in Figure 7

input : ; // Input image.

; // The estimated lens distortion model.

output: ; // A distortion free output image.

// We compute the InverseV ector in 1, 2, . . . , r̂(r1, k1, k2) (as explained in the

text).

for (x′, y′) ∈ Output image pixels do

r′ ←
√

(x′ − xc)2 + (y′ − yc)2;
index← Floor(r′);
weight← r′ − index;
r ← (1− weight) · InverseV ector(index) + weight · InverseV ector(index+ 1);
x← xc + r (x′ − xc);
y ← yc + r (y′ − yc);
// We use bilinear interpolation to estimate InputImage(x, y)
OutputImage(x′, y′)← InputImage(x, y);

end
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3 Complexity Analysis

In this section we present the complexity analysis of the described algorithms. First, we start by
defining some variables used in the description:

• Npixels: Number of image pixels.

• Nedges: Number of edge pixels.

• Nlines: Number of lines to extract from the Hough space.

• Sdistortion : Size of the discretized interval of distortion parameters used in the Hough space.

• SmatrixHough : Size of the Hough voting matrix.

• SvotingHough: Size of the neighborhood used for each point to vote in the Hough score matrix (this
neighborhood includes the lines passing near the edge point and with an orientation similar to
the edge point orientation)

Canny edge detector: In the Canny edge detection algorithm, the complexity is determined by
the algorithm we use to implement the Gaussian convolution. As we use the fast recursive algorithm
proposed in [6] as an approximation of the Gaussian convolution, which has a linear complexity with
respect to the image size, we can conclude that the complexity of the Canny edge detector we use is

O(Npixels).

Improved Hough transform: The traditional Hough transform has a complexity related to
the number of provided edge points and the dimension of the voting matrix. In our case, we divide
the complexity analysis in the following stages:

1. We consider the complexity of the voting process. The computational cost of this stage is
based on the number of detected edge points provided to our improved Hough Transform by
the Canny edge detector. Moreover, we have to take into account the dimension of the voting
matrix, determined by the size of the interval for the discretized lens distortion parameter and
the size of the intervals for the discretized distance and angle variation for each edge point to
vote. In this way, we can write the complexity of this section as

O(Nedges × Sdistortion × SvotingHough).

2. As well as in the above description, in the selection of the maximum, we consider the size of the
Hough voting matrix. However, as we provide a maximum number of lines to be considered, we
need to include this number in the complexity estimation. Therefore, the cost of the selection
of the maximum will be

O(Nlines × SmatrixHough ).

3. The complexity of the association of the edge points with the lines depends on the number of
edge points and the number of lines to compute

O(Nlines ×Nedges).
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Distortion parameter optimization: The modified Newton-Raphson method proposed for
the optimization of the distortion parameter converges in a few iterations for all the experiments
performed. Therefore, time complexity comes from the evaluation of the function to optimize (5).
In our case, such complexity is given by

O(Nedges).

Image distortion correction: For the correction of the distortion, we have to go through the
image pixels and correct the lens distortion, so the complexity is

O(Npixels).

Iterative optimization: The complexity of the iterative optimization process is similar to the
first point of the improved Hough transform, described above. However, in this stage the method is
applied without a range for the normalized distortion parameter. We can rewrite the complexity as

O(Nedges × SvotingHough),

where this complexity is multiplied by the number of iterations. In practice, only a few iterations
are needed to reach the optimized model. Therefore, the complexity of the method is given by

O(Npixels) +O(Npixels) +O(Nedges × SvotingHough).

Even though providing a precise estimation for the relation between the different variables is
difficult because it depends on the image, in general we have that Nlines << Nedges << Npixels ≈
SmatrixHough . Hence, considering the above expressions, the total complexity will be around O(Npixels).

Therefore, the time complexity is expected to be approximately linear with respect to the number
of pixels. In order to illustrate this, in Figure 8, we show the time required for 8 images of different
sizes (red crosses), which correspond to subimages of the image of the calibration pattern. The size
of the kth image (for k = 1, . . . , 8) is k

8
the size of the original image. Using this collection of images

and their corresponding CPU times, we compute the linear regression (green line). We obtain a
correlation coefficient of 0.9884, which shows a computational complexity close to O(Npixels).

