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Abstract

Estimating the depth, or equivalently the disparity, of a stereo scene is a challenging problem in
computer vision. The method proposed by Rhemann et al. in 2011 is based on a filtering of the
cost volume, which gives for each pixel and for each hypothesized disparity a cost derived from
pixel-by-pixel comparison. The filtering is performed by the guided filter proposed by He et al.
in 2010. It computes a weighted local average of the costs. The weights are such that similar
pixels tend to have similar costs. Eventually, a winner-take-all strategy selects the disparity
with the minimal cost for each pixel. Non-consistent labels according to left-right consistency
are rejected; a densification step can then be launched to fill the disparity map. The method
can be used to solve other labeling problems (optical flow, segmentation) but this article focuses
on the stereo matching problem.

Source Code

A software written in C++ is available on the IPOL web page of this article1, which is the code
used in the online demo. This gives similar results to the original authors’ Matlab implemen-
tation2. The program needs several parameters (see Section 4 for more detailed explanations).
By default they are tuned as suggested in the original article, but one can adapt them to get
better results.

Supplementary Material

In the demo, an optional rectification step can be launched before running the algorithm. The
source code for this preprocessing step (not reviewed) can be found at the IPOL web page of
this article3.

Keywords: stereo-matching; cost volume; guided filter

1https://doi.org/10.5201/ipol.2014.78
2https://www.ims.tuwien.ac.at/publications/tuw-202088
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1 Introduction

Stereo matching algorithms aim at estimating the depth of a scene given two photographs taken
from different points of view (Figure 1). Depth estimation is done by estimating the disparity of
each pixel, namely its apparent displacement from the first (reference) image to the second (target)
image. This disparity permits to recover the 3D position of the point that was photographed in this
pixel, if the stereo setup has been previously calibrated.

(a) Left (reference) image (b) Right (target) image

Figure 1: Tsukuba stereo pair

We assume that the left image is the reference image. Let M be a 3D-point. We denote by OL

(resp. OR) the principal point of the left (resp. right) camera, that is the orthogonal projection of
the optical center on the image plane. The point p (resp. q) denotes the image of M in the left

image (resp. in the right image). Then, the disparity of M is given by d(M) =
−−→
ORq −

−−→
OLp. Assume

the camera makes a so-called fronto-parallel move, meaning that the focal plane is the same for all
positions of the camera and that its motion is parallel to the x-axis of the camera CCD array. This
is the case for instance in the Middlebury benchmark dataset4. Then, the disparity is scalar and
its absolute value is inversely proportional to the distance from the observer. More precisely, if the
camera moves from the left to the right, any point has a negative disparity (see Figure 2). Hence,
the lower the (signed) disparity, the lower the depth.

In more general cases, the situation is slightly different. After stereo-rectification, some infor-
mation is lost, such as the position of the camera principal points. The coordinates of pixels in
the images are then not given with respect to the optical center, but to an arbitrary point (de-
noted O′

L and O′
R). Without any supplementary information, the disparity of a point M is then

given by d′(M) =
−−→
O′

Rq −
−−→
O′

Lp. We see that we can go back to the previous case by writing

d′(M) =
−−−→
O′

ROR +
−−→
ORq −

−−→
OLp −

−−−→
O′

LOL = d(M) + C where C does not depend on the point M .
Then, to recover the depth from the disparity of any point, a constant has to be added to the
computed disparity, but lower disparity still means lower depth.

If the camera motion is right to left, the situation is inverted and lower disparity means higher
depth. This is important for the occlusion filling process, which in a first step fills in the non informed
pixels with a disparity corresponding to lower depth.

2 Algorithm Description

Let IL and IR be respectively the left and right color images of a stereo pair, of size M ×N . Then,
IrL, I

g
L and IbL denote the color channels of the left image (IrR, I

g
R and IbR for the right image). We

4http://vision.middlebury.edu/stereo/
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Figure 2: Disparity when the camera moves from the left to the right. The disparity of the pixel M
is given by subtracting the blue vector from the red vector. The disparity (in green) is then always
negative.

proceed to the gray-level conversion of the images:

ĨL = 0.299 · IrL + 0.587 · IgL + 0.0721 · IbL and ĨR = 0.299 · IrR + 0.587 · IgR + 0.0721 · IbR. (1)

We assume the disparity range [dmin, dmax] to be known.

2.1 Cost Volume

Pixel-to-pixel comparison is done by involving the truncated absolute difference of the color and the
x-derivative of the grayscale images. These two terms are balanced with a parameter α.

