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Abstract

Modeling image properties using the Gaussian scale mixture (GSM) model in a multiresolution
transform space is the basic idea of a denoising algorithm proposed by Portilla et al. [Image
denoising using scale mixtures of Gaussians in the wavelet domain, IEEE Transactions on Image
Processing, 12 (2003), pp. 1338–1351]. Under this model and using the correlations between
pyramid coefficients, the Bayesian least squares (BLS) of each coefficient is used to estimate its
original value. In this article, we analyze and discuss the BLS-GSM algorithm, its drawbacks and
benefits in more detail. An analytical parameter study of this denoising approach is provided
as well. Additionally, we propose a localized version of this algorithm and experimentally show
that it outperforms the original method both numerically and visually. We also show that the
resulting method is state-of-the-art in terms of PSNR.

Source Code

The C++ implementation of the BLS-GSM algorithm in addition to an online demo are available
at the IPOL web page of this article1.

Keywords: Gaussian mixture method; Bayesian least squares; denoising method

1 Introduction

Image denoising using a mixture of scaled Gaussians was first introduced in [16]. When images are
decomposed in a multiscale wavelet representation, Portilla et al. proposed to model a neighbor-
hood of each wavelet coefficient by a Gaussian scale mixture (GSM) and to estimate the noise free
coefficients by employing a Bayesian least squares (BLS) method. This method is based on a few
antecedent studies, like [18], that show that the wavelet coefficients with similar position at various
orientations and scales are highly correlated. To exploit the similarity of neighborhoods, in [9] the
authors introduce a mixture of GSMs (MGSM). In the MGSM model, for each subband an adaptive
number of components is estimated. Then, the covariance of the noisy neighborhood is conditioned
over each component. In this way, the model explores the local similarities to improve the denoising
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performance. It is shown that by mixing GSMs of the estimated components, each subband is seg-
mented into its homogeneous regions. The main drawbacks of this method are the separate analysis
of each subband and its high time complexity for estimating model parameters and calculating the
BLS estimation for each component. Using dimension reduction methods, in [6] the authors provided
a fast variant of the BLS-MGSM algorithm that reduces free parameters of the model and also its
neighborhood size.

Another localized BLS-GSM variant is provided in [8]. In this work, the localization is suggested
only for covariance calculations. Instead of all the neighborhoods of each subband, the covariance of
the observed signal is only calculated over non-overlapped blocks and is fixed for the denoising of all
block coefficients. All the other steps of this algorithm are similar to the original BLS-GSM method.

In another attempt to improve the BLS-GSM performance [10] proposes an orientation-adaptive
GSM (OAGSM) model. Here, by adding a hidden orientation variable, a mixture of scaled and
oriented Gaussians are employed for presenting neighborhoods of the observed noisy signal. The
main idea of this work is adapting the GSM model to the dominant local orientation of the under-
lying subband content. It has been shown that the BLS-OAGSM method outperforms the original
algorithm both numerically and visually [10].

The above multiscale Bayesian methods2 belong to a more general denoising family of Bayesian
algorithms with Gaussian modeling of image neighborhoods. For instance [5, 12, 4, 14, 21] are
based on the similar idea of Bayesian patch-based modeling but they are not multiscale. In [5],
a parametric model based on Markov random field is used for modeling noiseless neighborhoods
around each pixel. In other more successful methods that are non-parametric, the Gaussian model
of original image patches is adopted using the observed noisy image. In [12] a two step non-local
Bayesian method is proposed that models the probability distribution and the covariance matrices of
each patch by clustering its similar noisy patches. In that work, using a predefined threshold and in
a neighborhood around a specific patch, the similar patches are searched while in [4] the whole image
is first clustered into a predefined number of clusters and then each patch is estimated according to
its corresponding cluster. As an extension of these methods that try to model each patch using the
image itself, there are some fully non-local methods that learn the model parameters from a huge
dataset of patches (for example 1010 in [14]). In [21], a Gaussian mixture is learnt from 2 × 106

patches from the Berkeley image database.

In this paper, we first explain the BLS-GSM algorithm with complete detail in Section 2. An
optimal parameters study of the method is provided in Section 3. We propose a local BLS-GSM
approach and we show that it outperforms the original version both numerically and visually. Finally,
the BLS-GSM method is compared with three recent well-known denoising algorithms: NL-means [3],
K-SVD [13] and BM3D [11]. We found that the proposed localized version is state-of-the-art in terms
of PSNR.

2 BLS-GSM Algorithm in Detail

In this section, we start by describing the Bayes least squares - Gaussian mixture model (BLS-
GSM) method [16] with full detail. The implementation considerations are also included in the
algorithm description. These steps are matched to the C++ implementation of the original BLS-
GSM denoising algorithm. Other improvements we propose in the form of optimal and localized
BLS-GSM are explained in sections 3 and 4, respectively.

Considering a wavelet multiresolution representation of the input noisy image, the basic idea of
the BLS-GSM algorithm is to model a noiseless wavelet coefficient neighborhood, x, by a Gaussian

2For a complete review over multiscale denoising we refer to [17].
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scale mixture [1, 19] which is defined as3

x =
√
zu (1)

where u is a zero-mean Gaussian random vector and z is an independent positive scalar random
variable. Without loss of generality it is assumed that E{z} = 1 where E{.} stands for the expec-
tation of a random variable. Therefore the covariances of u and x are the same. The authors of [16]
show striking experiments supporting this statistical behavior for the wavelet coefficient neighbor-
hood which is composed by an image wavelet coefficient in the pyramid, and by its spatial neighbors
at the same scale and at the neighboring scales.

