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Abstract

We describe the implementation details and give the experimental results of three optimiza-
tion algorithms for dense optical flow computation. In particular, using a line search strategy,
we evaluate the performance of the unilevel truncated Newton method (LSTN), a multireso-
lution truncated Newton (MR/LSTN) and a full multigrid truncated Newton (FMG/LSTN).
We use three image sequences and four models of optical flow for performance evaluation. The
FMG/LSTN algorithm is shown to lead to better optical flow estimation with less computational
work than both the LSTN and MR/LSTN algorithms.

Source Code

The ANSI C implementation of the source code, the code documentation, and the online demo
are accessible at the IPOL web page of this article1.

Keywords: optical flow; line search multigrid optimization; multiresolution; truncated Newton

1 Introduction

Let us consider a sequence of gray level images I(k,m, n), where k = 0, . . . , K denotes the frame
number and (m,n) denotes the pixel coordinates, m (respectively n) corresponds to the discrete
column (respectively row) of the image, being the coordinate origin located at the top-left corner
of the image. We denote by I t, Ix, Iy the discrete partial derivatives of I in the k,m, n directions,
respectively, which are computed using high-pass gradient filters. Finally, we denote by wm,n =
(um,n, vm,n) the optical flow between two successive frames at pixel (m,n).

From the brightness constancy assumption (BCA) [3]

I(k + 1,m+ um,n, n+ vm,n) = I(k,m, n) for k = 0, . . . , K and each pixel (m,n),
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and its first-order linear approximation, we consider four variational optical flow models that we
describe here in their discrete forms

min
w

∑

m,n

ψ
(

Ixum,n + Iyvm,n + I t
)

+ α
∑

m,n

||∇m,n(w)||
2 (1)

min
w

∑

m,n

ψ (I(k + 1,m+ um,n, n+ vm,n)− I(k,m, n)) + α
∑

m,n

||∇m,n(w)||
2 (2)

min
w

∑

m,n

ψ
(

Ixum,n + Iyvm,n + I t
)

+ α
∑

m,n

√

||∇m,n(w)||2 + µ2 (3)

min
w

∑

m,n

ψ (I(k + 1,m+ um,n, n+ vm,n)− I(k,m, n)) + α
∑

m,n

√

||∇m,n(w)||2 + µ2, (4)

where α is a weighting positive parameter between data and regularization terms, µ is a small positive
parameter to avoid non differentiability of the absolute value function at zero, and ||∇m,n(w)||

2 is
computed as

||∇m,n(w)||
2 =

1

2

(

(ux,+m,m)
2 + (ux,−m,n)

2 + (uy,+m,n)
2 + (uy,−m,n)

2 + (vx,+m,n)
2 + (vx,−m,n)

2 + (vy,+m,n)
2 + (vy,−m,n)

2
)

. (5)

The discrete partial derivatives of u, v are computed via forward and backward finite differences, that
is

ux,+m,n =
um+1,n − um,n

h
, ux,−m,n =

um,n − um−1,n

h
,

uy,+m,n =
um,n+1 − um,m

h
, uy,−m,n =

um,n − um,n−1

h
,

where h is the grid distance, see Section 4 for a discussion of its value. Derivatives vx and vy are
computed similarly.

The function ψ is used to enhance robustness with respect to outliers. In our work we have used

ψ (θ) =

{

θ2/2 if |θ| ≤ γ
γ2/2 otherwise,

(6)

where γ is a given threshold.
Notice that all the four models in equations (1)-(4) can be written into the general minimization

form:
min
w
f(w) = D(w) + αR(w), (7)

where D is a data term modelling the optical flow and R is a regularization term, which corresponds
here to standard convex regularizers; namely a quadratic term in case of the first two models and a
differentiable approximation of the total variation (TV) for the last two models.