1. Color comparison: for each pixel i in the left image and each pixel j in the right image, the
color penalty is obtained by averaging the AD (Absolute Difference) on each color channel:

Ncolor(i, j) :=
1

3

(

∣

∣IrL(i)− IrR(j)
∣

∣+
∣

∣IgL(i)− IgR(j)
∣

∣+
∣

∣IbL(i)− IbR(j)
∣

∣

)

(2)

which is then thresholded:

N τ1
color(i, j) := min

(

Ncolor(i, j), τ1

)

. (3)

2. x-derivative comparison: the discrete derivative along the x-axis of the gray-level image ĨL
(resp. ĨR), denoted ∇xĨL (resp. ∇xĨR), is computed as follows5

∀ i = (ix, iy), ∇xĨL(i) :=
ĨL(ix + 1, iy)− ĨL(ix − 1, iy)

2
. (4)

The AD is then computed

Ngradient(i, j) :=
∣

∣∇xĨL(i)−∇xĨR(j)
∣

∣ (5)

5In (4), pixel intensities outside the image are considered to be the same as at the closest pixel inside the image.
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and thresholded

N τ2
gradient(i, j) := min

(

Ngradient(i, j), τ2

)

. (6)

3. Eventually, the color and gradient terms are balanced:

N(i, j) := (1− α) ·N τ1
color(i, j) + α ·N τ2

gradient(i, j). (7)

The cost volume C is then defined on a sampling integer grid of the volume [0,M − 1]× [0, N − 1]×
[dmin, dmax], such that, for any disparity value d ∈ [dmin, dmax]:

C(i, d) := N(i, i+ d). (8)

This assumes that i + d is in the domain of the right image (we note by a slight abuse of notation
i+ d := (ix + d, iy) if i = (ix, iy)). If it is not the case, we set C(i, d) := (1− α) · τ1 + α · τ2 which is
the maximal possible cost.

2.2 Filtering with Guided Filter

The pixel-to-pixel comparison alone is too sensitive to noise. So, each slice p(i) = C(i, d) has to
be filtered. The guided filter [4] is chosen since it is designed to preserve edges, by using the left
image IL as guidance image.

Grayscale guidance image. Let I be the guidance (grayscale) image and q be the output of the
filter. The key assumption of the guided filter is that it is a local linear model between I and q. For
each square window ωk with radius rGF centered at k (by definition, a square with integer radius r
is a square with side length 2 × r + 1 and |ωk| denotes the number of pixels in ωk), a k-dependent
filtered image qk is defined to be a linear transform of I in ωk

∃ ak, bk, ∀i ∈ ωk, qk(i) = ak · I(i) + bk. (9)

If k is too close to the image boundaries, then we only take into account the part of the window that
remains in the domain of the image (see Figure 3).

k

(a) Window of radius rGF = 2 centered at
k = (3, 6). |ωk| = 25.

k

(b) Window of radius rGF = 2 centered
at k = (1, 8). |ωk| = 16.

Figure 3: Examples of square windows.

In the window ωk, since ak and bk are constant, we can write

∇qk = ak∇I. (10)
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That is, strong edges in I imply strong edges in qk. Hence, the guided filter preserves the edges of
the guidance image. To determine coefficients ak and bk, the L

2-norm between the filter input p and
the filter output qk is minimized. Hence, an energy-based formulation of this problem is:

argmin
ak,bk

{

E(ak, bk) :=
∑

i∈ωk

(

ak · I(i) + bk − p(i)
)2

+ ε|ωk|a
2
k

}

. (11)

The first term is a data term and the second term is a regularization term preventing ak from being
too large. The parameters ak and bk are then obtained by solving the Euler equation (∇E = 0):

ak =

1

|ωk|

∑

i∈ωk

I(i)p(i)− µkpk

σ2
k + ε

(12)

bk = pk − akµk (13)

where µk and σ2
k are the mean and variance of I in the window ωk, and pk is the mean of p in ωk:

µk :=
1

|ωk|

∑

i∈ωk

I(i), σ2
k :=

1

|ωk|

∑

i∈ωk

I(i)2 − µ2
k and pk :=

1

|ωk|

∑

i∈ωk

p(i). (14)

The coefficients computed above depend on the window ωk. However, any pixel i is involved in
several windows ωk, which leads to many values of coefficients ak and bk. A simple way to solve this
problem is to take the average of all these values:

q(i) :=
1

|ωi|

∑

k|i∈ωk

qk(i) =
1

|ωi|

∑

k|i∈ωk

(

ak · I(i) + bk
)

= ai · I(i) + bi (15)

with ai (resp. bi) the mean of ak (resp. bk) in the window ωi, namely

ai :=
1

|ωi|

∑

k|i∈ωk

ak and bi :=
1

|ωi|

∑

k|i∈ωk

bk. (16)

Notice that i ∈ ωk ⇔ k ∈ ωi, which explains the normalization factor 1/|ωi|.
The filter output q is then computed following four steps:

1. Computing the images µk, pk,
1

|ωk|

∑

i∈ωk

I(i)p(i), and σ2
k;