To use this idea for denoising, the noisy input image is first decomposed into a wavelet pyramid,
where then the whole denoising process is applied on wavelet coefficients and finally by reconstruction
the resulting denoised image is obtained. To avoid ringing artifacts in the reconstruction, a redundant
version of wavelet transform, the steerable pyramid, is used. For an n1 × n2 image, the steerable
pyramid, P , is generated in dlog2(min(n1, n2)) − 4e scales and eight orientations. For example, in
the case of a 512× 512 image, we have a five scale pyramid consisting of 49 subbands; eight highpass
oriented subbands, P1 to P8, eight bandpass oriented subbands per scale, P9 to P48, in addition
to one lowpass nonoriented residual subband, P49. The denoising method is not applied over the
residual subband. For simplicity, we shall sometimes refer to this setting with 48 subbands in the
following. The implementation of the steerable pyramid which we adopt is described in detail in [2].
Therefore, we omit the details in this paper.

Assume that the image is corrupted by independent additive Gaussian noise. Therefore, a typical
neighborhood of wavelet coefficients can be represented as

y = x + w =
√
zu + w (2)

where y is the observed noisy neighborhood, x is the original neighborhood and w indicates the
independent additive white Gaussian noise signal with known variance, σ. Define xs(i, j) as the
sample at position (i, j) of Ps subband, where s = 1 . . . 48 denotes the subband index. Here, the
neighborhood of xs(i, j) is a vector whose components are its spatial neighbor coefficients and some
coefficients from other subbands at the same scale, or at adjacent scales. Note that due to down-
sampling in a pyramid structure, the bandpass subbands at adjacent scales are different in size.
Therefore, an upsampling or downsampling method is applied before neighborhood construction for
spatially matching the coefficients at various scales. The details of the interpolation method are
explained in Section 3.

In the original paper [16], a 3×3 block around xs(i, j) plus one coefficient from the (i, j) position
of the parent subband (at the next coarser scale) was experimentally suggested. Hence, the original
neighborhood size is 10 and includes {xs(i−1, j−1), . . . , xs(i+ 1, j+ 1), xs+8(i, j)}. In two cases the
neighborhoods have less than 10 samples; first, the neighborhoods of the coarsest scale coefficients
which lack a parent subband and second, the boundary coefficients. The boundary neighborhoods
are processed after a mirror extension of the subband boundaries. For a n×n spatial neighborhood,
the extension from each boundary of the original subband is equal to bn/2c.

Using the observed noisy vector, y, a Bayes least square (BLS) estimation of x, E{x|y}, is
calculated as follows

E{x|y} =

∫ ∞
0

p(z|y)E{x|y, z}dz. (3)

3We will use the following notation in this text; capital bold letters for matrices, small bold letters for vectors and
regular letters for scalars.
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The above relation is more sophisticated than other denoising methods like [5, 12, 4, 14, 21, 20]
that employ the Bayesian principle and a Gaussian patch-based modeling. Indeed, the BLS-GSM
method is using a mixture of Gaussians for modeling the noiseless neighborhood. The integral in (3)
is computed numerically on sampled intervals of z. In the original work, 13 equally spaced values of
loge(z) from [loge(zmin), loge(zmax)] = [−20.5, 3.5] interval using steps of size 2 are suggested. The
efficiency of this setting is discussed in Section 3. Therefore E{x|y} is actually computed as

E{x|y} =
13∑
i=1

p(loge(zi)|y)E{x|y, loge(zi)}. (4)

The rest of this section is dedicated to the formulation and calculation of the two components of
(4), E{x|y, loge(zi)} and p(loge(zi)|y). For notational simplicity, we replace the loge(zi) term by zi
in the rest of this section.

Define Cs
w and Cs

y as covariances of noise and observed neighborhoods of the Ps subband, s =
1 . . . 48 (the lowpass residual, P49, remains unchanged). Call ns the Ps neighborhood size (10 or 9 as
explained above). Similarly, the ns×ns Cs

w noise covariance matrix is generated by first decomposing
a delta function σδ into the steerable pyramid, P̂ . Here, δ denotes a normalized delta function with
a support equal to the input noisy image. This signal has the same power spectrum as the noise but
it is free from random fluctuations [16].

Define N s
w as the set of all P̂ neighborhoods. Therefore, N s

w is an n1n2 × ns matrix. The noise
wavelet neighborhood covariance, Cs

w, is then estimated over N s
w as

Cs
w =
N sT

w N s
w

n1n2

(5)

where (.)T stands for the matrix transposition. Similarly, the Cs
y empirical covariance matrix is

computed using the observed noisy samples. In the sequel, since all the noise removal steps are
calculated for each subband, we skip the superscript s to simplify the notation.

Using (2) and E{z} = 1, for each subband Ps we have

Cu = Cy −Cw. (6)

Here, Cu is forced to be positive semidefinite. This condition is applied by first, decomposing Cu

into its eigenvectors/eigenvalues4 and then by setting into zero its negative eigenvalues. Finally, the
positive semidefinite Cu is reconstructed using the new eigenvalues.

Suppose that {Q,Λ} indicates the eigenvectors/eigenvalues of S−1Cu(S−1)T (Sns×ns is the sym-
metric square root of Cw, i.e. Cw = SST ),

M = SQ (7)

and
v = M−1y. (8)

Now we reach to the point where we can calculate E{x|y, zi}. Using the fact that x and w are
Gaussian independent variables and that the noise is additive, E{x|y, zi} is simply a local Wiener

4Every symmetric matrix, An×n, is factorable as

A = QΛQT

where Qn×n is an orthogonal matrix and Λn×n is a diagonal matrix. The columns of Q are eigenvectors of A and its
eigenvalues are the diagonal elements of Λ. In our implementation we use corresponding functions from GRASS 6.4.2
ccmath library which is an open source software [7].
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estimate [15] and can be written as

E{x|y, zi} =
zCu

zCu + Cw

y.

