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Abstract

You walk through a museum taking photographs of some paintings with your commodity camera.
You load all these images into the computer. The computer builds a high-quality image of each
one of the paintings. This article describes what the computer does. More precisely, we explain a
method to produce a single, high-resolution, clean and well-lit image, out of many low-resolution
noisy images taken in bad lighting conditions.

Source Code

The source code (ANSI C), its documentation, and the online demo are accessible at the IPOL
web page of this article1.

Keywords: registration; denoising; reconstruction; image fusion; image blending; burst de-
noising; highlight removal; glare removal; reflection removal; shadow removal

1 Introduction

When taking a single photograph of a painting, three problems may occur. The first problem is noise:
since museums typically use subdued lighting, the photographs have to be taken at high sensitivity
and they are noisy (see Figure 1). The second problem is reflections: since there are non-diffuse
light sources, and the surface of the canvas is too bright, glossy, varnished or even covered by glass,
highlights and reflections may appear (see Figure 2). The third problem is limited resolution: if the
whole painting has to fit in a single photograph, the resolution of the camera may be simply not
enough to show the small details of the painting (see Figure 3).
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Figure 1: Noisy image taken on a museum (left: whole image, right: detail).

Figure 2: Two photographs of the same painting showing reflections at different places.

Figure 3: An image and a detail. For such large paintings, a single high-resolution photograph has
simply not enough resolution to represent all the detail.

The present article, based on [5], addresses these three problems using an appropriate combination

1http://dx.doi.org/10.5201/ipol.2015.49

160

http://dx.doi.org/10.5201/ipol.2015.49


Obtaining High Quality Photographs of Paintings by Image Fusion

of classical image processing tools. In each case, the problem is solved by combining the information
from several images into one. The problem of noise is solved by burst denoising, whereby several
photographs from the same viewpoint are averaged in order to reduce noise. The problem of reflec-
tions is solved by highlight removal, whereby several photographs taken from different viewpoints
are combined using a robust average, in order to remove the highlights which appear at different
places among the images. The problem of resolution is solved by detail pasting, by means of which
photographs of parts of the picture are seamlessly pasted into a reference image of the whole pic-
ture, producing a higher resolution version of it. The present article focuses on burst denoising and
highlight removal, leaving the delicate analysis of detail pasting to a forthcoming article.

In Section 2 we give an informal overview of the whole reconstruction pipeline. In Section 3 we
point to the basic tools from classical image processing that are needed. In Sections 4 and 5 we
describe respectively the complete algorithms for burst denoising and highlight removal. In Section 6
we describe the algorithm for detecting bursts in a sequence of images.

2 Overview of the Whole Pipeline

This article describes a method for constructing a single image of a painting from many photographs
of that painting. Thus, the input is a set of images and the output is a single image. The goal is
that this combination removes several defects of the individual images.

For simplicity, we assume that all the images are photographs of the same painting and that each
subset of images taken from the same point of view (henceforth called burst) is consecutive. We
also assume that the first photograph is a frontal view of the whole painting, which may have been
manually cropped. The pipeline is described in Algorithm 1.

Algorithm 1: scheme of the whole pipeline (see Figure 4)

Input : A list of images I1, · · · , In, where Ii : Ω ⊆ Z2 → R3, i = 1, . . . , n, and Ω a
rectangular image domain.

Output: An image I∗ : Ω→ R3

Apply BurstSegmentation to the list of images, partitioning it into bursts.1

Apply BurstDenoising to each burst, obtaining one denoised image per burst2

Apply HighlightRemoval to the set of views of each detail, obtaining an image of each detail3

without reflections
Apply DetailPasting to these images, obtaining I∗ (not described in this article)4

A common particular case of this algorithm arises when all the input images are photographs of
the whole painting. In that case, there is no image corresponding to a subpart of the painting, so we
can consider that there is only one “detail”, the whole image itself. This particular case is suitable
when the painting has small dimensions, so that a single shot can have enough resolution. Another
particular case arises when all the bursts consist of one single photograph. This case is suitable when
the scene is bright enough so that no denoising is required.