4 Experimental Results

In this section we show some experiments carried out on an image of a synthetic calibration pattern
and an image of a building. Figures 9 and 10 illustrate the results of applying the proposed technique
to detect the primitives. We remark that all the experiments have been carried out using the same
set of parameters, described in tables 3, 4 and 5.

Figure 9 shows the different steps of the method applied to an image of a calibration pattern.
From the input image (Figure 9(a)), we detect the edges using the Canny method and the cleaning
process, described in Section 2.1 (see Figure 9(b)). After this step, the iterative optimization process
is applied, providing the primitives present in the image (Figure 9(c)). As observed, all the lines of
the calibration pattern are properly detected. Furthermore, some lines which do not belong to the
pattern are also detected (see lines on the bottom left corner). On the other hand, even when the
lines are not straight due to the distortion, they are detected as single lines (see the brown line on the
bottom or the green on the top of Figure 9(c)). Finally, the image is corrected using the information
obtained with the iterative procedure (Figure 9(d)).

Figure 10 illustrates the result of applying the method to an image of a building. In Figure 10(b),
we show the detected edges, and in Figure 10(c) the lines obtained with the iterative optimization
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Figure 8: CPU time for images of different sizes obtained from scaled versions of the calibration
pattern (red crosses). Linear regression (green line).

process. Even when the lines are affected by a significant distortion, they are detected (see the lines
on the stairs at the bottom of the image). Moreover, the method is able to distinguish lines that are
very close (e.g. the lines of the stairs at the bottom of the image). As we show in Figure 10(d), the
distortion is almost perfectly corrected.

In order to show a wide variety of experiments carried out with real images under different
conditions of illumination and perspective, we include Figure 11. In this figure we show the results
of applying the iterative optimization method to a database of distorted images.

Tables 1 and 2 show some comparative results between polynomial and division models, using
one-parameter models and two-parameter models with iterative optimization. Although the number
of detected lines decreases when we use the iterative optimization instead of the one-parameter
models, the number of points increases significantly. This means that the new proposal provides
longer lines, which gives more information for the estimation of the distortion. On the other hand, it
is also remarkable that the value of E (the error obtained measuring the distance from the corrected
points to the corrected straight lines) is lower when we use the iterative optimization.

Model N. Lines N. Points p1 p2 center E
Pol1p 43 10159 63.48% (536,356) 2.12279
Pol2pIO 38 11410 95.50% 11.42% (524.3,362.7) 0.682901
Div1p 41 11229 98.40% (536,356) 1.83278
Div2pIO 37 11481 118.60% 13.11% (525.9,362.4) 0.321207

Table 1: Number of lines and points, distortion parameters, distortion center and energy for the
calibration pattern in Figure 9 using the one-parameter polynomial and division models (Pol1p and
Div1p) and the two-parameter models with iterative optimization (Pol2pIO and Div2pIO).
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(a) (b)

(c) (d)

Figure 9: Results of applying the method on an image of a calibration pattern: (a) input distorted
image, (b) detected edges, (c) lines detected through the iterative optimization process and (d) the
corrected image.

Model N. Lines N. Points p1 p2 center E
Pol1p 49 10647 69.13% (536,356) 3.1627
Pol2pIO 57 11422 86.44% 15.75% (562.3,344.2) 3.18326
Div1p 51 14649 306.65% (536,356) 3.90514
Div2pIO 45 16061 1398.2% 22.05% (510.1,356.1) 4.64709

Table 2: Number of lines and points, distortion parameters, distortion center and energy for the
image in Figure 10 using the one-parameter polynomial and division models (Pol1p and Div1p) and
the two-parameter models with iterative optimization (Pol2pIO and Div2pIO).

Summary of algorithm parameters and default values

In this section, we describe the main parameters of the different functions which have been explained
above. In each table, we show a description of the parameters, their default values, and whether
they are provided in the on-line interface or not.

Table 3 shows a brief description of the parameters used in the Canny method. The first parameter
is the standard deviation for the Gaussian convolution. Moreover, it is necessary to indicate two other
parameters for the low and high thresholds of the Canny method. As described above, these values
represent a percentile of the gradient norm, by using a number between zero and one.

Table 4 summarizes the main parameters of the cleaning process. The first one is the number of
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(a) (b)

(c) (d)

Figure 10: Results of applying the method on an image of a building: (a) input distorted image, (b)
edges detected, (c) lines detected through the iterative optimization process and (d) the corrected
image.