We note also that the data term in the first model corresponds to a robust version of the Horn-
Schunck method [3] which combines a linear version of the BCA assumption with a quadratic regu-
larization. In particular, the data term in model 1 is a truncated quadratic function, which for inliers
behaves as Horn-Schunck data term. The second model uses the original non-linear version of the
constancy assumption as a data term, which makes the energy functional highly non-convex. On
the other hand, the difficulty in model 3 arises from the presence of the TV term which is known to
be computationally more demanding than the quadratic regularization term. Finally, model 4 com-
bines the non-linear data term with total variation regularization, which makes this model the most
complicated among the four models used in this paper due to the high non-convexity of the energy
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functional and the presence of the TV regularization. Table 1 summarizes the four models that have
been implemented in our code. The four models are minimized using three optimization algorithms
based on a line search truncated Newton method known to be able to handle non-convex problems.
More precisely, we use a unilevel implementation of this method together with its multiresolution
and multigrid versions. In particular, for a given pair of images, twelve results can be produced
using the three optimization algorithms applied on the four optical flow models. The optimization
algorithms will be described in the next sections but we need first to describe how the gradient of
the energy functional is computed.

Data term D(w) Regularization term R(w)
Model 1 Linear BCA Quadratic
Model 2 Non linear BCA Quadratic
Model 3 Linear BCA Total variation
Model 4 Non linear BCA Total variation

Table 1: Description of the four optical flow models that have been implemented.

2 Energy Gradient

The proposed algorithms only requires the computation, for each iteration k, of the energy f(w) and
its gradient ∇f(w). The Hessian ∇2f(w), as indicated in Section 3, is approximated by means of
the gradient.

The gradient of the objective function in Equation (7) is calculated analytically and given by

g = ∇f =

(

fu

f v

)

=

(

Du + αRu

Dv + αRv

)

,

where fu and f v denote, respectively, the partial derivative of function f with respect to variables u
and v. In our case we discretize the grid prior to computing the gradient. Thus, we denote

Du =

(

Du
m,n

Dv
m,n

)

and Ru =

(

Ru
m,n

Rv
m,n

)

,

where Du
m,n and Dv

m,n (resp. Ru
m,n and Rv

m,n) denote the partial derivative of D(m,n) (resp. R(m,n))
with respect to variables um,n and vm,n, respectively.

For the linear data term in equations (1) and (3), the gradient for |θ| ≤ γ, see equation (6), is

Du
m,n = Ix

[

Ixum,n + Iyvm,n + I t
]

Dv
m,n = Iy

[

Ixum,n + Iyvm,n + I t
]

,

where Ix, Iy, I t are the spatial and temporal image derivatives. Note that for |θ| > γ the gradient D
is (Du

m,n, D
v
m,n)

T = (0, 0)T .
For the non-linear data term in equations (2) and (4), the gradient for |θ| ≤ γ is given by

Du
m,n = Ix2 (m+ um,n, n+ vm,n) [I2(m+ um,n, n+ vm,n)− I1(m,n)]

Dv
m,n = Iy2 (m+ um,n, n+ vm,n) [I2(m+ um,n, n+ vm,n)− I1(m,n)] .

As before, for |θ| > γ the gradient D is (Du
m,n, D

v
m,n)

T = (0, 0)T .
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We consider now the quadratic regularization term in equations (1) and (2). The gradient of this
functional is obtained as

Ru
m,n =

2

h2
(4um,n − um−1,n − um,n−1 − um+1,n − um,n+1)

Rv
m,n =

2

h2
(4vm,n − vm−1,n − vm,n−1 − vm+1,n − vm,n+1)

Finally, the gradient of the total variation approximation used in equations (3) and (4) is

Ru
m,n =

1

2h

(

(ux,−m,n + uy,−m,n)− (ux,+m,n + uy,+m,n)

φm,n

+
ux,+m−1,n

φm−1,n

+
uy,+m,n−1

φm,n−1

−
ux,−m+1,n

φm+1,n

−
uy,−m,n+1

φm,n+1

)