3 Basic Tools

The proposed method is a high-level image processing algorithm. As such, it uses several lower-level
methods as its building blocks. We consider these methods as black boxes, and we explain below
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I1 I2 I3 I4 I5 I6 I7 I8

burst denoising︸ ︷︷ ︸ burst denoising︸ ︷︷ ︸ burst denoising︸ ︷︷ ︸ burst denoising︸ ︷︷ ︸
B1 B2 B3 B4

highlight removal︸ ︷︷ ︸ highlight removal︸ ︷︷ ︸
D1 D2

detail pasting (not described in this article)︸ ︷︷ ︸

Figure 4: Schematic overview of the whole pipeline. The input sequence is partitioned into bursts.
The images from each burst are combined into a single denoised image. These denoised images are
partitioned into “details”. All the views from each detail are combined into a single image, without
highlights. These images may be finally pasted into a single reference frame.

their input, output and purpose. Here we will not detail their inner workings, instead we refer to
other publications where they are explained in detail. However, an optimized implementation of the
proposed method may need to break inside these building blocks and fine-tune them to the needs of
the larger algorithm.

3.1 SIFT Homographies

We use SIFT [7] as a method for finding a homography that matches two images. This is an appro-
priate tool for registering different photographs of the same planar object because, under the pinhole
camera model, these images differ exactly by a homography. Notice that for non-planar objects, ho-
mographies are still a correct model if the camera motion is a rotation around the center. In practice,
when taking a burst of images from a fixed position, the camera rotation is a valid approximation
of the real movement; thus there is a registering homography even for three-dimensional scenes (as
assessed by the fact that we can denoise photographs of sculptures by using this method as shown
in Figure 12).

In general, SIFT is a method for extracting keypoints from an image and assigning robust de-
scriptors to them. These descriptors can be matched to those of another image in order to produce
a list of pairs of points. This list of matching points can be used to estimate the parameters of a
geometric transformation between the two images. Typically, a robust estimation method such as
RANSAC [3] is used, which automatically rejects wrong matches before computing the model.

For our purposes, we use this combination of SIFT and RANSAC to register a pair of images by
a homography (see Algorithm 2). Thus, from the point of view of this article, SIFT is a method that
takes two images and produces as output a homography that registers them. Optionally, it gives the
list of matching point pairs that are consistent with the estimated homography. In Figure 5 we show
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the steps and the result of this registration algorithm.

Algorithm 2: SIFT (find a homography by SIFT+RANSAC)

Input : Image A : ΩA → R
Input : Image B : ΩB → R
Input : Parameter m = maximum allowed distance
Input : Parameter ε = maximum allowed error
Output: A boolean value match-found

Output: A homography H : R2 → R2, represented by a 3× 3 matrix
Output: A list of n pairs of points (ai, bi) ∈ ΩA × ΩB, for i = 1, . . . , n

Compute the SIFT matches between A and B (see [7])1

Run RANSAC to find the best homography among these matches (see [3])2

When match-found is true (see Algorithm 2), the output of the SIFT+RANSAC algorithm has
the following properties:

1. |H(ai)− bi| < ε, so that if ε is small we can expect images A ◦H and B to be well registered
(if the keypoints were representative at all)

2. |ai − bi| < m, so that if m is small we can expect H to be close to the identity, meaning that
the images were already almost registered.

Reasonable values of these parameters are ε = 1, meaning that we allow an error of one pixel
in the position of the keypoints, and m equal to one tenth of the diameter of the image, meaning
that H is a small deformation. Another meaningful value is m = ∞, which allows for arbitrarily
large deformations.

This SIFT algorithm is used by the algorithms BurstSegmentation (Section 6), BurstDenoising
(Section 4) and HighlightRemoval (Section 5).

3.2 ASIFT Homographies

The SIFT+RANSAC method works well when the desired transformation is locally isotropic. How-
ever, it breaks down when there is a large tilt between the two images. This is due to the fact that the
SIFT descriptors are scale-invariant but not invariant under arbitrary affine transformations (e.g.,
having a different zoom factor in different directions).