2. Computing the images ak and bk with expressions (12) and (13);

3. Computing the images ai and bi by (16);

4. Computing q thanks to (15).

Note that the first three steps use a box filter (mean in a square window). An efficient implemen-
tation of the box filter, independent of the radius of the square window, is shown in the next section.
The above filter may be better understood when reformulated as a variable kernel convolution WGF:

q(i) =
∑

j

WGF
ij · p(j) with WGF

ij :=
∑

k∈ωi∩ωj

1

|ωi| · |ωk|

(

1 +

(

I(j)− µk

)(

I(i)− µk

)

σ2
k + ε

)

. (17)

It is easily observed by this formula that pixels j in the neighborhood of i having similar color have
a stronger weight in the resulting value of q(i).
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Color guidance images. For color guidance images (I = (Ir, Ig, Ib)T ), the linear model can be
written as

qk(i) = aTk I(i) + bk. (18)

The vectors ak and bk are then given by

ak = (Σk + εI3)
−1



















1

|ωk|

∑

i∈ωk

Ir(i)p(i)− µr
kpk

1

|ωk|

∑

i∈ωk

Ig(i)p(i)− µg

kpk

1

|ωk|

∑

i∈ωk

Ib(i)p(i)− µb
kpk



















and bk = pk − aTk





µr
k

µg

k

µb
k



 , (19)

with µr
k, µ

g

k, and µb
k the mean images of each color channel of the guidance image I:

µ
[1]
k :=

1

|ωk|

∑

i∈ωk

I [1](i) for [1] ∈ {r, g, b}, (20)

Σk is the covariance matrix of the guidance image I in the window ωk,

Σk :=





σrr
k σrg

k σrb
k

σrg

k σgg

k σgb

k

σrb
k σgb

k σbb
k



 where σ
[1][2]
k :=

1

|ωk|

∑

i∈ωk

I [1](i)I [2](i)− µ
[1]
k µ

[2]
k for [1], [2] ∈ {r, g, b} (21)

and I3 is the identity matrix of size 3× 3. In this case, the kernel weights are given by

WGF
ij =

1

|ωi| · |ωj|

∑

k∈ωi∩ωj

(

1 +
(

I(i)− µk

)T (

Σk + εI3
)−1(

I(j)− µk

)

)

. (22)

In conclusion, each slice of the cost volume C(·, d) is filtered with the guidance image IL:

Cfilt(i, d) :=
∑

j∈L

1

|ωi| · |ωj|

∑

k∈ωi∩ωj

(

1 +
(

IL(i)− µk

)T (

Σk + εI3
)−1(

IL(j)− µk

)

)

· C(j, d). (23)

(a) Guidance image (b) Slice d = −4 of the cost volume (c) Filtering by guided filter

Figure 4: Filtering by guided filter of a slice of the cost volume for the Tsukuba pair (τ1 = 7, τ2 = 2,
α = 0.9, ε = 10−4, rGF = 9).

The generalization to multi-channel images as guidance, as for example hyper-spectral satellite
imagery, would follow the same process with matrices of different size.
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2.3 Implementation of the Box Filter [3]

In this section, an implementation of the box filter proposed by Crow [2] is described. The simplest
way to compute the mean in a square window of an image I is to sum the value of each pixel of the
window, and then divide by the window size. Thus, for a window size of |ωk|, |ωk| − 1 sums and one
division are needed. Hence, the complexity of the process is linear with the radius of the window.

Another way to do it would be to first compute an integral image S of summed areas, of the same
size as I:

∀ i = (ix, iy), S(i) =
ix
∑

kx=0

iy
∑

ky=0

I(kx, ky). (24)

Then a sum in any rectangle [ix, jx]× [iy, jy] is given by (see Figure 5)

S(jx, jy)− S(ix − 1, jy)− S(jx, iy − 1) + S(ix − 1, iy − 1), (25)

an eventual negative index removing the involved terms of S in the formula. Hence the computation
of the mean only needs one sum, two subtractions and one division; it no longer depends on the
radius of the window.

0

0

ix jx

iy

jy

Figure 5: Calculation of a summed area from the integral image.

2.4 Disparity Selection

Once the cost volume is filtered, the disparity of any pixel i is the disparity that minimizes the cost
associated to i in the cost volume (“Winner-take-all” strategy):

d(i) = arg min
d′∈[dmin,dmax]

{

Cfilt(i, d′)
}

. (26)

2.5 Left-Right Consistency

The left-right consistency checks whether the disparity computed from the left image IL coincides
with the disparity computed from the right image IR. At pixel precision, a disparity is rejected when

d
(

i
)

6= −d′
(

i+ d(i)
)

(27)

where d′ denotes the disparity map computed from right to left image. This mask is expected to
reject all occluded pixels and some flat region pixels of the scene. Thus rejected pixels are called
“occluded pixels” in what follows. To handle subpixel disparities as well, this can be reformulated
in the more general constraint:

∣

∣d
(

i
)

+ d′
(

i+ d(i)
)∣

∣ ≥ dLR, (28)

with dLR = 1. Equation (27) is (28) when dLR = 0.
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(a) Left image (b) Right image (c) Disparity map

Figure 6: Result of the winner-take-all algorithm on the Tsukuba pair.