Canny function
Parameters Default Value Interface
Standard deviation of the Gaussian 2.0 -
Low threshold for the Canny method 0.7 -
High threshold for the Canny method 0.8 X

Table 3: Parameters of the Canny function.

neighbors to consider, i.e. the size of the neighborhood in which the cleaning process analyzes what
points must be removed. The next parameter is the minimum number of contour points inside this
neighborhood. If the number of neighbors of a point is less than this value, it will be removed. Inside
the neighborhood, we also take into account the orientation of the edge points. For this reason, we
indicate the orientation correspondence. The last parameter is the minimum distance between edge
points. Setting this parameter to a value greater than zero, we only keep the point with the lowest
curvature inside each neighborhood.

Table 5 describes the main parameters of the improved Hough function. The first one is an input
parameter, in which the set of detected edges and their orientations are provided from the Canny
method. The next one is the maximum distance allowed between a point and its associated straight
line. Together with the distance, it is also necessary to set the maximum difference between the
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Figure 11: Some examples of image distortion corrections using the proposed method. All the
results have been obtained using the default values of the parameters. Additional results and access
to the original images are provided in http://www.ctim.es/WideLensImageDatabase/
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Cleaning process
Parameters Default Value Interface
Radius of the neighborhoods to take into account 2.0 -
Minimum number of contour points in a neighborhood 2 -
Minimum average scalar product of the points orientation 0.95 -
Minimum distance between contour points 1 -

Table 4: Parameters of the cleaning process.

orientation of the point and the line angle. Another input parameter is the maximum number of
lines to detect. The next two parameters set the resolution of the angle and distance, described
before. Finally, the initial and final value of the interval for the normalized distortion parameter are
provided as well as its resolution.

Improved Hough function
Parameters Default

Value
Interface

Set of detected edges and their orientations - -
Maximum distance allowed between points and associated lines (pixels) 3.0 X
Maximum difference of the point orientation angle and the line angle
(degrees)

10.0 X

Maximum number of lines to detect 100 -
Angle resolution for the angle parameter in the Hough space (degrees) 0.1 -
Distance resolution for the distance parameter in the Hough space
(pixels)

1.0 -

Minimum value for the normalized distortion parameter 0.0 X
Maximum value for the normalized distortion parameter 3.0 X
Distortion parameter discretization step in our improved Hough space 0.1 -

Table 5: Parameters of the improved Hough function.

5 Conclusions

In this paper we present an iterative optimization algorithm to automatically correct wide-angle lens
distortion. Using an improved Hough transform, we obtain a first value for the distortion parameter
and a collection of lines. In this transform, the distortion is included as a new dimension. Afterward,
an iterative optimization process is applied to obtain a two-parameter model and a better set of
primitives. This scheme is applied until the number of points does not increase. Finally, with
the improved lens distortion model, the input image is corrected. As we show in the experimental
results, the introduction of an iterative optimization process improves the collection of lines which
are obtained, providing longer lines. This allows a better correction of the distortion present in
the input image, especially when it is significant. The experimental results lead to three main
conclusions. First, the use of two distortion parameters instead of a single one improves the quality
of the models. Second, the division model performs better than the polynomial model when the
distortion is significant, as observed in the most challenging cases. Finally, the introduction of an
iterative optimization allows a significant increase in the number of points associated to each distorted
straight line. This translates into a better estimation of the distortion parameters and, therefore,
into a better correction of the images.
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A Algorithms of Stage 2: One-Parameter Lens Distortion

Model Estimation

Algorithm 9: orientation update

// Correction of the edge orientation (sin,cos) using the provided lens

distortion model.

input : p ; // The edge point

sine ; // Value of the sine component

cosine ; // Value of the cosine component

ldm ; // The lens distortion model

output: // A vector with the corrected orientation

// Point plus the orientation

pori ← (p.x+ cosine, p.y + sine);

// We apply the model to the original point

p′ ← ldm.evaluation(p);

// We apply the model to the point plus the orientation

p′ori ← ldm.evaluation(pori);

// We compute the new orientation and the norm

a← p′ori.x− p′.x;
b← p′ori.y − p′.y;

norm←
√
a2 + b2;

if a2 + b2 ≤ 0 then
corrected orientation ← (cosine, sine);

else

corrected orientation ← (
a

norm
,

b

norm
);

end

return corrected orientation;
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Algorithm 10: update contours