To speed up the E{x|y, zi} calculation we have

E{x|y, zi} =
zCu

zCu + Cw

y

=
zCu

zCu + SST
y

=
zCu

S(zS−1Cu(S−1)T + I)ST
y

=
zCu

SQ(zΛ + I)QTST
y

= zCu(S−1)TQ(zΛ + I)−1QTS−1y

= zSS−1Cu(S−1)TQ(zΛ + I)−1QTS−1y

= zSQΛ(zΛ + I)−1QTS−1y

= zMΛ(zΛ + I)−1v

where M and v are independent of z and are calculated per subband. The non-vector representation
of the above equation is

E{x|y, zi} =
ns∑
j=1

zimc,jλj,jvj
ziλj,j + 1

(9)

where mc,j, λj,j and vj are the elements of M , Λ and v, respectively, and c indicates the reference
coefficient index in the neighborhood.

The second component of (4) is p(zi|y) which is calculated using the Bayesian rule

p(zi|y) =
p(y|zi)pz(zi)∫∞

0
p(y|α)pz(α)dα

(10)

or its discrete form

p(zi|y) =
p(y|zi)pz(zi)∑13
j=1 p(y|zj)pz(zj)

(11)

where the density of the observed noisy neighborhood vector, y, conditioned over zi is a zero-mean
Gaussian with covariance Cy|zi = ziCu + Cw

p(y|zi) =
e

−yT (zCu+Cw)−1y
2√

|zCu + Cw|

and using the above definitions of v and Λ with the same simplification step as it is explained for
E{x|y, zi} component, we set

p(y|zi) =
e
−1/2

∑ns

j=1

v2j
ziλj,j+1√∏ns

j=1 ziλj,j + 1
. (12)

Also using a non-informative Jeffrey’s prior we have

pz(zi) ∝
1

zi
. (13)
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The BLS-GSM denoising method is summarized in Algorithm 1. This algorithm is generic and
permits to use any wavelet coefficient neighborhood, either extracted from a single orientation/scale
or mixing orientations and scales. The only point is to have denoised all wavelet coefficients in the
pyramid, to allow then a reconstruction of the denoised image by the inverse pyramid.

Algorithm 1 : BLS-GSM denoising method

Require: y: n1 × n2 noisy image
Require: σ: noise standard deviation
Ensure: x̃: n1 × n2 denoised image

Decompose y into its steerable pyramid [2], P , in dlog2(min(n1, n2))− 4e scales and eight orienta-
tions
Generate noise signal, ∆⇐ σδ
Decompose ∆ into its steerable pyramid, P̂ , in dlog2(min(n1, n2))−4e scales and eight orientations

for subband s = 1 to dlog2(min(n1, n2))− 4e − 1 do
Define N s

y and N s
w as the set of all Ps and P̂s neighborhoods

Compute Cs
y and Cs

w using (5) as the noise and observation covariance matrices of N s
y and N s

w

Cs
u = Cs

y − Cs
w (in the following the superscript s is omitted)

Convert Cu to its equivalent positive semidefinite matrix using the process described above
Define {Q,Λ} as the eigenvectors/eigenvalues of S−1CuS

T where Cw = SST

Calculate M and v according to (7) and (8)
for each neighborhood with xc center in Ny do

for each multiplier zi do
Calculate E{xc|y, zi} using (9)
Calculate p(y|zi) using (12)

end for
Compute p(zi|y) using (11) and (13)
Compute x̃c = E{xc|y} using (4)

end for
end for
Reconstruct the denoised image, x̃, from the processed P pyramid
return x̃ the denoised image

3 Optimal Parameter Study

As explained in Section 2, the BLS-GSM method is based on modeling a noiseless neighborhood
of wavelet coefficients using the observation of a mixture of Gaussians for the noisy neighborhood.
Consequently the structure of this neighborhood is a key factor in the performance of the method.
In the original paper [16], the GSM model is constructed using a 3× 3 block around each sample in
addition to one sample at the same position from the parent subband. In this section, the neighbor-
hood structure will be tuned by the following parameter explorations:

1. Spatial neighborhood size: In the original algorithm a 3 × 3 block centered with the corre-
sponding coefficient is used for estimating the noiseless value. Here, this choice is checked by varying
the shape and size of the spatial neighborhood. Hence, we compare the 3 × 3 neighborhood with
5 × 5, 7 × 7 neighborhoods, and also with a neighborhood of five samples including the center and
the four samples on its top, down, right and left.
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2. Number of orientations: the original paper employs a steerable pyramid with eight orientations
at each scale. We study the optimal number of orientations by comparing the results when two, four,
eight and 16 orientations are used.

3. Inter-orientation dependency: in the original version there is no interaction between different
orientations at the same scale. Analyzing the effect of adding samples from other orientations to the
neighborhood is another interesting study. Therefore, we shall compare the results of the distinct
orientations with two other options; first, the inter-orientation relation created by adding one coeffi-
cient from each sibling subband and second, the inter-orientation relation admitting in the wavelet
coefficient neighborhood a 3× 3 block from each orientation.

4. Inter-scale dependency: as mentioned in Section 2, in the original BLS-GSM algorithm, the
neighborhood contains a single sample from the coarser scale. This sample is obtained by upsampling
the parent to the size of its child subband. In this experiment, we are interested in three variations;
first, no inter-scale relation, second, including one sample from the coarser scale to the neighborhood
and third, using two samples from the parent and the child subbands. In the last case, the child
subband is first downsampled by a factor of two.

These studies will be performed using a default configuration and a set of test images with different
properties. We shall deduce a neighborhood structure that seems to obtain the highest performance.

The experiments will be performed on identical noisy versions of each image, to obtain fully
comparable quantitative results. The numerical results are shown in terms of PSNR/RMSE. The
default configuration consists of: first, a 3 × 3 spatial neighborhood without any inter-orientation
and inter-scale relation; second, a steerable pyramid with four orientations at each scale and nearest
neighborhood method for upsampling and downsampling. Finally, the integrals in the calculations of
(3) are discretized using 13 equally spaced values for the z multiplier taken in the [0,33] interval as
it is suggested by the original work. The study of optimal values of the z multiplier which is skipped
from this section, results that the mentioned settings are close to optimal with less than 0.05 dB
difference in terms of PSNR. We report the results on weak, moderate and strong noise levels with
standard deviations of 10, 30 and 60.