(a) Left image (b) Disparity map (c) Left-right consistency rejections

Figure 7: Result of the left-right consistency check on the Tsukuba pair. Most of the occluded pixels
are detected by the left-right consistency mask. So are some pixels on constant disparity regions.

2.6 Densification Process

This step aims at filling the disparity map after the rejection test. Only occluded pixels are affected
by this process, non-occluded ones keep their original disparity. It is done in two stages: the basic
filling stage and the post-processing stage.

In the first stage a disparity value is given to the pixels rejected by the previous step. Since the
mask mainly rejects occluded pixels, it often involves points of the scene that are hidden by other
objects. In such cases, the rejected pixels are mainly in a region of discontinuity of the scene, where
a closer object is in front of a farther one. Hence a strategy would be to adopt the disparity of the
farther object, by exploring the closest nonoccluded pixels (on the same line). We recall that the
farther object is given by the higher disparity. Hence, this leads to the following filling-in formula:

∀ i = (ix, iy), dfill(i) := max























d

(

ix + min
jx≤0

(ix+jx,iy) nonoccluded

{jx}, iy

)

,

d

(

ix + min
jx≥0

(ix+jx,iy) nonoccluded

{jx}, iy

)























. (29)

Notice that if i is nonoccluded, dfill(i) = d(i).
Simple filling can generate streak-line artifacts. Hence an edge-preserving filter is used to remove

them, by smoothing the disparity map. The left image is first filtered by the median filter (applied
on 3× 3-windows): for [1] ∈ {r, g, b},

I
[1]
L,filt(i) = median

{

I
[1]
L (i+ j)

∣

∣

∣
j = (jx, jy) : jx, jy ∈ {−1, 0,+1}

}

. (30)
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(a) Left image (b) Left-right consistency rejections (c) Simple filling

Figure 8: Result of the filling on the Tsukuba pair. Streak-line artifacts appear.

Let i be an occluded pixel. Then for each j in the square window ω′
i of radius rWMF centered on i,

the bilateral filter weight is computed by

WBF
ij := exp

(

−

∥

∥i− j
∥

∥

2

σ2
s

)

· exp

(

−
‖IL,filt(i)− IL,filt(j)‖

2
c

σ2
c

)

, (31)

where ‖ · ‖ denotes the Euclidean distance and ‖ · ‖c the Euclidean distance in RGB color space:

‖IL,filt(i)− IL,filt(j)‖
2
c =

∣

∣IrL,filt(i)− IrL,filt(j)
∣

∣

2
+
∣

∣IgL,filt(i)− IgL,filt(j)
∣

∣

2
+
∣

∣IbL,filt(i)− IbL,filt(j)
∣

∣

2
. (32)

This filter gives higher weight to pixels spatially close and of similar color, which are likely to belong
to the same object. A disparity cumulative histogram h is then computed, where each value is
weighted by the weight (31):

∀ d ∈ [dmin, dmax], h(d) =
∑

j∈ω′
i|d(j)≤d

WBF
ij . (33)

The final disparity of i is then set to be the median value of h:

dfinal(i) := min
{

d
∣

∣

∣
h(d) ≥

1

2
h(dmax)

}

. (34)

(a) Left image (b) Simple filling (c) Filtering the former by weighted
median filter

Figure 9: Result of the post-processing on the Tsukuba pair. The disparity map is smoothed.
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3 Algorithm Summary and Implementation

A class Image defined in file image.h is used throughout. It is a container for an array of pixels
that is reference counted: a copy of the image does not reallocate memory, it just adds a reference
to the same array in memory (a coding pattern named shallow copy). The pixel by pixel operators
of addition, subtraction and multiplication, used in the cost-volume filtering, are implemented as
overloaded operators, easing readability of the code. Some simple image filters are implemented in
file filters.cpp. Among them, boxFilter performs local averages using summed area tables. The
method gradX computes the x-derivative of the image.

Algorithm 1 gives the pseudocode of the cost-volume filtering described above. The code is in file
cost volume.cpp. Notice that we do not need to store in memory the full cost-volume, only the slice
at current disparity d needs to be stored. The cost image p is computed in function compute cost.
The filtering itself is in function filter cost volume. Our code implements the algorithm for color
images even for actually grayscale images, which yields the same result, though at higher computation
cost.

The consistency check is described in Algorithm 2. The disparity d′ from IR to IL is computed, us-
ing range [−dmax,−dmin]. The consistency between d and d′ is checked in function detect occlusion

of file occlusion.cpp. The threshold dLR (0 by default) is used.

The filling process is described in Algorithm 3. The simple filling is performed by using methods
fillMaxX or fillMinX of class Image, depending on the camera motion direction (user input pa-
rameter). The filling based on bilateral weights (function fill occlusion of file occlusion.cpp) is
parallelized using openMP. Two functions in file filters.cpp are used: weighted histo computes
the local histogram of disparities weighted by bilateral weights, while median histo computes the
median of the histogram.