Rv
m,n =

1

2h

(

(vx,−m,n + vy,−m,n)− (vx,+m,n + vy,+m,n)

φm,n

+
vx,+m−1,n

φm−1,n

+
vy,+m,n−1

φm,n−1

−
vx,−m+1,n

φm+1,n

−
vy,−m,n+1

φm,n+1

)

,

where

φm,n =
√

||∇m,n(w)||2 + µ2. (8)

3 Line Search Truncated Newton

In general, the line search Newton method solves the minimization problem (7) by the following
iterations, which we will call outer iterations

wk+1 = wk + λksk, (9)

where λk is the line search step size and sk is the search direction solution to the following linear
system

Hks = −gk. (10)

Here gk = ∇f(wk) is the gradient and Hk = ∇2f(wk) is the Hessian. Notice that the search direction
from the last equation is based on a Taylor series expansion near the solution of the optimization
problem (7), and hence there is no guarantee that the Newton search direction will be crucial far away
from the exact solution; especially during the first iterations. Moreover, for large scale problems as
the optical flow, solving exactly the linear system (10) will be very time-consuming. As a remedy, line
search truncated Newton methods (LSTN) use an iterative method to find an approximate solution
to (10) and truncate the iterates as soon as a required accuracy is reached or whenever a negative
curvature is detected in the non-convex case. In our algorithm, sk is obtained by approximately
solving the linear system (10) using the preconditioned conjugate gradient algorithm (PCG), see
Algorithm 1. In the proposed algorithm the Hessian does not need to be explicitly computed.
Indeed, note that in Algorithm 1 only the product of the Hessian Hk with a vector p needs to be
computed. In our case this product is computed via forward finite differences

Hk p =
g(wk + ǫp)− g(wk)

ǫ
,

where ǫ is chosen to be the square root of the machine precision divided by the norm of wk.
We will refer to the process of finding sk as inner iterations. In the PGC algorithm (Algorithm 1),

the inner iterations are truncated as soon as a negative curvature direction is detected, that is, when
pTj Hkpj is negative. In our case, we replace the negative curvature test with the equivalent descent
direction test [10], see lines 8-11 of Algorithm 1. From our practical experience, the descent direction
test has a better numerical behavior than the negative curvature test.
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Algorithm 1 Preconditioned Conjugate Gradient (inner iterations of LSTN)

1: Input gk, Mk: gradient and preconditioning matrix at Algorithm 2, line 11.
2: Output sk: search direction; see return value for Algorithm 2, line 11.
3: Parameters: ǫ = 10−10, ζk (see (11))
4: maxinner: maximum number of iterations to approximately solve (10)
5: Initialization: z0 = 0, r0 = −gk, v0 =M−1

k r0, p0 = v0
6: // Algorithm code
7: for j = 0 to maxinner do
8: // Singularity test
9: if

(

|rTj vj| < ǫ or |pTj Hkpj| < ǫ
)

then
10: exit with sk = zj (for j = 0 take sk = −gk)
11: end if
12: λj = rTj vj/p

T
j Hkpj , zj+1 = zj + λjpj

13: // Descent Direction Test replaces Negative Curvature test
14: if (gTk zj+1 ≥ gTk zj − ǫ) then
15: exit with sk = zj (for j = 0 take sk = −gk)
16: end if
17: rj+1 = rj − λjHkpj , vj+1 =M−1

k rj+1

18: // Truncation test (note that ||rj+1||M−1
k

= rTj+1vj+1)

19: if (rTj+1vj+1 ≤ ζkg
T
0 v0) then

20: exit with sk = zj+1

21: end if
22: βj = rTj+1(vj+1 − vj)/r

T
j vj , pj+1 = vj+1 + βjpj.