Test images : Seven images with different features are used in the experiments of this section;
Building1, Building2, Trees, Valldemossa, D15 and D49 and Mixed. Figure 1 shows the set of our
test images. Building2 image mostly consists of sharp edges and homogeneous regions. Trees is an
image with irregular texture. Building1 and Valldemossa are samples with both irregular texture and
sharp edge features but each with different densities. D15 and D49 are textures from the Brodatz
texture database. D49 is a very regular sample. Finally, Mixed is a locally regular sample.

3.1 Influence of the Spatial Neighborhood Size

In this section we study the effect of the spatial neighborhood size on the performance of BLS-GSM.
In this study four experiments are performed to obtain the optimal spatial neighborhood size. The
first neighborhood consists of five samples that include a wavelet coefficient and its four top, down,
right and left neighbors. The other three experiments involve the 3 × 3, 5 × 5 and 7 × 7 blocks
centered at a wavelet coefficient.

Table 1 provides the results of the above four experiments in terms of PSNR/RMSE. Clearly, for
all test images the optimal spatial neighborhood size is 5 × 5 or 7 × 7, which is different from the
original paper settings. The maximum differences between the optimal and the 3× 3 neighborhood
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building1 building2 Trees Valldemossa

D15 D49 Mixed

Figure 1: Test images

performances are 0.70, 1.15, 0.61, 0.80, 0.18, 2.64 and 0.57 dB for Building1, Building2, Trees,
Valldemossa, D15, D49 and Mixed images, respectively. The improvements are significant in all
cases and still more significant in images with regular textures like D49. Even though in some cases
the best performance happens for the 7 × 7 neighborhood, the improvement over 5 × 5 is less than
0.1 dB (except for a very regular texture like D49, for which a 7× 7 block outperforms a 5× 5 block
by at most 1.05 dB). Thus, we suggest using a 5× 5 neighborhood to save some computation time.

Figure 2 provides a visual quality comparison between our four experiments in this section, using
the noisy Valldemossa image with three noise levels. Although in smooth regions, we obtain better
results with a 7 × 7 neighborhood, increasing the window size introduces artifacts around edges.
Therefore, considering the visual quality of the denoised images, the 5 × 5 neighborhood provides
better results.

3.2 Influence of the Number of Orientations

As we mentioned before, the BLS-GSM algorithm is applied over subbands of an oriented multires-
olution representation of the noisy image. In the original paper of this algorithm, it is shown that
a redundant multiresolution representation, instead of the standard wavelets or other orthogonal
bases, improves the denoising performance significantly and removes visual artifacts. The authors,
therefore, suggest an overcomplete tight frame called steerable pyramid with a flexible choice of the
number of orientations.

In this section, we study the performance of BLS-GSM when employing a steerable pyramid with
two, four, eight and 16 orientations, respectively. Table 2 provides the PSNR/RMSE results of these
experiments over our seven test images. Clearly, the best PSNR is obtained for the 16 orientations
experiments and by increasing the number of orientations, we always have better results. Note that
in these simulations the other settings are set to their default values. The PSNR improvement by
using 16 instead of eight orientations (which is suggested in the original paper) is up to 0.10, 0.19,
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10 30 60

Figure 2: Visual performance of the BLS-GSM method using four different spatial neighborhoods
(from top to bottom) five sample neighborhood, 3× 3, 5× 5 and 7× 7 neighborhoods, on the noisy
Valldemossa image with noise standard deviations of 10, 30 and 60.
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Table 1: Influence of the spatial neighborhood size on the BLS-GSM performance

Image Noise SD
Neighborhood size

five 3× 3 5× 5 7× 7

Building1
10 34.2/4.9 34.5/4.8 34.6/4.7 34.6/4.7
30 27.2/11.1 27.7/10.5 28.0/10.1 27.9/10.1
60 23.1/17.8 23.8/16.5 24.4/15.3 24.5/15.3

Building2
10 35.9/4.0 36.4/3.8 36.6/3.8 36.5/3.8
30 29.0/9.0 29.7/8.3 30.3/7.7 30.3/7.7
60 24.9/14.4 25.7/13.2 26.8/11.6 26.8/11.6

Trees
10 31.3/6.9 31.6/6.7 31.6/6.7 31.6/6.7
30 24.8/14.7 25.1/14.1 25.3/13.7 25.4/13.7
60 21.2/22.0 21.7/20.8 22.3/19.5 22.4/19.4

Valldemossa
10 33.7/5.2 34.1/5.0 34.3/4.9 34.2/4.9
30 27.1/11.1 27.6/10.5 28.0/10.1 28.0/10.1
60 23.2/17.6 23.8/16.3 24.6/14.8 24.6/14.8

D15
10 29.6/8.3 29.9/8.1 29.9/8.1 29.8/8.1
30 22.2/19.7 22.6/18.7 22.7/18.6 22.6/18.8
60 18.1/31.5 18.6/29.7 18.8/29.1 18.8/29.1

D49
10 32.3/6.1 33.5/5.3 34.3/4.9 34.6/4.7
30 24.3/15.5 25.7/13.2 27.1/11.1 27.9/10.1
60 19.6/26.5 20.6/23.7 22.2/19.7 23.2/17.5

Mixed
10 31.3/6.9 31.6/6.7 31.7/6.6 31.7/6.6
30 24.6/14.8 25.1/14.0 25.3/13.6 25.4/13.6
60 21.0/22.5 21.7/20.8 22.2/19.7 22.3/19.5

0.04, 0.05, 0.17, 0.83 and 0.21 dB for Building1, Building2, Trees, Valldemossa, D15, D49 and Mixed
test images, respectively. Obviously, for images with irregular textures, like Trees, increasing the
number of orientations brings little improvement. We shall use these observations in Section 4 to
improve the BLS-GSM performance.