4 Method Parameters

Several parameters should be tuned to use this method. Table 1 recalls all of them. Default values
of these parameters suggested in [8] are also given. Default values of τ1, τ2, ε and σc are adapted to
8-bit images with intensity range in [0, 255] (most frequent case), but should be changed for higher
bit depths.

Results obtained with different values of the parameters are then shown in order to see their
influence. The experiments were done on the Tsukuba pair. Unless explicitly stated otherwise, only
one parameter is changed at a time. The other parameters are tuned by default. Errors are also
shown (absolute disparity error > 0.5) using a mask generated by Middlebury based on ground truth

(a) Left image (b) Ground truth

Figure 10: Ground truth used to evaluate the results.
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Algorithm 1: Cost-volume guided filtering algorithm

Input: Color images IL and IR, disparity range [dmin, dmax].
Output: Disparity map d(.)
Compute the images µr

k, µ
g

k, µ
b
k (20), and Σk (21).1

Cost(.)←∞2

foreach d ∈ [dmin, dmax] do3

Building the slice d of cost volume:4

foreach pixel i in the left image do5

Compute the color term (3) and the gradient term (6) for disparity d.6

Compute the cost associated to pixel i for disparity d (7).7

Set the cost value in p(i) = C(i, d) (8).8

Cost-volume slice filtering by guided filter:9

Compute the image p̄k of p (14).10

Compute the images
1

|ωk|

∑

i∈ωk

IrL(i)p(i),
1

|ωk|

∑

i∈ωk

IbL(i)p(i), and
1

|ωk|

∑

i∈ωk

IbL(i)p(i).
11

Compute the images of coefficients ak et bk (19).12

Compute the images āi and b̄i (16).13

Compute the output of the filter q = Cfilt(·, d) (15).14

Disparity selection:15

foreach pixel i in the left image do16

if Cost(i)> q(i) then17

Cost(i)← q(i)18

d(i)← d (26).19

Algorithm 2: Left-right consistency check

Compute the disparity map d′ from IR to IL.1

foreach pixel i in the left image do2

If |d(i) + d′(i+ d(i))| > dLR, label the pixel i as occluded.3

Algorithm 3: Disparity map filling

Simple filling:1

foreach occluded pixel i do2

Find the two nearest neighbors (on the same line) that are not occluded.3

Adopt the higher (assuming left to right camera motion) disparity (29).4

Post-processing:5

Filter the left image by median filter (30).6

foreach occluded pixel i do7

Compute the bilateral filter weights on a neighborhood of i (31).8

Use these weights to compute a weighted median filter on the neighborhood of i (33), (34).9
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Parameter Suggested value Description
rGF 9 Guided filter radius.
α 0.9 Parameter in [0, 1] that balances the color and the

gradient contribution. The bigger this parameter,
the more important the contribution of the gradi-
ent term.

τ1 7 Threshold used for the color penalty AD distance.
τ2 2 Threshold used for the gradient penalty AD dis-

tance.
ε 2552 · 10−4 Guided filter regularization parameter.

dLR 0 Left-right disparity difference tolerance
rWMF 9 Weighted median filter radius.
σs 9 Weight of the spatial term in the bilateral filter.
σc 255 · 10−1 Weight of the color term in the bilateral filter.

Table 1: Method parameters.

measurements (Figure 10). Note that this mask does not take into account the image borders. These
results were also submitted to the Middlebury site in order to automatically get the percentage of
bad pixels (with a wrong disparity). In the following figures (Figure 11 to Figure 18), the first row
shows the disparity map obtained by our implementation. The second row shows the disparity map
with the mask (in pink) generated by Middlebury.

We first tested the influence of the parameters of the computation of the cost volume and its
filtering by the guided filter. Figure 11 shows the results after the whole process (including filling
and post-processing) when the size of the filter rGF is tuned. A larger filter size gives smoother
results often visually more satisfying. However, the disparity map can be too smooth and errors
generated on the boundaries of some objects. Indeed, when we look at the percentage of bad pixels
on the boundaries of objects, we get 19.7% bad pixels for rGF = 19 while there are only 16.4% bad
pixels for the default parameters. Nevertheless, the results remain globally better with a large filter
size. Next, the influence of the parameter α was studied (see Figure 12). The larger this parameter,
the heavier the gradient term weight. Results are better for large values of α. In other terms, the
gradient comparison seems much more reliable than the color comparison. This is due to the fact
that the scene is textured. Note that the disparity estimation is better on the lamp when α is small,
because the lamp has no texture.

Figure 13 shows the error percentages for four of the Middlebury images with respect to rGF and
α, the two main parameters and the ones that can be tuned in the online demo. This shows that the
default parameters are well adapted to get optimal results in the Middlebury benchmark.