The ASIFT Algorithm [8] is built upon SIFT and is able to find homographies with a much larger
tilt. Internally, it builds an orbit of affinely deformed versions of each image, before running SIFT
on each resulting pair of images. By careful sampling on the space of such deformations, it runs
efficiently. See Figure 6 for an example of two images related by a tilt of 15.

The signature of the algorithm is the same as for SIFT, so we do not repeat it here. The only
difference is in the running time (which is about 10 times slower), and the larger tilt factors which
is able to recover (up to 40, according to [8]). Also, in the cases where SIFT was able to find the
correct homography, ASIFT finds many more matching keypoints. On the other hand, the precision
of the computed homographies is sligthly worse, because the inherent inaccuracy in the location of
the keypoints is compound with a larger deformation. Thus, it is common to refine a registration
produced by ASIFT by post-processing the results using regular SIFT.

The ASIFT algorithm is used by the Algorithm HighlightRemoval (Section 5). An online imple-
mentation of the ASIFT algorithm is separately available on IPOL [10].
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Image A keypoints (2291) Image B keypoints (2324)

SIFT matches (1357) RANSAC inliers (1203)

difference B − A registered difference B − A ◦H

Figure 5: Registration of two images by SIFT+RANSAC. The SIFT matches are run through
RANSAC to fit a homographic model H. The homography H registers both images, as can be seen
from the fact that the registered difference contains mostly noise.

3.3 Irregular Sampling using Splines

Deforming the image domain by a homography, or by another smooth transformation, is a particular
case of irregular sampling [2]. In general this is a difficult problem. However, for the purpose of
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Figure 6: ASIFT is able to detect homographies with a huge tilt, as in this image. Here, SIFT does
not find any match.

this article we assume that both images have roughly the same size and that the deformation is not
strongly non-isotropic. Then the sampling can be performed naively by a linear interpolating scheme
such as splines (Algorithm 3).

Algorithm 3: irregular sampling using splines

Input : Image I : Z2 → R
Input : Smooth function F : R2 → R2

Input : Parameter n ∈ {1, 2, 3,−3, 5, 7, 11} order of the spline
Output: Image J : Z2 → R, approximating I ◦ F
Compute the sampling locations (x, y) = F (i, j) ∀(i, j) ∈ Z2

1

Evaluate I(x, y) using a spline of order n2

The meaning of the parameters, and the method itself, is explained in detail elsewhere (see [4]
and MegaWave2 documentation). Our preferred choices are n = −3 (bicubic interpolation) for speed
and n = 7 for a good compromise between accuracy and ringing artifacts.

We use this algorithm for deforming an image by a homography, as in Figure 7. This is needed by
the BurstDenoising algorithm (Section 4, line 4 of the algorithm); and by the HighlightRemoval

algorithm (Section 5, lines 4 and 8 of the algorithm).

 0.803226 −0.0337366 18.7011
0.0955645 0.673925 18.7011

0.000645791 −0.000855805 1.005381


I H I ◦H

Figure 7: Irregular sampling allows us to deform the image domain by an arbitrary homography.

2MegaWave software. http://megawave.cmla.ens-cachan.fr/
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3.4 Midway Histogram Equalization

The cumulative normalized histogram of an image A is an increasing function hA whose values
go from 0 to 1 as its argument goes from the minimum to the maximum value of A. Thus, the
image hA◦A has values on the interval [0, 1], and its histogram is uniform. We can change the contrast
of an image A so that it has a prescribed cumulative histogram h by the operation h−1 ◦ hA ◦ A,
where h−1 is a pseudo-inverse of the function h.

A nice way to define a target histogram h computed from a collection of images is given by the
midway histogram algorithm [1] (Algorithm 4). For color images, we apply the midway histogram
algorithm channel by channel.

Algorithm 4: MidwayHistogram

Input : Images I1, . . . , In, where Ii : Ω→ R, I = 1, . . . , n.
Output: A cumulative histogram h

for i = 1, . . . , n do1

hi ← cumulative histogram of image Ii2

f(t)← 1

n

n∑
i=1

h−1i (t) t ∈ [0, 1]
3

h← f−14

Notice that the actual computations performed on lines 3 and 4, written here in symbolic form,
require a careful sampling of the involved functions. See [1] for details.