Another interesting observation is the performance loss when using four times less orientations
than the optimal case. In many applications it would be interesting to exchange performance for
speed by using fewer orientations. The PSNR loss by using four orientations instead of 16 is up to
0.30, 0.47, 0.14, 0.16, 0.39, 1.74 and 0.53 dB for Building1, Building2, Trees, Valldemossa, D15, D49
and Mixed images, respectively. Using these results, for irregular textures, like Trees, we may freely
decrease the number of orientations and obtain faster algorithm without missing the performance
significantly.

For visual comparison, Figure 3 represents the denoised outputs after applying the BLS-GSM
algorithm on the D49 image. The visual improvement when using more orientations is conspicuous,
particularly for moderate to strong noise.

3.3 Influence of the Inter-Orientation Dependency

The two preceding sections have considered neighborhoods of wavelet samples belonging to the same
orientation. Here we study the effect of adding samples from other orientations to the neighborhood.
These additional samples belong to the same scale. In this section, the performance of BLS-GSM is
evaluated experimentally in three cases: first, all samples in each wavelet neighborhood belong to the
same orientation, second, inter-orientation dependency adding in the neighborhood one coefficient
from each orientation and third, inter-orientation dependency when putting in the wavelet coefficients
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10 30 60

Figure 3: Visual performance of the BLS-GSM denoising method using (from top to bottom) 2, 4,
8 and 16 orientations at each scale applying on the noisy D49 image with noise standard deviations
of 10, 30 and 60.
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Table 2: Influence of number of orientations on the BLS-GSM approach performance

Image Noise SD
Number of orientations

2 4 8 16

Building1
10 34.2/4.9 34.4/4.8 34.6/4.7 34.7/4.6
30 34.2/4.9 34.4/4.8 34.6/4.7 34.7/4.6
60 23.5/16.9 23.7/16.5 23.9/16.2 24.0/16.0

Building2
10 35.9/4.0 36.3/3.8 36.6/3.7 36.8/3.6
30 29.3/8.6 29.7/8.3 29.9/8.0 30.1/7.9
60 25.2/13.8 25.6/13.2 25.8/12.9 26.0/12.7

Trees
10 31.5/6.7 31.5/6.7 31.5/6.7 31.5/6.7
30 25.0/14.3 25.1/14.1 25.1/14.0 25.1/14.0
60 21.6/21.1 21.7/20.8 21.8/20.5 21.9/20.4

Valldemossa
10 34.0/5.0 34.1/5.0 34.2/4.9 34.2/4.9
30 27.4/10.8 27.6/10.5 27.7/10.4 27.7/10.4
60 23.7/16.6 23.8/16.3 23.9/16.1 24.0/16.0

D15
10 29.8/8.2 29.9/8.1 30.0/8.0 30.1/7.9
30 22.4/19.2 22.6/18.7 22.8/18.4 22.9/18.1
60 18.4/30.6 18.6/29.7 18.8/29.0 19.0/28.4

D49
10 33.2/5.5 33.5/5.3 33.8/5.1 34.1/4.9
30 25.1/14.0 25.7/13.2 26.5/11.9 27.2/11.0
60 20.2/24.7 20.6/23.7 21.5/21.3 22.3/19.4

Mixed
10 31.4/6.8 31.6/6.7 31.9/6.4 32.1/6.3
30 24.8/14.5 25.1/14.0 25.3/13.7 25.5/13.4
60 21.2/22.0 21.7/20.8 21.8/20.5 22.0/20.1

neighborhood a 3 × 3 block taken from each one of the four orientations. Notice that these new
samples are added to the previous 3× 3 spatial neighborhood, which means that the neighborhood
sizes become 9, 12 and 36 in these three experiments.

Table 3 shows the PSNR/RMSE performance of the three envisaged configurations for our seven
test images. For moderate and strong noises, the introduction of inter-orientation relations mostly
outperforms distinct orientations while for low standard deviations, in almost all images, higher
PSNRs are observed when there are no samples from other orientations in the neighborhood. At
moderate and strong noises the maximum benefit of adding inter-orientation relations to the BLS-
GSM approach is 0.51, 0.76, 0.46, 0.69, 0.07, 1.57 and 0.34 dB for Building1, Building2, Trees,
Valldemossa, D15, D49 and Mixed images, respectively. With the exception of the very regular
texture image D49, the improvement is in direct relation with the amount of smooth regions. For
images with larger smooth regions like Building2 and Valldemossa, adding more information from
other channels is more beneficial.

As we see in the numerical results, even though D49 has a high density of edges, we observe
significant improvements at all noise levels by involving the inter-orientation relations. A visual
study of the denoising results on this image is interesting and confirms our previous findings. Figure 4
represents the denoised images for the D49 image at the three noise levels. Obviously, the results
are improved by adding inter-orientation relations. This improvement is due to having edges in
one direction that are represented in only one orientation and therefore, adding information from
other orientations does not degrade the BLS-GSM model over edges. It is interesting to note that
the horizontal edges with lower intensities have disappeared when adding more samples from other
orientations. Therefore, even though we observe numerical and visual improvements for the D49
image, our previous finding works for natural images with edges along various directions.
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Table 3: The BLS-GSM algorithm performance when adding coefficients from other orientations to
the neighborhood

Image Noise SD
Various inter-orientation relations

no relation one sample 3× 3 block

Building1
10 34.4/4.8 34.4/4.8 34.4/4.8
30 27.6/10.5 27.7/10.4 27.8/10.3
60 23.7/16.5 23.9/16.2 24.2/15.6

Building2
10 36.3/3.8 36.3/3.8 36.2/3.9
30 29.7/8.3 29.7/8.2 29.9/8.1
60 25.6/13.2 25.9/12.9 26.4/12.1

Trees
10 31.5/6.7 31.5/6.7 31.5/6.7
30 25.1/14.1 25.2/13.9 25.2/13.9
60 21.7/20.8 21.9/20.4 22.2/19.7