The other parameters needed for the computation of the cost volume are the thresholds τ1 and τ2.
By default, they are chosen very low, which limits the influence of a large difference (of color or
gradient). Figure 14 shows that the results are more accurate when these thresholds are larger. The
results degrade when the thresholds are too large, though.

The last parameter involved in the filtering of the cost volume is the regularization parameter ε.
The larger this parameter, the smoother the disparity map. Figure 15 shows that even though the
number of bad pixels is lower for larger values of ε, the results are not visually satisfactory since the
boundaries of many objects seem loose while ε grows.

The influence of the parameters involved in the filling process was also tested. We started with
the size of the weighted median filter. Figure 16 shows that this parameter is not a key parameter,
since the results do not significantly change when we tune it. The disparity estimation is slightly
enhanced when the filter size grows. However, the larger the filter, the slower the computation.
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(a) rGF = 9 (b) rGF = 4 (c) rGF = 11 (d) rGF = 19

(e) rGF = 9 (f) rGF = 4 (g) rGF = 11 (h) rGF = 19

Figure 11: Influence of the guided filter size. (a)+(e) Default parameters (rGF = 9). 12.9% are bad
pixels. (b)+(f) rGF = 4, bad pixels: 15.9%. (c)+(g) rGF = 11, bad pixels: 11.8%. (d)+(h) rGF = 19,
bad pixels: 11.7%. When the filter size grows, the disparity map is cleaner (wrong disparities are
removed, e.g. in the background), but errors appear on the object boundaries (e.g. on the space
between the lamp and the table), due to an oversmooth map.

(a) α = 0.9 (b) α = 0.95 (c) α = 0.5 (d) α = 0.1

(e) α = 0.9 (f) α = 0.95 (g) α = 0.5 (h) α = 0.1

Figure 12: Influence of the parameter α. (a)+(e) Default parameters (α = 0.9), bad pixels: 12.9%.
(b)+(f) α = 0.95, bad pixels: 10.7%. (c)+(g) α = 0.5, bad pixels: 20.9%. (d)+(h) α = 0.1, bad
pixels: 23.5%. The larger the parameter, the better the results. Hence, the gradient comparison
seems more reliable than the color comparison. This is specific to this scene (lots of textures). This
is not true for scenes with many flat regions (the border of the lamp here is better estimated for a
smaller value of α).
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Figure 13: Influence of the parameters rGF (left) and α (right) on errors in the Middlebury bench-
mark.

(a) τ1 = 7, τ2 = 2 (b) τ1 = 20, τ2 = 2 (c) τ1 = 7, τ2 = 10 (d) τ1 = 20, τ2 = 10

(e) τ1 = 7, τ2 = 2 (f) τ1 = 20, τ2 = 2 (g) τ1 = 7, τ2 = 10 (h) τ1 = 20, τ2 = 10

Figure 14: Influence of thresholds τ1 and τ2. (a)+(e) Default parameters (τ1 = 7, τ2 = 2), bad pixels:
12.9%. (b)+(f) τ1 = 20, bad pixels: 12.1%. (c)+(g) τ2 = 10, bad pixels: 9.65%. (d)+(h) τ1 = 20,
τ2 = 10, bad pixels: 9.49%. The results improve when the thresholds are chosen a little larger.
Actually, by default, they are set too small. Thus, big differences do not affect the comparison too
much. However, errors appear when they are too large (typically larger than those presented here).
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(a) ε = 2552 · 10−4 (b) ε = 2552 · 10−1 (c) ε = 2552 · 10−2 (d) ε = 2552 · 10−5

(e) ε = 2552 · 10−4 (f) ε = 2552 · 10−1 (g) ε = 2552 · 10−2 (h) ε = 2552 · 10−5

Figure 15: Influence of the regularization parameter. (a)+(e) Default parameters (ε = 2552 · 10−4).
Bad pixels: 12.9%. (b)+(f) ε = 2552 · 10−1, bad pixels: 13.5%. (c)+(g) ε = 2552 · 10−2, bad pixels:
12.2%. (d)+(h) ε = 2552 · 10−5, bad pixels: 13.0%. For large values of ε, the object boundaries are
loose and the disparity map is smoother.

(a) rWMF = 9 (b) rWMF = 4 (c) rWMF = 19 (d) rWMF = 29

(e) rWMF = 9 (f) rWMF = 4 (g) rWMF = 19 (h) rWMF = 29

Figure 16: Influence of the size of the weighted median filter. (a)+(e) Default parameters (rWMF = 9),
bad pixels: 13.0%. (b)+(f) rWMF = 4, bad pixels: 13.2%. (c)+(g) rWMF = 19, bad pixels: 12.9%.
(d)+(h) rWMF = 29, bad pixels: 12.8%. This parameter shows no influence on the results. However,
as expected, the results are slightly better when the filter size grows.