// Update the contours object with the provided lens distortion model. If the

model is empty, just makes a copy.

input : ldm ; // The lens distortion model.

contours ; // The input contours object.

index ; // Vector with the indexes of the edge points.

output: contours modified ; // The output contours object.

if ldm is identity then
contours modified ← contours ; // Copy the model

else
// Update the contours object using the provided model

foreach i ∈ index do
// Update the contour component of contours object

contours modified(i).is contour ← contours(i).is contour;

// Correct the position

ori ← (contours(i).x, contours(i).y);
contours modified(i) ← ldm.evaluation(ori);

// Correct the orientation

corrected orientation ← orientation update( ori, contours(i).sin, contours(i).cos, ldm);

// Update the value of the sine and cosine

contours modified(i).cos ← corrected orientation.x;
contours modified(i).sin ← corrected orientation.y;

if contours modified(i).sin<0 then
contours modified(i).cos ← - contours modified(i).cos;
contours modified(i).sin ← - contours modified(i).sin;

end

end

end
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Algorithm 11: voting

// Fill the voting matrix corresponding to the k slice

input : contours modified ; // Input contours information.

ldm ; // The lens distortion model of slice k.

step angle ; // Step for the angle dimension in the Hough voting matrix.

height score, width score ; // Size of the voting matrix.

angle increment ; // Increment for the angle interval

distance resolution ; // Resolution of the distance interval (width of the

voting matrix)

sine, cosine ; // Arrays of samples of sine and cosine functions.

index ; // Vector with the indexes of the edge points.

output: score k ; // The voting matrix

(xc, yc)← (ldm.distortion center.x, ldm.distortion center.y);

// Do the voting process only with the points inside the vector index

for q ∈ index do
// Compute the distortion model according to the type

(x3, y3)← (x2, y2)← (contours modified(q).x, contours modified(q).y);

if ldm.get d(1) 6= 0 then

(x3, y3)← ldm.evaluation((x2, y2));

end

// Orientation correction

corrected orientation ← orientation update( (x2, y2), contours modified(q).sin,
contours modified(q).cos, ldm);

// Estimate the angle interval

if corrected orientation.y ≥ 0 then

angle ← π−arctan (corrected orientation.y,corrected orientation.x)
step angle

;

else

angle ← π−arctan (−corrected orientation.y,−corrected orientation.x)
step angle

;

end

if angle = height score then angle ← height score− 1 ;

(l min, l max) ← angle± angle increment;
id ← 2;

// Algorithm 12

end
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Algorithm 12: This algorithm is included in 11

for l← l min to l max do
angle index ← l; sine sign ← 1;

if l < 0 then angle index← height score+ l ;
if l ≥ height score then

angle index← l − height score;
sine sign← −1;

end

distance ← −cosine(angle index) · y3 − sine(angle index) · x3;
for nd← −id to id do

d ← width score
2

+ distance
distance resolution

+ nd;

if 0 ≤ d < width score then
rect distance← |distance+ cosine(angle index) · y3 + sine sign ·
sine(angle index) · x3 + nd · distance resolution|;
score k(d, angle index)← score k(d, angle index) + 1

1+rect distance
;

end

end

end
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Algorithm 13: capturing points

// Associate points to lines according to their distance

input : contours modified, contours ; // Contours corrected with the input lens

distortion model. Original subpixel contours object.

angle point orientation max difference ; // Maximum angle difference between

the orientation of the edge point and the orientation of the line.

i primitive, i primitive corrected, i primitive original ; // Set of detected,

corrected and original primitives, respectively.

nlines plus ; // Total amount of lines to detect.

max distance ; // Maximum distance between a point an its associated

line.

index ; // Indexes of the edge points.