Valldemossa
10 34.1/5.0 34.1/5.0 34.1/5.0
30 27.6/10.5 27.7/10.4 27.9/10.2
60 23.8/16.3 24.1/15.8 24.5/15.0

D15
10 29.9/8.1 29.9/8.1 29.8/8.2
30 22.6/18.7 22.6/18.7 22.5/18.9
60 18.6/29.7 18.6/29.6 18.7/29.5

D49
10 33.5/5.3 33.5/5.3 34.2/4.9
30 25.7/13.2 26.0/12.7 27.0/11.2
60 20.6/23.7 21.0/22.6 22.1/19.8

Mixed
10 31.6/6.7 31.4/6.8 31.2/6.9
30 25.1/14.0 25.0/14.2 25.0/14.2
60 21.7/20.8 21.8/20.6 22.0/20.0

To sum up, with the exception of images with only one dominant edge direction, in real world
images including samples from other orientations in the BLS-GSM neighborhood destroys the edge
regularities and therefore, is not efficient.

3.4 Influence of the Inter-Scale Dependency

After the study of inter-orientation relations, in this section we concentrate on inter-scale relations. As
mentioned in Section 2, BLS-GSM is applied on all subbands (except the residual low-pass subband)
of a steerable pyramid in dlog2(min(n1, n2))−4e scales, where n1 and n2 indicate the image size. In our
first three comparative experiments the denoising process has been applied on each scale distinctly.
The original paper [16] suggests using one sample from parent orientation in the coarser scale. To
analyze the interscale relations, we designed three experiments. First, with no scale interaction at
all. Second, using as suggested by the authors one wavelet coefficient from the parent subband at
the same orientation. Third, using two coefficients from the parent and child subbands. Due to
the subsampling in a multiscale structure, subsampling and oversampling methods are required for
matching spatially the coefficients in the various scales. The upsampling was performed in the Fourier
domain, which slows down the algorithm. We found that using a simpler image resizing method by
nearest neighborhood did not bring any performance loss. Therefore, we decided to use the nearest
neighborhood method for upsampling and downsampling (here and elsewhere).

The PSNR/RMSE results when adding samples from other scales to the BLS-GSM neighborhood
are provided in Table 4. Clearly in all images and for all noise levels the addition of inter-scale
dependencies improves the numerical results. This improvement is up to 0.37, 0.61, 0.31, 0.43,
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10 30 60

Figure 4: Visual performance of BLS-GSM denoising (from top to bottom) without inter-orientation
relation, inter-orientation relations with one sample and a 3 × 3 block, on the noisy Valldemossa
image with noise standard deviations of 10, 30 and 60.
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0.09, 0.11 and 0.31 dB on Building1, Building2, Trees, Valldemossa, D15, D49 and Mixed images,
respectively. The improvement is more significant for real world images with a higher variety of
structural elements. In addition to this, by comparing the second and third experiments, we see
that the PSNR gain brought by adding samples from a finer scale is less than 0.05 dB. Thus, for
decreasing the time complexity of the denoising method and in agreement with the original paper,
we suggest adding only one sample from the coarser scale in the wavelet neighborhood.

Table 4: The BLS-GSM algorithm performance when adding coefficients from other scales to the
neighborhood

Image Noise SD
Various inter-scale relations

no relation only coarser scale coarser and finer

Building1
10 34.4/4.8 34.6/4.7 34.6/4.7
30 27.6/10.5 27.8/10.2 27.9/10.2
60 23.7/16.5 24.0/15.9 24.1/15.8

Building2
10 36.3/3.8 36.6/3.7 36.6/3.7
30 29.7/8.3 30.1/7.9 30.1/7.9
60 25.6/13.2 26.2/12.3 26.2/12.3

Trees
10 31.5/6.7 31.6/6.7 31.5/6.7
30 25.1/14.1 25.2/13.9 25.3/13.8
60 21.7/20.8 22.0/20.1 22.0/20.1

Valldemossa
10 34.1/5.0 34.3/4.9 34.2/4.9
30 27.6/10.5 27.9/10.2 27.9/10.2
60 23.8/16.3 24.2/15.5 24.3/15.5

D15
10 29.9/8.1 29.9/8.0 30.0/8.0
30 22.6/18.7 22.7/18.6 22.7/18.6
60 18.6/29.7 18.7/29.4 18.7/29.4

D49
10 33.5/5.3 33.5/5.3 33.6/5.3
30 25.7/13.2 25.7/13.0 25.8/13.0
60 20.6/23.7 20.7/23.4 20.7/23.4

Mixed
10 31.6/6.6 31.6/6.6 31.6/6.6
30 25.1/14.0 25.3/13.8 25.2/13.8
60 21.7/20.8 22.0/20.1 22.0/20.1

Figure 5 depicts output denoised results of Valldemossa image with different noise levels and the
three mentioned experiments. The visual improvement obtained by adding inter-scale relations to
the neighborhood is significant in the denoised images.

Accordingly, considering the numerical and visual results using one coefficient from the coarser
scale is the best setting in case of inter-scale relations.

3.5 Optimal Parameters and Comparison with the Original Work

According to the experimental studies of the previous sections, the optimal setting for BLS-GSM
regarding numerical and visual results uses neighborhoods of 26 samples consisting a 5× 5 block at
the same subband in addition to one sample from the coarser scale. The pyramid has 16 orientations
at each scale. The setting uses a nearest neighborhood interpolation and also 13 equally spaced z
values between 0 and 33. These settings are different from the original paper that suggests a 3 × 3
spatial neighborhood, eight orientations at each scale and the Fourier domain extension as zooming
method.
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10 30 60

Figure 5: Visual performance of the BLS-GSM denoising method (from top to bottom) without
inter-scale relation, using one sample from adjacent coarser scale and finally, using two samples from
coarser and finer scales on the noisy Valldemossa image with noise standard deviations of 10, 30 and
60.
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Table 5 provides a comparison of the original BLS-GSM algorithm [16] with our optimal BLS-
GSM method with the above mentioned optimal parameters. The D1 column indicates the gain
obtained by applying the optimal settings, in terms of PSNR. The improvement is up to 0.51, 0.83,
0.31, 0.42, 0.19, 3.07 and 0.40 dB for Building1, Building2, Trees, Valldemossa, D15, D49 and Mixed
test images, respectively. The PSNR gain seems to be in direct relation with the amount of regularity
and structural elements present in the input noisy image.