Algorithm MidwayHistogram is used by Algorithm HighlightRemoval, described in Section 5.

3.5 Poisson Editing

Poisson’s equation

∆u = f

can be used to recover an image I knowing its gradient F. Namely, we need to solve Poisson’s
equation with u = I and f = div(F). Without any boundary conditions, there is a family of
solutions differing by addition of an arbitrary harmonic function. If we impose that the derivative
of this harmonic function must vanish at the boundary of the image, the family of solutions is
one-dimensional, parametrized by an additive constant.

Poisson’s equation on the whole plane can be solved using the 2D Fourier transform. If we denote
the 2D Fourier transform of a function f(x, y) by f̂(ξ, η), we have that ∆̂u = −(ξ2 + η2)û. Thus,
the solution of the Poisson equation above can be computed as the inverse Fourier transform of the
following function

û =
−1

ξ2 + η2
f̂ .

Notice that û is undefined at (ξ, η) = 0, so that the mean value of the function is lost. In writing
this equation, we use the convention that 1/0 = 0.

For a discrete and rectangular domain, we can use the solution above by periodizing the data to
the whole plane. This corresponds to Poisson’s equation on the rectangle with vanishing Neumann
boundary conditions. For the implementation details see, for example, [6]. In the present article we
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use Poisson equation as a procedure for recovering an image from its gradient and its average value.
This method is also the basis of Poisson Editing [9], a technique for seamlessly pasting images. See
Figure 8 for the visual effect of the ∆ operator and its inverse, and Figure 9 for the recovery of an
image from its gradient.

Algorithm 5: PoissonEquation

Input : Vector Field G : Ω→ R2, the desired gradient
Input : Number m, the desired mean value
Output: Image I : Ω→ R

g ← div(G) using backward differences1

f ← FFT(g)2

for (k, l) ∈ Ω do3

f(k, l)← −1
k2+l2

f(k, l)4

I0 ← IFFT(f)5

I ← I0 +m6

Algorithm PoissonEquation (Algorithm 5) is used at the end of Algorithm HighlightRemoval,
described in Section 5.

3.6 Inverse Heat Equation

A common operation in image processing is sharpening, by which blur is removed from an image. In
general, this is an ill-posed problem and its solutions are unstable. The worst case happens when
the blurry images are also affected by noise. For the purposes of this article, we need sharpening to
enhance the slightly blurry images obtained after the whole pipeline. Since these reconstructed images
are already denoised, it is relatively safe to try to sharpen them, for a great visual improvement.

We are content with the simplest form of sharpening, given by the inverse heat equation

∂

∂t
I = −∆I.

Using the blurry image I as initial condition for this equation, we obtain a sequence of iteratively
sharpened versions of it by a finite difference scheme. A few iterations are computed until artifacts
start to appear (the artifacts must be detected visually). Some iterations of this algorithm are
illustrated in Figure 10. In our program, by default we perform 3 iterations which is a safe value.

The Sharpening algorithm (Algorithm 6) is used as the last step of algorithms BurstDenoising
(Section 4) and HighlightRemoval (Section 5).

4 Burst Denoising

The algorithm for burst denoising combines several images taken from the same viewpoint into a
single, cleaner image (see Algorithm 7). This algorithm assumes that all the images on the list can
be registered by SIFT to the first one. This assumption is automatically true when this algorithm
is run inside the whole pipeline. Since we don’t expect large illumination changes, the registered
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Algorithm 6: Sharpening

Input : Image I : Ω→ R
Output: Sequence I1, I2, I3, . . . of sharpened versions of I

t← 0.11

I0 ← I2

for n = 0, 1, 2, . . . until artifacts appear do3

for (x, y) ∈ Ω do4

L(x, y)← In(x+ 1, y) + In(x− 1, y) + In(x, y + 1) + In(x, y − 1)− 4In(x, y)5

In+1 ← In − tL6

I ∆I ∆−1I

Figure 8: The Laplacian and anti-Laplacian of the same image. Notice that the anti-Laplacian is a
very smooth image. The ranges of these three images are respectively [0, 255], [−5, 5] and [−127, 127].
For display purposes, these ranges have been re-scaled to fill the interval [0, 255].