dot product min ← cos( π
180
· angle point orientation max difference) ;

ld ← i primitive.distortion;

for k ← 0 to nlines plus do i primitive.lines(k).points.clear() ;

foreach q ∈ index do
p← (contours modified(q).x, contours modified(q).y );
pori ← (contours(q).x, contours(q).y );
pd ← ld.evaluation( p );

corrected orientation ← orientation update( p, contours modified(q).sin,
contours modified(q).cos, i primitive.distortion );

for k ← 0 to nlines plus do
if corrected orientation.x · i primitive.lines(k).b− corrected orientation.y ·
i primitive.lines(k).a < dot product min then continue;

if i primitive.lines(k).evaluation(pd) < max distance then
i primitive.lines(k).points ← p;
i primitive corrected.lines(k).points ← pd;
i primitive original.lines(k).points ← pori;
break;

end

end

end

Algorithm 14: erase point

// Erasing a point ip in the line il in the image primitives objects

input : i primitive original, i primitive, i primitive corrected, il
output: ip

i primitive original.lines(il).erase point( ip );
i primitive.lines(il).erase point( ip );
i primitive corrected.lines(il).erase point( ip );

ip ← ip - 1;
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Algorithm 15: ensure consistent line orientations

// Ensuring the consistence of lines orientation, according to the predominant

orientation of their points

input : i primitive, i primitive corrected, i primitive original ; // Set of detected,

corrected and original, primitives, respectively.

contours ; // Original contours object.

width ; // Image width.

for il← 0 to i primitive original.num lines do
pos count ← 0, neg count ← 0;

for ip← 0 to i primitive original.lines(il).num points do
orientation sign ← compute orientation sign( image primitive original.lines(il), width,
ip, contours);

if orientation sign > 0 then pos count ← pos count + 1 ;

if orientation sign < 0 then neg count ← neg count + 1 ;

end

if pos count 6= 0 AND neg count 6= 0 then
if pos count > neg count then s ← 1;
else s ← -1 ;

for ip← 0 to i primitive original.lines(il).num points do

orientation sign ← compute orientation sign( image primitive original.lines(il),
width, ip, contours);

if s · orientation sign < 0 then
erase point( i primitive original, i primitive, i primitive corrected, il, ip);

end

end

end

end

Algorithm 16: compute orientation sign

// Computing the orientation sign of a point

input : line, width, ip, contours

current point ← line.points(ip);
pos ← width · round(current point.y) + round(current point.x);

(a, b)← (line.a, line.b);

return b · contours(pos).cos− a · contours(pos).sin;
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Algorithm 17: remove and join

// Remove short lines and to join lines which are very close

input : i primitive, i primitive corrected, i primitive original ; // Set of detected,

corrected and original primitives, respectively.

angle point orientation max difference ; // Maximum angle difference between

the orientation of the edge point and the orientation of the line.

distance point line max ; // Maximum allowed distance between the edge

point and the associated line.

width ; // Image width.

contours ; // Original contours object.

output: i primitive, i primitive corrected, i primitive original ; // The set of primitives

with the short lines removed and with the close lines joined.

MIN POINTS IN LINE ← 20;
MAX DISTANCE BETWEEN LINES ← 10;

dot product min ← max( 0.95, cos( π
180
· 2· angle point orientation max difference) );

min line points ← max( 20, 0.05 · i primitive.lines(0).number points );

distance line line min ← min( 10, 2 · distance point line max);

for k ← 0 to i primitive.number lines do
if i primitive.lines(k).number points < min line points then

i primitive.erase line(k);
i primitive corrected.erase line(k);
i primitive original.erase line(k);
k ← k - 1;
continue;

end

for l← k + 1 to i primitive.number lines do
// We check the number of points

if NOT (i primitive.lines(l).number points > 0) then continue;

aux← i primitive.lines(k).a · i primitive.lines(l).a+ i primitive.lines(k).b ·
i primitive.lines(l).b;

if aux > dot product min then
// We check the orientation of the first point of each primitive

a1 ← i primitive corrected.lines(k).a;
a2 ← i primitive corrected.lines(l).a;
b1 ← i primitive corrected.lines(k).b;
b2 ← i primitive corrected.lines(l).b;
point ← i primitive original.lines(k).points(0);

// Algorithm 18

end

end

end
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Algorithm 18: remove and join. Continuation of Algorithm 17

pos ← width · point.y + point.x;
sign1 ← b1 · contours(pos).cos− a1 · contours(pos).sin;
point ← i primitive original.lines(k).points(0);
pos ← width · point.y + point.x;
sign2 ← b2 · contours(pos).cos− a2 · contours(pos).sin;

if sign1 · sign2 ≤ 0 then continue;