266



Stereo Disparity through Cost Aggregation with Guided Filter

(a) σc = 255 · 10−1 (b) σc = 255 · 10−2 (c) σc = 255 (d) σc = 255× 4

(e) σc = 255 · 10−1 (f) σc = 255 · 10−2 (g) σc = 255 (h) σc = 255× 4

Figure 17: Influence of the parameter σc. (a)+(e) Default parameters (σc = 255 · 10−1), bad pixels:
12.9%. (b)+(f) σc = 255 · 10−2, bad pixels: 13.3%. (c)+(g) σc = 255, bad pixels: 12.7%. (d)+(h)
σc = 255×4, bad pixels: 12.8%. This parameter has no strong influence, but it should not be chosen
too large or too small.

(a) σs = 9 (b) σs = 10−1 (c) σs = 2 (d) σs = 15

(e) σs = 9 (f) σs = 10−1 (g) σs = 2 (h) σs = 15

Figure 18: Influence of the parameter σs. (a)+(e) Default parameters (σs = 9), bad pixels: 12.9%.
(b)+(f) σs = 10−1, bad pixels: 13.4%. (c)+(g) σs = 2, bad pixels: 13.3%. (d)+(h) σs = 15, bad
pixels: 12.7%. This parameter does not change the results a lot, but it should not be chosen too
large or too small.
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Then, the parameters σc (Figure 17) and σs (Figure 18) are tuned, which control the importance
of the color distance and the spatial distance in the bilateral filter. The experiments do not uncover
any significant changes. One can notice that when these parameters are too large, the results are
worse, because the bilateral filter is then not discriminatory enough. On the contrary, when they are
too small, the filter rejects too many pixels.

By tuning properly the parameters to get better results, we managed to reach 9.01% bad pixels
(and 8.44% in nonoccluded regions). Figure 19 shows the disparity map obtained with the following
parameter values: rGF = 11, α = 0.95, τ1 = 20, τ2 = 10, ε = 2552 · 10−4, rWMF = 29, σc = 255 · 10−1,
σs = 15. However, one should keep in mind that the optimal values of the parameters depend on the
scene.

(a) Default parameters (b) Tuned parameters

(c) Default parameters (d) Tuned parameters

Figure 19: Enhancement by tuning properly the parameters. (a)+(c) Default parameters. Bad pixels:
12.9%. (b)+(d) Tuned parameters. Bad pixels: 9.01%. We managed to enhance the result, especially
in the background of the scene, while keeping a good estimation anywhere else. Nevertheless, one
can notice that the disparity map is smoother, which creates some errors (e.g. on the right border of
the lamp or on the statue).

We can compare the result before and after the densification process. Figure 20 shows the
disparity map obtained with and without this step. The densification cleans the disparity map, by
removing big errors (e.g. on the lamp). However, some details are lost (e.g. the wire on the lamp).
Actually, one can notice that the densification step mainly enhances the result on flat regions of the
disparity map. It does not affect much discontinuity regions. Then, one should consider this step to
be a filtering step, as it removes big errors in flat regions.

5 Examples

5.1 Comparison with Original Algorithm

The authors of the original algorithm [8] propose a Matlab implementation6. It performs similarly
to our implementation, the slight differences being attributed to:

• Image color to gray conversion formulas.

6https://www.ims.tuwien.ac.at/publications/tuw-202088
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(a) Without densification (b) With densification

(c) Without densification (d) With densification

Figure 20: Enhancement by the densification process. (a)+(c) Without densification. Bad pixels:
14.5%. (b)+(d) With densification. Bad pixels: 12.9%. The densification mainly enhanced the
results on nonoccluded regions. It removed some obvious errors easily detected (e.g. on the lamp or
on the statue), but it also removed some details (e.g. the wire on the lamp).

Error threshold=1:
Impl. AR Rank Tsukuba Venus Teddy Cones

Ours 50.5 49 1.92 2.24 7.68 0.26 0.47 2.55 6.98 12.4 16.7 2.83 8.25 7.99
Authors 38.0 27 1.51 1.85 7.61 0.20 0.39 2.42 6.16 11.8 16.0 2.71 8.24 7.66

Error threshold=0.5:
Impl. AR Rank Tsukuba Venus Teddy Cones

Ours 38.1 28 11.5 11.9 16.1 5.74 6.17 10.4 12.1 18.5 26.0 8.16 13.9 15.6
Authors 35.9 26 11.2 11.7 15.6 5.99 6.43 10.8 11.3 18.1 25.3 7.71 13.7 15.1

Table 2: Results on Middlebury stereo benchmark (AR=Average Rank). First implementation is
our code, the second one is the authors’ CUDA code results, as stored in the benchmark.

• Handling of cost for pixels outside the image, term N(i, i+ d) of (8): the Matlab code assumes
a constant color R = G = B = b with b = 3 of IR outside its boundaries, while we assign the
maximum possible cost.

• Numerical inaccuracies.