Table 5: Numerical performance of the original, optimal and localized BLS-GSM methods
Image Noise SD Original Optimal D15 Localized D26

Building1
10 34.7/4.6 34.8/4.5 0.1 35.0/4.5 0.3
30 28.0/10.0 28.3/9.7 0.3 28.4/9.6 0.4
60 24.2/15.6 24.7/14.7 0.5 24.8/14.5 0.6

Building2
10 36.8/3.6 37.0/3.5 0.2 37.2/3.5 0.3
30 30.3/7.7 30.8/7.2 0.5 31.0/7.1 0.7
60 26.4/12.1 27.2/11.0 0.8 27.4/10.8 1.0

Trees
10 31.6/6.7 31.6/6.7 0.0 31.5/6.7 -0.1
30 25.3/13.8 25.4/13.6 0.1 25.3/13.7 0.0
60 22.1/20.0 22.4/19.3 0.3 22.3/19.4 0.2

Valldemossa
10 34.3/4.8 34.3/4.8 0.0 34.3/4.8 0.0
30 28.0/10.1 28.1/9.9 0.1 28.1/9.9 0.1
60 24.3/15.4 24.7/14.6 0.4 24.7/14.7 0.4

D15
10 30.0/8.0 30.0/8.0 0.0 30.1/7.9 0.1
30 22.8/18.2 22.9/18.1 0.1 23.0/17.8 0.2
60 18.9/28.6 19.1/28.0 0.2 19.2/27.7 0.3

D49
10 33.8/5.1 34.7/4.6 0.9 34.5/4.7 0.7
30 26.6/11.8 28.4/9.6 1.8 28.2/9.8 1.6
60 21.6/21.1 23.7/16.5 3.1 23.6/16.8 2.9

Mixed
10 31.9/6.4 32.1/6.2 0.2 32.5/6.0 0.6
30 25.5/13.4 25.8/13.0 0.3 26.0/12.6 0.5
60 22.2/19.7 22.6/18.8 0.4 22.7/18.4 0.5

Average
10 33.3/5.5 33.5/5.4 0.2 33.6/5.3 0.3
30 26.6/11.9 27.1/11.3 0.5 27.1/11.3 0.5
60 22.8/18.5 23.5/17.0 0.7 23.5/17.0 0.7

As mentioned in Section 3.3, in case of regular images, adding inter-orientation dependencies
improves the BLS-GSM algorithm performance. Table 6 shows this fact on D49. In these results the
neighborhood of 145 samples consists of a 3× 3 block from each orientation and one coefficient from
the parent subband.

Table 6: Numerical performance of the BLS-GSM method on D49 by adding a 3 × 3 block from
other orientations to the neighborhood

Noise SD Original settings optimal + inter-orientation Improvement
10 33.8/5.1 34.7/4.6 0.91
30 26.6/11.8 29.3/8.7 2.70
60 21.6/21.1 25.2/13.9 3.60

5Difference between the optimal and original BLS-GSM methods
6PSNR difference between the localized and original BLS-GSM algorithms
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Regarding the visual quality, figures 6, 7 and 8 depict the denoised outputs of Valldemossa,
building2 and D49 images for several noise levels. The visual improvement of the optimal BLS-GSM
method over the original one is clear in all cases. This gain increases with the noise level.

4 Localized BLS-GSM Denoising Method

Our experimental study of Section 3 has shown that the gain by adding more information (i.e. more
coefficients) to the BLS-GSM neighborhood occurs on regular images like D49. For this image the
improvement of the optimal BLS-GSM method over the original one is up to 3.60 dB. Therefore, it
seems that localizing the image features improves the performance of the BLS-GSM method.

To study this idea, we first partitioned the input noisy image into 64× 64 blocks and then BLS-
GSM was applied to each block, exactly as described in Section 2. To avoid blocking artifacts in
the denoising results, successive blocks overlap by 32 pixels. Thus, each noisy pixel is involved in at
most four blocks and after applying the BLS-GSM algorithm, the final denoised value is obtained by
averaging the four obtained estimates.

Table 5 shows the PSNR/RMSE pairs for the localized BLS-GSM method applied to our seven test
images. The localized BLS-GSM algorithm outperforms the original version by up to 0.63, 1.02, 0.26,
0.42, 0.30, 2.91 and 0.62 dB for Building1, Building2, Trees, Valldemossa, D15, D49 and Mixed test
images, respectively. The localized BLS-GSM denoising method also outperforms the optimal version
by 0.16, 0.21, 0.13 and 0.39 dB for Building1, Building2, D15 and Mixed, respectively. For Trees,
Valldemossa and D49 there is almost no improvement by using the localized version. Obviously, in
irregular textures (like leaves) even small blocks contain many different edge directions. This may
explain why the results of the local and global denoising are similar. Conversely in the images like
D49 the features of each small block are very close to the features of the whole image. Thus, again,
applying the algorithm on the whole image or on each patch we obtain similar results.

The principal benefit reached by localizing BLS-GSM is the improvement of the visual quality of
the denoised images. Figures 6 and 7 represent denoising results of the localized BLS-GSM method
on the Valldemossa and Building2 test images. Clearly the edge regularity is preserved better in the
localized version. Confirming the absence of PNSR gain for this images, Figure 8 shows no significant
improvement by applying the localized algorithm on D49.

