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Abstract

Recent years have seen a surge of interest in multilayer neural networks fueled by their successful
applications in numerous image processing and computer vision tasks. In this article, we describe
a C++ implementation of the stochastic gradient descent to train a multilayer neural network,
where a fast and accurate acceleration of tanh(.) is achieved with linear interpolation. As an
example of application, we present a neural network able to deliver state-of-the-art performance
in image demosaicing.

Source Code

The source code and an online demo are accessible at the IPOL web page of this article1.

Keywords: feedforward neural networks; code optimisation; image demosaicing

1 Introduction

Multilayer neural networks have recently ignited much interest in the signal processing community
thanks to their broad range of applications [2]. For example, it has been shown that a multilayer
neural network, when endowed with sufficient capacity, could be trained to produce state-of-the-art
performance in denoising [3, 11] as well as in demosaicing [10].

This superior performance does come at a price. Because of its non-convex structure, no efficient
algorithm exists to solve a typical empirical risk minimization program involving a multilayer neural
network as the regression function. As a result, stochastic gradient descent becomes the de facto

tool of choice although it implies high computational cost on a large training dataset.

1https://doi.org/10.5201/ipol.2015.137

Yi-Qing Wang, Nicolas Limare, A Fast C++ Implementation of Neural Network Backpropagation Training Algorithm: Application to Bayesian

Optimal Image Demosaicing, Image Processing On Line, 5 (2015), pp. 257–266. https://doi.org/10.5201/ipol.2015.137



Yi-Qing Wang, Nicolas Limare

2 Algorithm

A feedforward neural network is a succession of hidden layers followed by an application-dependent
decoder

f(·, θ) = d ◦ hn ◦ · · · ◦ h1(·), n ≥ 1 (1)

with

al+1 = hl(al) = a(Wlal + bl), ∀1 ≤ l ≤ n (2)

and

d(an+1) = Wn+1an+1 + bn+1,

in case of a linear decoder. The parameter vector θ comprises the connection weights Wl and biases
bl indexed by their respective layer l. The non-linear activation function a(·) is understood to apply
to its input vector element-wise.

Mathematically speaking, neural networks can approximate any continuous function on a compact
set to any desired degree of accuracy [7], hence their applications in regression tasks

θ∗ = argmin
θ

E‖f(x̃, θ)− x‖22 = argmin
θ

E‖f(x̃, θ)− E[x|x̃]‖22, (3)

where (x̃, x) ∈ R
d̃ × R

d denotes a random supervised pair of observation and teaching signal, whose
behavior is governed by some probability law P serving to define the expectation E and the conditional
expectation E[x|x̃]. The rightmost equality of (3) follows directly from the conditional expectation’s
definition. In practice, though we can sample from it, the probability P either does not have a closed
form expression or is formed by such a large number of examples that an exact expectation based on
it cannot be computed in real time. Moreover, the function θ 7→ ‖f(x̃, θ)−x‖22 is not convex, leaving
us with little choice but to substitute the expectation above with an empirical surrogate, that is, the
average mean square error (MSE)

1

m

m
∑

i=1

‖f(x̃i, θ)− xi‖
2
2 (4)

with a relatively small batch size and to rely on the method of steepest descent to conduct the min-
imization. Here (x̃i, xi)i≥1 denotes a sequence of identically distributed and independent realisations
from P. Though such a procedure cannot help us reach θ∗ in general, it does quite well in practice,
when the trained neural network is tested on another dataset distinct from the one used in its training
but sharing a similar example distribution.

To derive the derivative of (4) with respect to θ

∂

∂θ

1

m

m
∑

i=1

‖f(x̃i, θ)− xi‖
2
2 =

1

m

m
∑

i=1

∂

∂θ
‖f(x̃i, θ)− xi‖

2
2

we focus on the generic term

∂

∂θ
‖f(x̃, θ)− x‖22. (5)
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Without loss of generality, in what follows we assume that the neural network has a linear decoder
and all of its non-linear units are implemented by a(·) := tanh(·) whose derivative enjoys a particular
property

tanh′(·) = 1− tanh2(·). (6)

Let us also mention that other popular activation functions could also be used such as the sigmoid [9]
and the rectifier [6].