f = ∂xI g = ∂yI ∆−1(∂xf + ∂yg)

Figure 9: The Poisson editing method allows to recover an image (up to an additive constant), from
its gradient.

images can be averaged directly. However, some of the images may be blurry due to camera shake.
Thus, this average is locally weighted by a local measure of image quality. Finally, this average is
sharpened to reduce the blur due to minor inaccuracies in the registration. Figures 11 and 12 show
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I I3 I5 I7

Figure 10: Visual effects of the sharpening algorithm on a blurry image I (detail). At 3 iterations the
blur is mostly removed. At 5 iterations the image acquires an artificial appearance. At 7 iterations,
the image is completely destroyed by high-frequency artifacts.

some results of the burst denoising algorithm.

Algorithm 7: BurstDenoising

Input : Images I1, . . . , In
Input : Parameter t ≥ 0 (sharpening strength)
Output: Image I∗

for i = 1, . . . n do // find homographies1

Hi ← SIFT(I1, Ii)2

for i = 1, . . . n do // register all images to the first one3

I ′i ← Ii ◦H−1i4

for i = 1, . . . n do // compute the weight images5

Di(x)← LocalWeight(I ′i, x)6

I0 ← (
∑n

i=1DiI
′
i) / (

∑n
i=1Di) // weighted linear combination7

I∗ ← Sharpening(I0) // sharpen the result8

The local weights are defined by the following formula (see [5])

LocalWeight(I, x) :=

∫
R(x)

|∇Ī(x + y)|dy,

where R(x) denotes a square neighborhood of side 100 pixels centered around x, and Ī is the lumi-
nance component of the image I.

Notice that, for simplicity, we have written the algorithm so that the first image is registered to
itself. In practice, this computation is omitted.

The BurstDenoising algorithm is used at step 2 of Algorithm 1 (the whole reconstruction
pipeline).

5 Highlight Removal

The algorithm for highlight removal is similar to the one used for burst denoising: first register
the images and then combine them. However, the goals and the constraints are different. Namely,
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Image I1 from a burst of 10 (detail) Denoised image I Difference I − I1

Figure 11: Example of burst denoising. These images show details of larger images of size 1920×1080.
Notice that, besides being denoised, the reconstructed image is sharper. This is due to the weights
used in the denoising, which tend to reject images in the burst which are blurry. The difference is
shown here within the range [−20, 20].

Image I1 from a burst of 10 (detail) Denoised image I Difference I − I1

Figure 12: Example of burst denoising. These images show details of larger images of size 1080×1920
of a three-dimensional sculpture. The third image is shown within the range [−10, 10].

here we expect larger deformations and global and local illumination changes. Thus the registration
is performed by ASIFT instead of SIFT, and the histograms are normalized before combining the
images. Finally, the combination is not a linear average but a gradient median, which is much more
robust to some images having extremely different colors due to reflections and highlights.

The method is described in Algorithm 8. Lines 1–8 compute a set of registered images. Lines 9–
12 normalize the histograms of the registered images Then, on lines 13–18 the registered and color-
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Algorithm 8: HighlightRemoval

Input : Images I1, . . . , In
Input : Parameter t ≥ 0 (sharpening strength)
Output: Image I∗

for i = 1, . . . n do // find homographies by ASIFT1

Hi ← ASIFT(I1, Ii)2

for i = 1, . . . n do // register all images to the first one3

I ′i ← Ii ◦H−1i4

for i = 1, . . . n do // refine the homographies by SIFT5

Fi ← SIFT(I1, I
′
i)6

for i = 1, . . . n do // resample using the combined transformation7

I ′′i ← Ii ◦H−1i ◦ F−1i8

h← MidwayHistogram(I ′′1 , . . . , I
′′
n) // compute the target histogram9

for i = 1, . . . n do // impose this histogram to all images10

hi ← cumulative histogram of image Ii′′11

Ji ← h−1 ◦ hi ◦ I ′′i12

Compute the gradients (using forward differences) of the original color images ∇Ji13

Compute the gradients (using forward differences) of the luminance components ∇J̄i.14

for each pixel x do // vector medians15

k ← arg mini=1,...,n

∑
j 6=i ‖∇J̄i(x)−∇J̄j(x)‖16

M(x)← ∇Jk(x)17

I0 ← PoissonEquation(M,mean(I1)) // combine the resulting images18

I∗ ← Sharpening(I0) // sharpen the result19

normalized images are combined into a single image I0. This combination is done by computing
the vector median of the gradients, and then reconstructing the image from this target gradient by
solving a Poisson equation.