23: end for
24: exit with sk = zj

The inner iterations are also truncated when

||rj||M−1
k

≤ ζk||r0||M−1
k

,

where rj is the PCG residual at inner iteration j and ||rj||M−1
k

=
√

rTj M
−1

k rj. Mk is the precondi-

tioning matrix and

ζk = max
(

0.5/(k + 1), ||r0||M−1
k

)

(11)

are both being provided at outer iteration k. Note that a maximum number of inner iterations are
performed in Algorithm 1 in order to unnecessarily increase the computational cost associated to
computing sk.

The computation of the search direction sk is embedded within a line search algorithm as shown
in Algorithm 2. That is, Algorithm 2 iteratively computes a search direction sk and then updates the
current point wk in the direction of sk by a step λk. For computing the step size λk exact line search
is avoided due to expensive function evaluations. We have used instead a cubic interpolation [6] until
Wolf’s conditions are satisfied

fk+1 ≤ fk + c1λkg
T
k sk (12)

gTk+1sk ≥ c2 g
T
k sk, (13)

where 0 < c1 < c2 < 1.
Algorithm 2 is associated to the outer iterations of LSTN, see Equation (9), in contrast to

Algorithm 1 which is associated to the inner iterations of LSTN, see Equation (10). Algorithm 2
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Algorithm 2 Line Search Truncated Newton (outer iterations of LSTN)

1: Input w0: Input flow (initialization)
2: Output wk: Output flow
3: Parameters ǫg, ǫf , ǫw: convergence thresholds
4: maxouter: maximum number of iterations of (9)
5: Initialization M0 = Identity matrix: preconditionning matrix
6: // Algorithm code
7: for k = 0 to maxouter do
8: gk = ∇f(wk)
9: if ||gk|| < ǫg then
10: exit with solution wk

11: end if
12: Compute sk by calling Algorithm 1.
13: Perform a line search to scale the step sk by λk.
14: wk+1 = wk + λksk
15: Update from Mk to Mk+1 by the BFGS formula
16: if |fk+1 − fk| < ǫf or ||wk+1 − wk|| < ǫw then
17: exit with solution wk

18: end if
19: end for

iteratively updates wk by computing a search direction and performing a line search until a given
tolerance is reached. In our case we set tolerances on the gradient, ǫg, to detect local minima,
and on the function values and iterate values, ǫf and ǫw to detect convergence. Note also that the
preconditioning matrix Mk is updated here, which can be easily done from previous values of wk

and g(wk), see [8]. For the preconditioning strategy, we have used a scaled two-step limited memory
BFGS [7] with a diagonal scaling for preconditioning the CG method.

4 Multiresolution Line Search Truncated Newton

Multiresolution methods use a series of coarse to fine resolution levels to obtain an estimate of the
solution to the problem. Let us denote by Ωi the image domain at level i, where i = 0, . . . , L − 1,
where i = 0 corresponds to the finest level of resolution and i = L − 1 to the coarsest one. Here L
refers to the number of resolution levels used. Grid spacing at the grid Ωi+1 is, in our implementation,
twice the spacing at the grid Ωi. By default, the grid spacing at the finest level is h = 1, whereas at
the remaining levels the spacing is h = 2i.

In the multiresolution algorithm, we start at the coarsest level by applying the LSTN algorithm
(see Algorithm 2). Then, we prolongate this coarsest estimate to the next level of resolution where
it is refined again by the LSTN algorithm. We repeat this process from one coarse level to another
finer level until reaching the finest level. This multiresolution function (MR) is shown in Algorithm 3
where it is called with MR(L − 1, wL−1,0), where L is the number of resolution levels and wL−1,0 is
the initial estimate on the coarsest level.

Using a coarse-to-fine strategy, one can obtain a good initial estimate for the finest grid problem
from a series of coarse grid estimates. Nevertheless, multiresolution algorithms, which are a one-way
multilevel process, are known to be less efficient than standard two-way multilevel algorithms known
as multigrid methods.