// We check the average distance of the points to the line

aux ← 0;
m ← 0;
foreach p ∈ i primitive corrected.lines(l).points do

dist ← i primitive.lines(k).evaluation( p );
aux ← aux + dist;

if dist > 5 · distance point line max then break;
m ← m + 1;

end

if m < i primitive.lines(l).number points then continue;

if aux
i primitive.lines(l).number points

< MIN POINTS IN LINE then

aux ← 0;

foreach p ∈ i primitive corrected.lines(l).points do
(a, b, c) ← i primitive.lines(k).abc;
d ← a · p.x+ b · p.y + c;
np2d ← (p.x− d · a, p.y − d · b);
aux ← aux + i primitive corrected.lines(k).distance( np2d );

end

if aux
i primitive corrected.lines(l).number points

> MAX DISTANCE BETWEEN LINES then

// We add the points of the line to the line point structure

i primitive.lines(k).add points ← i primitive.lines(l);
i primitive corrected.lines(k).add points ← i primitive corrected.lines(l);
i primitive original.lines(k).add points ← i primitive original.lines(l);

// We remove the line points structure

i primitive.erase line( l );
i primitive corrected.erase line( l );
i primitive original.erase line( l );
l ← l -1;

end

end
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Algorithm 19: recompute line equations

// Recompute the equations of the lines using their points

input : i primitive, i primitive corrected, i primitive original ; // Set of detected,

corrected and original primitives, respectively.

lens distortion estimation ; // Flag for considering the lens distortion.

output: i primitive, i primitive corrected, i primitive original ; // The set of primitives

with the recomputed equations

if lens distortion estimation = True then
for i← 0 to i primitive.number lines do

if i primitive.lines(i).number points > 2 then
i primitive corrected.lines(i).points to equation();
(a, b, c) ← i primitive corrected.lines(i).abc;
i primitive.lines(i).abc ← (a, b, c);
i primitive original.lines(i).abc ← (a, b, c);

end

end

else
for i← 0 to i primitive.number lines do

if i primitive.lines(i).number points > 2 then
i primitive.lines(i).points to equation();
(a, b, c) ← i primitive.lines(i).abc;
i primitive corrected.lines(i).abc ← (a, b, c);
i primitive original.lines(i).abc ← (a, b, c);

end

end

end
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B Algorithms of Stage 3: Iterative Optimization

Algorithm 20: Computing the gradient of E

input : p1, p2 ; // normalized value for the distortion parameter k1 and k2.
xc, yc ; // (x, y) coordinate of the distortion center.

h1 ; // discretization step for p1 and p2.
h2 ; // discretization step for the coordinates of the distortion

center.

output: ; // The gradient vector

gradE(0)← − (E(p1+h1,p2,xc,yc)−E(p1,p2,xc,yc))
h1

;

gradE(1)← − (E(p1,p2+h1,xc,yc)−E(p1,p2,xc,yc))
h1

;

gradE(2)← − (E(p1,p2,xc+h2,yc)−E(p1,p2,xc,yc))
h2

;

gradE(3)← − (E(p1,p2,xc,yc+h2)−E(p1,p2,xc,yc))
h2

;

Algorithm 21: Computing the Hessian of E

input : p1, p2 ; // normalized value for the distortion parameter k1 and k2.
xc, yc ; // (x, y) coordinate of the distortion center.

h1 ; // discretization step for p1 and p2.
h2 ; // discretization step for the coordinates of the distortion

center.

output: ; // The Hessian matrix.

hessE(0, 0)←
(

(E(p1+h1,p2,xc,yc)+E(p1−h1,p2,xc,yc)−2E(p1,p2,xc,yc))

h21

)
;

hessE(1, 1)←
(

(E(p1,p2+h1,xc,yc)+E(p1,p2−h1,xc,yc)−2E(p1,p2,xc,yc))

h21

)
;

hessE(2, 2)←
(

(E(p1,p2,xc+h2,yc)+E(p1,p2,xc−h2,yc)−2E(p1,p2,xc,yc))

h22

)
;

hessE(3, 3)←
(

(E(p1,p2,xc,yc+h2)+E(p1,p2,xc,yc−h2)−2E(p1,p2,xc,yc))

h22

)
;

hessE(0, 1)← hessE(1, 0)← (E(p1+h1,p2+h1,xc,yc)−E(p1+h1,p2,xc,yc))−(E(p1,p2+h1,xc,yc)−E(p1,p2,xc,yc))

h21
;

hessE(0, 2)← hessE(2, 0)← (E(p1+h1,p2,xc+h2,yc)−E(p1+h1,p2,xc,yc))−(E(p1,p2,xc+h2,yc)−E(p1,p2,xc,yc))
h1h2