5 Comparison with other Recent Denoising Methods

In this section we compare the BLS-GSM method performance with a few recent well-known denois-
ing algorithms: NL-means [3], K-SVD [13] and BM3D [11]. Table 7 provides the denoising results
of these methods in terms of PSNR/RMSE. It shows that in terms of PSNR the BLS-GSM method
is following the more recent denoising algorithms well. Regarding the visual quality performance,
figures 9, 10 and 11 represent the denoised images for Valldemossa, Building2 and D49 test im-
ages, respectively. The BLS-GSM algorithm preserves the sharpness of edges. Overall, its visual
performance outperforms the K-SVD method, but is inferior to the BM3D performance.

6 Source Code

The BLS-GSM implementation in C++ in addition to an online demo of the BLS-GSM algorithm is
available at the IPOL web page of this article7. The input arguments of this code are the number of

7http://dx.doi.org/10.5201/ipol.2014.86
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10 30 60

Figure 6: Visual quality performance study; (from top to bottom) the noisy image, the original,
optimal and localized BLS-GSM methods results while applying on the noisy Valldemossa image
with noise standard deviations of 10, 30 and 60.
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Figure 7: Visual quality performance study; (from top to bottom) the noisy image, the original,
optimal and localized BLS-GSM methods results while applying on the noisy Building2 image with
noise standard deviations of 10, 30 and 60.

63



Boshra Rajaei

10 30 60

Figure 8: Visual quality performance study; (from top to bottom) the noisy image, the original,
optimal and localized BLS-GSM methods results while applying on the noisy D49 image with noise
standard deviations of 10, 30 and 60.
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Figure 9: Comparison of the visual quality of (from top to bottom) localized BLS-GSM, NL-Means,
K-SVD and BM3D methods applied to the noisy Valldemossa with noise standard deviations of 10,
30 and 60.
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Figure 10: Comparison of the visual quality of (from top to bottom) localized BLS-GSM, NL-Means,
K-SVD and BM3D methods applied to the noisy Building2 with noise standard deviations of 10, 30
and 60.
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Figure 11: Comparison of the visual quality of (from top to bottom) localized BLS-GSM, NL-Means,
K-SVD and BM3D methods applied to the noisy D49 with noise standard deviations of 10, 30 and
60.
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Table 7: Comparison of numerical performance of the optimal and localized BLS-GSM method with
other recent classic denoising algorithms

Image Noise SD Optimal Localized NL-Means K-SVD BM3D

Building1
10 34.88/4.59 35.03/4.51 33.28/5.23 34.96/4.55 35.35/4.35
30 28.33/9.77 28.46/9.62 26.76/11.71 27.93/10.22 28.46/9.62
60 24.75/14.76 24.86/14.57 23.01/18.04 23.92/16.22 23.61/16.81

Building2
10 37.04/3.58 37.20/3.52 36.51/3.81 37.41/3.43 38.10/3.17
30 30.87/7.29 31.07/7.12 30.22/7.86 30.87/7.29 32.09/6.33
60 27.25/11.06 27.44/10.82 26.13/12.59 26.92/11.49 28.00/10.14

Trees
10 31.60/6.71 31.58/6.71 30.12/7.96 31.39/6.86 31.22/7.00
30 25.41/13.68 25.39/13.70 24.21/15.70 25.01/14.31 25.00/14.33
60 22.41/19.31 22.36/19.42 20.93/22.91 21.73/20.88 21.34/21.84

Valldemossa
10 34.37/4.87 34.39/4.86 33.53/5.37 34.55/4.77 35.01/4.52
30 28.17/9.95 28.17/9.95 27.30/11.00 28.22/9.89 28.69/9.36
60 24.80/14.67 24.78/14.70 23.62/16.81 24.67/14.88 24.66/14.90

D15
10 30.07/8.03 30.11/7.96 29.29/8.76 30.04/8.01 29.61/8.42
30 22.96/18.13 23.08/17.89 22.58/18.96 22.96/18.11 22.75/18.57
60 19.17/28.06 19.27/27.72 18.59/29.98 18.98/28.04 19.34/27.51

D49
10 34.71/4.68 34.55/4.77 33.44/5.43 34.53/4.78 34.39/4.86
30 28.43/9.66 28.28/9.82 26.84/11.60 27.84/10.33 28.05/10.08
60 23.78/16.50 23.62/16.81 22.88/18.30 23.07/17.89 24.60/15.00

Mixed
10 32.17/6.28 32.54/6.01 31.16/7.06 31.73/6.60 32.29/6.19
30 25.84/13.01 26.10/12.64 24.82/14.64 25.24/13.93 25.81/13.03
60 22.61/18.87 22.79/18.49 21.38/21.76 21.32/21.88 22.36/19.41

Average
10 33.55/5.36 33.63/5.31 32.48/6.06 33.52/5.38 33.72/5.25
30 27.14/11.21 27.22/11.11 26.10/12.63 26.87/11.56 27.26/11.05
60 23.54/16.96 23.59/16.87 22.36/19.43 22.94/18.18 23.41/17.22

orientations and scales, the spatial neighborhood size and inter-scale relations which by default are
our default settings of the experiments of Section 3.

7 Conclusion

In this paper, we analyzed the BLS-GSM denoising algorithm and we studied several parameters
affecting its numerical and visual performance. Finally, we proposed a localized version of the BLS-
GSM algorithm and proved experimentally that this localization yields a significant improvement
compared to the original method. We found that the proposed localized version is state-of-the-art
in terms of PSNR. It is also patent that the method shows some undesirable ringing artifacts on flat
regions in the vicinity of edges. This is easily explained by the multiscale nature of the algorithm.
All in all, this algorithm performs beautifully on texture images, where a multiscale GSM seems
particularly adequate.
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Image Credits

by Calmech Inc Energy

by Power Pusher Developers

by A. Buades CC-BY

from the Brodatz texture dataset
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