129



Luis Garrido, El Mostafa Kalmoun

Algorithm 3 Multiresolution Line Search Truncated Newton

1: Input wL−1,0: initial flow estimate for coarsest level
2: Output w0,1: output flow for finest level
3: Parameter L: number of resolution levels
4: Initialization i = L− 1: coarsest level of resolution
5: // Algorithm code
6: repeat
7: Apply LSTN (Algorithm 2) with initial estimate wi,0

8: Let wi,1 be the returned solution
9: if i > 0 then
10: // Prolong current estimate to next finer level
11: wi−1,0 = P wi,1

12: end if
13: i = i− 1
14: until i < 0
15: exit with output flow w0,1

5 Full Multigrid Line Search Truncated Newton

Full multigrid method (FMG) combines a multiresolution approach with a multigrid cycle. In the
multiresolution approach the search direction sk is computed, for a given level r, using the image
domain Ωr. In multigrid the idea is to update wk by using Ωr and it’s coarser levels. This allows
to reduce the overall computational cost associated to minimizing Equation (7). The method is
described next. For more details we refer the reader to [4].

The FMG starts at the coarsest grid level and solves a very low-dimensional problem (using
Algorithm 2) as is done for multiresolution. Then the solution is extended to a finer space and one
(or several) multigrid cycles are performed to solve the problem on that level. The solution is then
again extended to a finer space to perform one (or several) multigrid cycles on the next level. This
process is repeated until the finest level is reached. In this way, a good initialization is obtained
to start the multigrid cycle on the finest level, which usually reduces the total number of cycles
required. To finish one (or several) multigrid cycles are performed on the finest grid level. The
method is illustrated in Figure 1 for three levels and using a V-cycle.

Let us consider the optimization problem (7) over the finest grid level i = 0. In a multigrid cycle
a sequence of optimization subproblems are considered on nested coarser grids. For the finest level
i = 0, the optimization problem in the multigrid cycle corresponds to the minimization of h0 = f0,
the finest representation of the objective function f . However, for a coarser level i, the optimization
problem in the multigrid cycle corresponds to the minimization of a function hi that shall be specified
next.

Let wi,0 be an initial fine approximation to the optimization problem at level i. The first step in
the multigrid procedure is called pre-optimization and consists in applying N0 iterations of LSTN to
hi to obtain wi,N0 . Then wi,N0 is transferred to a coarser grid to obtain wi+1,0 := Rwi,N0 where R is
a restriction (downsampling) operator. The residual at this level is given by

ri+1 := ∇fi+1(wi+1,0)−R∇hi(wi,N0).

The function
hi+1(wi+1) = fi+1(wi+1)− rTi+1wi+1 (14)

is the function to be minimized on the coarse grid level i + 1, where fi with i ≥ 0 fi denotes a
representation of the objective function f on this level, where h0 := f0 = f on the finest level.
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Full Multigrid with V−Cycles

Finest

Coarsest

Finest

Coarsest

V−Cycle W−Cycle

Figure 1: FMG with V-cycle. The top row shows a V and a W cycle. The bottom row shows a
FMG with 3 levels and using one V-cycle for each level. Each dot represents several iterations of
Equation (9).

Assume we apply Algorithm 2 at level i + 1 to hi+1 and let wi+1,∗ be the associated minimum.
The error between wi+1,∗ and the initial approximation wi+1,0 is called coarse grid correction. This
correction is extended back to level i

si,N0 = P (wi+1,∗ − wi+1,0),

where P is a prolongation (upsampling) operator. In an optimization context, this correction step
si,N0 is used to update the current solution wi,N0 at level i to wi,N0+1. Note that the step si,N0 has
been obtained using level i + 1 and it can be considered as a search direction. We call this search
direction recursive to distinguish it from the direct search direction step that is computed by the
PCG algorithm on level i. Finally, in order to remove the oscillatory components that may have
been introduced by the correction step, one may finish with a post-optimization phase by applying
N1 iterations of LSTN to hi with initial guess wi,N0+1, obtaining wi,N0+N1+1.