;

hessE(0, 3)← hessE(3, 0)← (E(p1+h1,p2,xc,yc+h2)−E(p1+h1,p2,xc,yc))−(E(p1,p2,xc,yc+h2)−E(p1,p2,xc,yc))
h1h2

;

hessE(1, 2)← hessE(2, 1)← (E(p1,p2+h1,xc+h2,yc)−E(p1,p2+h1,xc,yc))−(E(p1,p2,xc+h2,yc)−E(p1,p2,xc,yc))
h1h2

;

hessE(1, 3)← hessE(3, 1)← (E(p1,p2+h1,xc,yc+h2)−E(p1,p2+h1,xc,yc))−(E(p1,p2,xc,yc+h2)−E(p1,p2,xc,yc))
h1h2

;

hessE(2, 3)← hessE(3, 2)← (E(p1,p2,xc+h2,yc+h2)−E(p1,p2,xc+h2,yc))−(E(p1,p2,xc,yc+h2)−E(p1,p2,xc,yc))

h22
;
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C Algorithms of Stage 4: Image Distortion Correction

Algorithm 22: undistort image inverse

input : input image ; // Input image.

ldm ; // Lens distortion model.

image amplification factor ; // image amplification factor.

output: output image ; // The input image with the distortion correction.

// Calculate maximum distance from center to a corner

ldm center ← ldm.distortion center;
max distance corner ← sqrt(update rsqmax(ldm center, input image.width,
input image.height) );

// Build full polynomial (including null odd degrees)

Na ← 2 · (ldm.d.size()− 1);
if ldm.d.size() < 2 then return input image ;
a(0) ← ldm.d(0);

for i← 1 to ldm.d.size() do
a(2 i− 1)← 0;
a(2 i)← ldm.d(i);

end

while Na > 0 AND a(Na) = 0 do Na ← Na - 1 ;

// We update the max distance corner according to lens distortion max

displacement, and the type of distortion model

if get type(ldm) = POLY NOMIAL then
step ← 0;
power ← max distance corner;
for k ← 0 to Na do

step ← step+ power · a(k);
power ← power · max distance corner;

end
if step > max distance corner then max distance corner ← step ;

else
if ldm.d.size() = 2 then max distance corner ← max distance corner

ldm.d(0)+ldm.d(1)·max distance corner2 ;

else max distance corner ← max distance corner
ldm.d(0)+ldm.d(1)·max distance corner2+ldm.d(2)·max distance corner4 ;

end

// Algorithm 23
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Algorithm 23: Continuation of the Algorithm 22

// We build the lens distortion inverse vector

if get type(ldm) = POLY NOMIAL then

if Na < 2 then return input image ;

if build l1r vector( l1r, max distance corner, Na, a) = -1 then return input image ;

else

if ldm.d.size() = 2 then
if build l1r quotient vector(l1r,max distance corner, a,Na) < 0 then return
input image ;

else
compute division l1r(l1r, ldm.d, max distance corner);

end

end
· · ·
for nc← 0 to 3 do

n2 ← nc · size;
for i← 0 to height do

for j ← 0 to width do
temp ← ( j · scale− t.x, i · scale− t.y );
distance center ← (ldm center - temp).norm();

// Interpolation

ind ← distance center;
if ind ≥ l1r.size() then continue;

dl1r ← l1r(ind) + (distance center - ind) · (l1r(ind+1) - l1r(ind));

p.x ← ldm center.x + (temp.x - ldm center.x) · dl1r;
p.y ← ldm center.y + (temp.y - ldm center.y) · dl1r;
(n, m) ← (p.x, p.y);

if 0 ≤ m < height0 AND 0 ≤ n < width0 then
// Colour interpolation

(dj, di) ← (p.x - n, p.y - m);

w ← (1 - di) · (1 - dj);
accum ← accum + w · input image(m · width0 + n+n2);
w accum ← w accum + w;
· · ·
if w accum > 0 then output image(i · width + j + n2) ← accum

w accum
;

end

end

end

end
return output image;
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