As a consequence of the chain rule, one can compute the derivative (5) one layer at a time, hence
the term backpropagation (see Algorithm 1). To continue using the previously introduced notation,
we identify a1 with x̃. In addition, let us denote the real-valued objective

J :=
1

2
‖f(a1, θ)− x‖22 (7)

to further simplify the notation. Substituting f(a1, θ) by (1), we obtain the first part of the derivative

∂J

∂Wn+1

= (Wn+1an+1 + bn+1 − x)aTn+1 (8)

∂J

∂bn+1

= Wn+1an+1 + bn+1 − x, (9)

as well as
∂J

∂an+1

= W T
n+1(Wn+1an+1 + bn+1 − x), (10)

which, when combined with the observation (6) and the chain rule, leads to

∂J

∂W ij
n

=
∂J

∂ain+1

∂ain+1

∂W ij
n

=
∂J

∂ain+1

[1− (ain+1)
2]ajn, (11)

where W ij
n and ain+1 denote respectively the element at the ith row and jth column of Wn and the

ith row of an+1. In matrix form, we thus have

∂J

∂Wn

=
[ ∂J

∂an+1

⊙ (1− an+1 ⊙ an+1)
]

aTn , (12)

with ⊙ meaning the element-wise product and 1 a matrix of the same dimension as an+1 but filled
with ones. Similarly, it follows

∂J

∂bn
=

∂J

∂an+1

⊙ (1− an+1 ⊙ an+1) (13)

∂J

∂an
= W T

n

[ ∂J

∂an+1

⊙ (1− an+1 ⊙ an+1)
]

, (14)

hence the recursive relationship that lies at the heart of the algorithm which we now detail.
With backpropagation, stochastic gradient descent is straightforward (see Algorithm 2): following

[5], we first initialize a multilayer neural network’s parameter vector θ0 with the bias bl set to zero
and the entries of Wl sampled independently from the uniform law on the interval

(−

√

6

nl + nl+1

,

√

6

nl + nl+1

]

in which nl denotes the number of hidden units at its lth layer. Next, a few supervised examples
are drawn from the training dataset to calculate the stochastic gradient, which we use to update the
neural network. This step repeats until a prefixed number of training cycles are completed. Every
once in a while, we test the trained neural network on a distinct and fixed validation dataset to assess
its generalization error. The version returned at the end of the training is the one which realises the
smallest estimated generalization error.
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Algorithm 1 Backpropagation

1: Input: m pairs of i.i.d. supervised examples (x̃i, xi)1≤i≤m.
2: Parameter: connection weights and biases of the neural network θ := (Wl, bl)1≤l≤n+1.
3: Output: derivative of the objective

Jm =
1

2m

m
∑

i=1

‖f(x̃i, θ)− xi‖
2
2

with respect to θ.
4: Feedforward to get a m-column matrix Dn+1 whose ith column represents f(x̃i, θ)−xi as well as

them-column activation matrices (Al)1≤l≤n+1 whose ith column is formed by the values computed
at layer l from the input x̃i according to (2).

5: for l = n+ 1 to 1 do

6: Compute the derivatives

∂Jm
∂bl

=
1

m
Dl1m×1

∂Jm
∂Wl

=
1

m
DlA

T
l

∂Jm
∂Al

= W T
l Dl

where 1m×1 is the column vector of m ones.
7: Set 1l to be a matrix filled with ones and of the same dimension as Al

Dl−1 =
∂Jm
∂Al

⊙ (1l − Al ⊙ Al).

8: end for

9: Order (∂Jm
∂Wl

, ∂Jm
∂bl

)1≤l≤n+1 the same way as (Wl, bl)1≤l≤n+1 in θ to form ∂Jm
∂θ

.

3 A Faster tanh(·) Implementation

Applying tanh(·) at a neural network’s hidden nodes is the most time consuming operation in back-
propagation, an observation which led us to implement a faster version than the one in the standard
C/C++ numerics library but with equal accuracy. The key is to observe that the range of tanh(·) is
bounded in the interval (−1, 1) and floating point numbers have limited precision.