The previous explained algorithm forms the basis for the V-cycle in multigrid. For a given
function hi, its minimum is computed iteratively using Equation (9) where the search direction sk
may be computed either directly (Algorithm 2) or recursively, see Figure 1. In order to improve
the computational efficiency, the line search for a recursive direction step si is performed only if
wi,k + λksi with λk = 1 does not reduce the value of hi. That is, if hi(wi,k + si) < hi(wi,k) we update
with wi,k+1 = wi,k + si. Otherwise a line search is performed.

Algorithm 4 shows the V-cycle algorithm used for FMG/LSTN. At each iteration the algorithm
computes a step si either directly using the PCG method (Algorithm 1) on the current level, or
recursively by means of the multigrid strategy. However, as noted in [9, 2], the recursive call is useful
only if ||Rgi,k|| is large enough compared to ||gi,k||, where gi,k = hi(wi,k) and k ≤ N0. Thus we restrict
the use of a coarser level i+ 1 to the case where

||Rgi,k|| > κg||gi,k|| and ||Rgi,k|| > ǫRg, (15)

for some constant κg ∈ (0,min ||R||) and where ǫRg ∈ (0, 1) is a measure of first order criticality for
hi+1. The latter condition is easy to check before trying to compute a step at level i+ 1.

Algorithm 5 shows the Full Multigrid (FMG) algorithm. The algorithm is similar to the mul-
tiresolution algorithm, see Algorithm 3. However, note that in FMG one (or more) V-cycles are
performed at each resolution level, whereas in the multiresolution algorithm the LSTN algorithm
is applied at each resolution level. The implementation corresponds to the representation shown in
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Algorithm 4 The V-cycle for the FMG/LSTN algorithm

1: Function MG/LSTN-cycle(i, hi, wi,0)
2: Input i and wi,0: current resolution level and initial flow
3: hi: coarse objective function at level i, recall that h0 = f
4: Output wi,k: flow after V-cycle
5: Parameters maxouter, maxpre, maxpost: maximum number of iterations
6: ǫf , ǫw: convergence thresholds
7: // Algorithm code
8: if i is coarsest level then
9: task = optimize, N = maxouter // LSTN algorithm for the coarsest scale
10: else
11: task = pre-optimize, N = maxprei // Otherwise pre-optimize
12: end if
13: k0 = k = 0
14: loop
15: if task is optimize, pre-optimize or post-optimize then
16: Compute si,k by calling Algorithm 1
17: else
18: wi+1,0 = Rwi,k // Restrict
19: ri+1 = ∇fi+1(wi+1,0)−R∇hi(wi,k) // Residual
20: hi+1(wi+1) = fi+1(wi+1)− rTi+1wi+1 // Next coarse objective function
21: Call function MG/LSTN-cycle(i+1, hi+1, wi+1,0) // Recursive call
22: Let wi+1,∗ be the returned solution
23: si,k = P (wi+1,∗ − wi+1,0) // Correction step
24: end if
25: Perform a line search to scale the step si,k by λk
26: wi,k+1 = wi,k + λi,ksi,k
27: if |fi,k+1 − fi,k| < ǫf or ||wi,k+1 − wi,k|| < ǫw then
28: return wi,k+1

29: end if
30: k = k + 1
31: // Select next task to do
32: if task is pre-optimize and (15) is satisfied then
33: task = recursive-call
34: else if task is recursive-call then
35: task = post-optimize, N = maxpost, k0 = k
36: end if
37: // Check if maximum number of iterations has been reached
38: if (task is optimize, pre-optimize or post-optimize) and (k − k0 = N) then
39: return wi,k

40: end if
41: end loop

Figure 1. The algorithm starts at the coarsest level by performing the LSTN algorithm. Then, we
prolongate this coarsest estimate to the next level of resolution. As can be seen at the finer resolution
levels a these V-cycle is performed. At each level, the V-cycle may be repeated several times. This
process is repeated until the V-cycles at the finest level is reached. Note that, for a given level i, the
V-cycle is performed using levels L− 1, . . . , i, see Algorithm 4.
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Algorithm 5 Full Multigrid Algorithm