As an implementation detail, notice that the ASIFT registrations may be computed over small
versions of the images. Since this registration will be refined later, the loss of precision due to the
subsampling is not a problem. This results in a significant reduction of the overall computational
burden.

See figures 13 to 15 for an example of this algorithm. As a curiosity, notice that since this
algorithm removes highlights, the highlights themselves can be recovered by substracting the recon-
structed image from the original. Typically, these images contain the lights in the museum, the other
pictures, shadows of visitors, and even the reflection of the photographer who takes the pictures. See
Figure 16 for an example of this highlight recovery.

The HighlightRemoval algorithm is used at step 3 of Algorithm 1 (the whole reconstruction
pipeline).

6 Burst Segmentation

Burst segmentation is the algorithm that takes a list of consecutive photographs and partitions it into
a collection of sub-lists, called bursts. The idea is that all the images of each burst are photographs
taken from the same viewpoint. The bursts are detected by registering the images consecutively by
SIFT. When no match is found, or the resulting homography is a large deformation, this signals the
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B1 B2 B3 B4 B5

Figure 13: Example of highlight removal: list of input images (5 out of 10 are shown).

B1 B2 ◦H2 B3 ◦H3 B4 ◦H4 B5 ◦H5

Figure 14: Example of highlight removal: registered images. Notice that the highlights are at different
positions on each registered image.

beginning of a new burst. The method is described in Algorithm 9.

Algorithm 9: BurstSegmentation

Input : A list of images I1, . . . , In, where Ii : Ω→ R, i = 1, . . . , n.
Output: An increasing list of indices b1, . . . , bk

k ← 11

bk ← 12

for i = 2, . . . , n do3

H = SIFT(Ibk , Ii)4

if H = ∅ or IsLargeDeformation(H) then5

k ← k + 16

bk ← i7

172



Obtaining High Quality Photographs of Paintings by Image Fusion

average(Bi) min(Bi) max(Bi) med(Bi) B∗ = ∆−1 [div(med(∇Bi))]

Figure 15: Example of highlight removal: different combinations of the registered images. The last
one is the one proposed by this article. A detailed comparison of all these methods can be found
in [5].

B1 −B∗ B2 ◦H2 −B∗ B3 ◦H3 −B∗ B4 ◦H4 −B∗ B5 ◦B5 −B∗

Figure 16: Visualization of highlights. Once we have recovered the image without highlights, we
can subtract this image from each of the input images, thus recovering the highlights themselves. In
this case, the highlights contain reflections of other objects in the room where the photo was taken,
including the photographer herself. All these images are shown in the range [−50, 50].

At the end of this algorithm, the indices bi point to the first image of each burst. See Figure 17
for an example.

The test H = ∅ means that SIFT found no match. The test IsLargeDeformation(H) combines
several measures over the 3× 3 matrix H:

1. Each of the four corners of the image must be displaced by H a distance less than 10% of the
total size.

2. The tilt factor of H must be less than 1.03.
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3. H(3, 1) < 10−4

4. H(3, 2) < 10−4

If either of these conditions fails, then H is considered a large deformation and a new burst is started.

The BurstSegmentation algorithm is used at step 1 of Algorithm 1 (the whole reconstruction
pipeline).

I1 I2 I3 I4 I5 I6 I7 I8

I9 I10 I11 I12 I13 I14 I15 I16

I17 I18 I19 I20 I21 I22 I23 I24

I25 I26 I27 I28 I29 I30 I31 I32

Figure 17: Example of burst segmentation in a real-life setting. The photographer took 32 images
from four different points of view. The output of the algorithm is the set of indices {1, 11, 18, 24},
correctly identifying the beginning of each burst.
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