IEEE Standard 754 specifies that a single precision floating point number has 23 fraction bits,
meaning that the largest number strictly smaller than 1 that it can represent is 1 − 2−24. In other
words, it incurs at most an error equal to 2−24 if we return 1 for all x such that

tanh(x) > 1− 2−24, (15)

which, thanks to the equality

tanh(x) = 1−
2

1 + e2x
, (16)

implies

1 + e2x > 225 ⇔ x >
ln(225 − 1)

2
≈ 12.5 ln(2). (17)
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Algorithm 2 Stochastic gradient descent

1: Input: initial parameter θ0, a training dataset and a distinct validation set (x̃i, xi)1≤i≤N1 .
2: Parameter: learning rate α, iteration number T , observation interval S, batch size N2.
3: Output: a trained neural network θ∗.
4: Evaluate the current error on the validation set

ǫ :=
1

N1

N1
∑

i=1

‖f(x̃i, θ0)− xi‖
2
2.

5: for t = 0 to T − 1 do

6: Draw N2 pairs of supervised examples from the training dataset.
7: Calculate the stochastic gradient with Algorithm 1: ∂

∂θ
JN2(θt).

8: Update the neural network

θt+1 = θt − α
∂

∂θ
JN2(θt).

Note that one may also want to set the learning rate in a layer-wise fashion, in which case α
is a positive diagonal matrix.

9: if mod (t+ 1, S) = 0 then

10: Evaluate the current error on the validation set

e :=
1

N1

N1
∑

i=1

‖f(x̃i, θt+1)− xi‖
2
2.

11: if ǫ > e then

12: ǫ = e and θ∗ = θt+1

13: end if

14: end if

15: end for

Since tanh(·) is odd, we may only focus on its domain ranging from 0 to 12.5 ln(2). However, to
avoid the cost of sign determination, we choose to symmetrize the domain and use a linear interpo-
lation to minimise computing cost. Hence it is useful to recall a classical polynomial interpolation
error bound. To simplify notations, we only concern ourselves with the linear interpolation though
the result can be readily extended to higher degree polynomials.

Let f(·) be a twice differentiable function defined on [a, b] with a < b. Let p(·) be its linear
interpolation going through (a, f(a)) and (b, f(b)) and W (x) = (x − a)(x − b). Then for any fixed
x ∈ (a, b), the function

g : t ∈ [a, b] 7→ f(t)− p(t)−
f(x)− p(x)

W (x)
W (t) (18)

has at least three roots, which, by Rolle’s theorem, implies at least two roots for g′ and one root for
g′′. We can therefore denote c ∈ (a, b) to be g′′’s root, or g′′(c) = 0, which leads to the interpolation
error bound

f ′′(c) = 2
f(x)− p(x)

W (x)
⇒ sup

x∈[a,b]
|f(x)− p(x)| ≤ sup

c∈(a,b)
|f ′′(c)|

(b− a)2

8
. (19)
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With | tanh′′(·)| bounded by 4
3
√
3
, we can thus set equally spaced interpolating nodes so as to ensure

an interpolation error less than 10−8 (2−24 ≈ 6× 10−8).
With compiler options −O2 and −ftree-vectorize enabled, our tanh(·) runs on average 5 to 8

times faster than the standard implementation.

4 Application

Here we show an application of the neural network in image demosaicing. A typical digital camera
has a Bayer color filter array (CFA) [1] placed in front of its sensor so that at each pixel location,
either green, or blue, or red light intensity is recorded. To recover a color image, one needs to estimate
missing color intensities from such a mosaiced image.

Neural networks find a perfect setting in this problem because the four building blocks (see
Figure 1) of the Bayer CFA are either one or two 90 degrees rotation away from one another. Since
it is reasonable to postulate that natural image patch statistics are roughly invariant with respect to
a 90 degrees rotation, a neural network trained to demosaice one pattern can also be used to do the
same for the other three patterns. This forms the basis of our approach (see Algorithm 4).

(a) (b) (c) (d)

Figure 1: Four basic Bayer patterns (a) RGGB (b) GRBG (c) BGGR (d) GBRG

Since the fundamental object that a neural network attempts to approximate is the conditional
expectation under its training distribution, it is useful to bias the data in such a way as to raise the
statistical importance of its high frequency patterns at the expense of their slow-varying counterparts.
Without resorting to a refined statistical modeling to define what the high frequency patterns are,
we simply whiten the input (see Algorithm 3). As the principal component analysis (PCA) implicitly
assumes that data behaves like a Gaussian vector, its concept of high frequency patterns may not
coincide with ours. However, experiments showed that whitening is conducive to good training.