1: Input wL−1,0: initial estimate
2: Output w0,∗: output flow
3: Parameter L: number of resolutin levels
4: Initialization i = L− 1: coarsest level of resolution
5: // Algorithm code
6: repeat
7: // If at coarsest level perform LSTN, otherwise perform V-cycle
8: if i is coarsest level then
9: Apply LSTN (Algorithm 2) with initial estimate wi,0

10: Let wi,1 be the returned solution
11: else
12: // Perform Ncycles V-cycles on the current level
13: j = 0
14: repeat
15: Apply V-cycle (Algorithm 4) to level i with initial estimate wi,j

16: Let wi,j+1 be the returned solution
17: j = j + 1
18: until j = Ncycles or Algorithm 4 converged
19: end if
20: if i > 0 then
21: // Prolong current estimate to next finer level
22: wi−1,0 = P wi,j

23: end if
24: i = i− 1
25: until i < 0
26: return w0,∗

6 Application Execution

This section briefly discusses the way the application is executed and how the associated parameters
can be defined.

The application allows to be run:

1. Without any parameters. In this case default parameters are used. The default parameters
use full multigrid (Algorithm 5) with 6 resolution levels. It uses model 2 (non-linear data term
and quadratic regularization) with a weight of α = 50.0 for the regularizer. The maximum
number of V-cycles at each resolution level is 5. The parameter details are included within the
file parameters default.cfg of the test folder of the source code. The latter parameters are
indeed the parameters used for the IPOL’s online demo.

2. Some parameters may be also specified through the command-line. In this case the default
parameters are overridden by the parameters specified through command-line.

3. Parameters specified through a parameter file. This option allows to completely override the
default parameters and have a fine control over the optical flow estimation. Indeed, this is the
only way to test multiresolution scheme. Within the source code we include some parameter
files associated to the Yosemite sequence for each of the models and both multiresolution and
multigrid.
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For a detailed description on the parameters we refer the reader to the README.txt file included
within the source code. This file includes the explanation of each parameter (either specified through
a parameter file or through command-line) and its recommended values. The reader should take into
account that the parameter file allows to specify a rather large number of parameters. This is due
to the fact that our application is able to deal with different models (1, 2, 3 or 4 as indicated in the
introduction) and multiresolution and multigrid methods.

7 Experimental Results

We report the performance evaluation of the unilevel, the multiresolution and the multigrid opti-
mization algorithms applied to estimate the optical flow between two successive frames of the image
sequences shown in Figure 2.

Figure 2: Top corresponds to the Yosemite sequence, bottom to the Dimetrodon sequence. On the
left one frame of the sequence is shown. On the right the corresponding ground truth is depicted
where motion vectors have been scaled by a factor of 2.5 for better visibility.

In tables 2-5, we summarize the quality of the solution and the computational costs of the three
numerical algorithms (LSTN, MR/LSTN and FMG/LSTN) for the four optical flow models. AAE
is the average angular error, EPE is the end point error, Time refers to CPU time in seconds,
and Nfg is the number of function and gradient evaluations. The first colum (YosClouds) is the
original Yosemite sequence whereas the second column (YosNoClouds) is the same sequence without
the clouds region. In Figure 3 the colored based representation of the ground truth and estimated
optical flows for models 2 and 4 (using MR/LSTN) are shown.

We remark that the FMG/LSTN algorithm outperforms significantly both optimization algo-
rithms in terms of the CPU running time and the number of function and gradient evaluations for
the three image sequences and the four optical flow models. For model 1, while using the optimize-
discretize linear multigrid approach with standard components does not work [5], our FMG/LSTN
algorithm is around eighteen times faster to run than LSTN and at least twice faster than MR/LSTN.
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YosClouds YosNoClouds Dimetrodon
LSTN AAE 6.81 3.47 5.25

EPE 0.42 0.24 0.37
Time 5.72 6.95 24.09
Nfg 500 568 619

MR/LSTN AAE 6.34 2.68 5.25
EPE 0.37 0.80 0.35
Time 0.83 0.87 4.33
Nfg 69 71 120

FMG/LSTN AAE 6.29 2.65 5.10
EPE 0.38 0.14 0.35
Time 0.43 0.45 1.19
Nfg 33 33 28

Table 2: Experimental results for Model 1.

YosClouds YosNoClouds Dimetrodon
LSTN AAE 5.94 2.34 3.12

EPE 0.32 0.10 0.17
Time 12.93 11.15 36.98
Nfg 748 694 771

MR/LSTN AAE 5.82 2.38 3.11
EPE 0.31 0.10 0.17
Time 2.49 1.79 14.30
Nfg 149 114 304

FMG/LSTN AAE 5.81 2.32 3.02
EPE 0.32 0.10 0.17
Time 1.19 1.04 5.17
Nfg 72 63 117

Table 3: Experimental results for Model 2.

For model 2 and model 3 which have similar computational complexity, again the FMG/LSTN per-
forms at least eight times better than LSTN and twice better than MR/LSTN. Finally, when used
for model 4, the FMG/LSTN algorithm shows a similar significant improvement of a factor of twelve
over LSTN and more than one point five over MR/LSTN.

In overall, the FMG/LSTN algorithm performs at least twice better than the MR/LSTN algo-
rithm and ten times better than the unilevel truncated Newton LSTN algorithm; see Table 6. We
notice also that the FMG/LSTN algorithm is less independent of the image size because it often
takes similar number of function and gradient evaluations while comparing across the same optical
flow model.
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YosClouds YosNoClouds Dimetrodon
LSTN AAE 6.25 3.40 5.90

EPE 0.41 0.24 0.42
Time 16.66 19.03 63.68
Nfg 883 1002 1019

MR/LSTN AAE 5.75 2.74 5.38
EPE 0.37 0.18 0.36
Time 3.85 3.96 12.22
Nfg 182 205 200

FMG/LSTN AAE 5.75 2.63 5.52
EPE 0.36 0.15 0.32
Time 1.46 1.37 4.09
Nfg 75 73 71

Table 4: Experimental results for Model 3.

YosClouds YosNoClouds Dimetrodon
LSTN AAE 5.31 2.26 3.66

EPE 0.30 0.10 0.20
Time 43.83 28.99 128.46
Nfg 1766 1295 1734

MR/LSTN AAE 5.09 2.24 3.68
EPE 0.30 0.10 0.20
Time 4.91 6.09 20.35
Nfg 206 277 271

FMG/LSTN AAE 5.09 2.24 3.39
EPE 0.30 0.10 0.17
Time 3.74 3.57 9.79
Nfg 164 153 141

Table 5: Experimental results for Model 4.

LSTN MR/LSTN FMG/LSTN

Model 1
Total time (s) 36.76 6.03 2.07
Total Nfg 1687 260 94

Model 2
Total time (s) 61.06 18.58 7.40
Total Nfg 2213 567 252

Model 3
Total time (s) 97.77 20.03 6.92
Total Nfg 2904 587 219

Model 4
Total time (s) 201.28 31.35 17.00
Total Nfg 4795 754 458

All models
Total time (s) 396.87 75.99 33.39

Total Nfg 11599 2168 1023

Table 6: Global characteristics of LSTN, MR/LSTN and FMG/LSTN for optical flow models on all
the three images.
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Ground truth flow Model 2, α = 500 Model 4, α = 60

Ground truth flow Model 2, α = 90 Model 4, α = 17

Figure 3: Colored-based representation of the optical flows for the Yosemite and Dimetrodon flows.
On the left column the ground truth flow is shown. Middle and right columns show, respectively,
the estimated flow for models 2 and 4.
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