Algorithm 3 Whitening

1: Input: n vectors pj ∈ R
d.

2: Output: the whitening operator W .
3: Parameter: smoothing factor σZ = 0.01.
4: Center the inputs p̃j = (pj − p̄)/51 with p̄ = 1

n

∑n

j=1 pj.
5: Run the principal component analysis (PCA) on (p̃j)1≤j≤n to obtain their eigenvectors and eigen-

values (φi, λi)1≤i≤d.

6: W(p) = 51−1
∑d

i=1

√

1
λi+σz

〈

φi, p− p̄
〉

φi with
〈

·, ·
〉

a standard scalar product.

For an illustration, we trained a neural network which, observing a 6-by-6 Bayer RGGB mosaiced
patch, attempted to predict the 8 missing color intensities in its central 2-by-2 area. The neural
network has 2 hidden layers, each having 108 non-linear encoding units. Its basic learning rate
was set to 0.1. Following [3], the layer specific learning rate was the basic learning rate divided by
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Algorithm 4 Neural network demosaicing

1: Input: a Bayer color filter array masked image.
2: Output: a demosaiced color image.
3: Parameter: a neural network trained to demosaice κ-by-κ RGGB filtered patches and its asso-

ciated whitening operator W .
4: Decompose the mosaiced image into overlapping κ-by-κ patches with spatial offset equal to 1.
5: Rotate these patches, if necessary, so that their Bayer CFA patterns become RGGB.
6: Whiten the patches and run them through the neural network to form estimated color patches.
7: Rotate patches again to have the previously rotated patches back to their initial positions.
8: Aggregate patches with equal weights to form the final image.

the number of input units at that layer. To compute the stochastic gradient 103 random supervised
examples were drawn at a time from an image database composed of 400 randomly chosen images from
the Berkeley Segmentation Dataset (BSD500) and a selection of 781 images from INRIA Holidays

Dataset [8]. During its 2× 108 round training, the neural network was tested every S = 104 rounds
on a validation dataset of 104 examples from the remaining 100 images of BSD500. As shown in
Figure 2, the neural network gained the most, as measured in validation MSE, from its initial 106

rounds of training. But later rounds did improve the neural network as well.

Figure 2: The neural network’s validation RMSE (root mean square error, that is, the square root of
MSE) was recorded every 104 backpropagation iterations during its training. The figure’s horizontal
axis is plotted in the logarithmic scale.

Most of the images selected from INRIA Holidays Dataset were taken outdoors in good lighting
conditions and have occasionally vibrant color contrast. Having been demosaiced one way or another,
they were downsampled by 4 after being convolved with a Gaussian kernel of standard deviation equal
to 1.7 for quality enhancement. They are available at http://dev.ipol.im/~yiqing/inria.tar.gz.

We compare our trained neural network with DLMMSE [12], which has a known bias by design [4]
to do very well on the gray-looking Kodak PhotoCD benchmark images2 at the expense of more
colorful ones like those in the McMaster dataset3. The results are reported in terms of RMSE in
Table 1. Overall our neural network outperforms DLMMSE on both datasets (see Figure 4).

2http://r0k.us/graphics/kodak/
3http://www4.comp.polyu.edu.hk/~cslzhang/CDM_Dataset.htm
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(a) original (b) NN (RMSE 5.83) (c) DLMMSE (RMSE 6.69)

(d) original (e) NN (RMSE 4.43) (f) DLMMSE (RMSE 6.10)

(g) original (h) NN (RMSE 3.55) (i) DLMMSE (RMSE 2.54)

Figure 3: Demosaicing examples. Images (a) and (g) have been cropped from mcm01 and kodim19
respectively (see Figure 4) and image (d) depicts the right wing of the butterfly shown on this article’s
demo web page. Though it fails to restore the fence as well as DLMMSE did, in overall RMSE and
visual terms, the neural network is superior.

5 Image Credits

McMaster Dataset, image 1, http://www4.comp.polyu.edu.hk/~cslzhang/CDM_Dataset.htm

Kodak Image Suite, image 19, http://r0k.us/graphics/kodak/
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Figure 4: The two benchmark datasets: Kodak (above) and McMaster (below).

Thomas Barnes, U.S. Fish and Wildlife Service
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