A comparison on the Middlebury stereo benchmark is given in Table 2. The authors’ implemen-
tation is not their Matlab code. The latter uses dmax = −1 instead of 0, but otherwise gives results
similar to our implementation. The CUDA code (not available) gives sensibly better results for the
error threshold = 1 (only disparity errors strictly larger than 1 pixel are reported). Comparing both
error thresholds, we see that our implementation has significantly more errors of 1 pixel.

After a personal communication with the CUDA implementation author [5], it appears that on
the Tsukuba pair, the left-right consistency threshold is dLR = 1 instead of 0. Whereas taking such
a threshold yields slightly better results on Tsukuba and Cones, it deteriorates Venus and Teddy, so
does not improve the final rank in the benchmark.

Moreover, we see in the green areas of Figure 21 some wrong disparity pixels that are not detected
as occluded with the CUDA code but are still corrected in the final map. This is inconsistent with
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Figure 21: CUDA implementation result on Tsukuba pair. Left: disparity map with occluded pixels.
Right: final disparity map.

the described algorithm. No explanation could be found.

5.2 Results

We now show some other results obtained by our implementation. The experiments were done on
images without ground truth. Hence, the results can only be appreciated visually. If not stated
otherwise, the results shown were obtained by the whole process (including occlusion detection,
filling and post-processing). The algorithm was launched with the default parameters (see previous
section).

Globally, the results tend to show that this method gives very good results. The default param-
eters are fairly well chosen, which is sufficient most of the time. Hence, one can launch the code
without tuning any parameter and yet get satisfactory results. Nevertheless, they can be enhanced
by tuning the parameters, which are numerous. Thus, one has to tune and test each parameter
several times to find the optimal parameters.

Chair. The code was tested on the Chair pair (Figure 22). Results are fairly good. However note
that this pair is easy to deal with, since almost none of the stereovision difficulties are encountered
(almost no reflection, textured regions).

This result is compared with the result obtained before the left-right consistency check (Figure 23).
Results are visually better. However, Figure 24 shows that this process degrades some parts of the
disparity map, especially on some objects boundaries. Densification leads to better overall results,
but some accuracy is lost.

(a) (b) (c)

Figure 22: Chair pair. (a) Left image. (b) Right image. (c) Result. The result is very satisfactory,
the depth of the scene seems probable.
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Umbrella. Results on the Umbrella pair are shown in Figure 25. This experiment discloses a
strong fattening effect, that is, neighbor points of objects in the foreground are labelled as if they
belonged to the objects. Hence, such objects appear fatter than they actually are. This specific
example shows that the boundaries of the green umbrella are not clearly drawn, since they are badly
estimated (e.g. the left ear is bigger than expected). The background adopted the umbrella disparity.

6 Discussion on Adaptive-Window Approaches

The effectiveness of the method described in this article mainly relies on the use of the guided filter.
Formula (17) expresses this filter with adaptive weights, which are shown in Figure 26. Hence, the
filter only takes into account some selected neighboring pixels. The window is thus adapted to each
pixel.

To compute the weights associated to a pixel i, we can use (17) or (23), but another possibility is
for each pixel j to apply the guided filter to the Dirac image pj(k) = δjk (1 at pixel j, 0 everywhere
else) and take the filtered image at i, WGF

ij = qj(i). Note that only pixels j at l∞-distance at most
2 · rGF from i should be considered, the sum in (23) reducing to 0 otherwise.

Similar strategies, based on adaptive windows, have been proposed previously. Indeed, local
stereo-matching methods highly rely on window comparison. Such comparison assumes that the
depth within the window does not vary much, which is not the case on depth discontinuities. Hence,
local methods require choosing the best window to perform well. The choice of a window depends
on many criteria. Windows have to be large enough to avoid low signal to noise ratio. However,
when they are too large, they may cover regions in which the depth varies a lot. Indeed, in such
regions, the comparison may be affected by projective distortion due to strong depth discontinuities.
Accordingly, several approaches have been tested to design adaptive windows. This strategy is aimed
at selecting for each pixel the appropriate window.

One of the former approaches consists in adapting the window size to the pixel, knowing that it
should depend on local variations of intensity and disparity [6]. Indeed, high variations of disparity
mean depth discontinuities, which often entails distortions. Unfortunately, this method needs to
evaluate the variation of the disparity, so it strongly depends on the initial disparity estimation.

Another approach is to adapt the shape of the window to fit with the shape of the discontinuities.
Boykov et al. [1] find for each pixel an arbitrarily shaped connected window chosen by evaluating the
plausibility of each pixel to have the same disparity as the pixel under consideration. Veksler [11, 12]

(a) (b) (c)

Figure 23: Chair pair. (a) Left image. (b) Before the occlusion detection. (c) After the whole
process. After the occlusion detection and the densification step, the disparity map is cleaner, most
of obvious errors have been removed. Moreover, the disparity has been well interpolated on the left
border of the image.
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(a) (b) (c)

Figure 24: Chair pair (detail). (a) Left image. (b) Before the occlusion detection. (c) After the
whole process. In this detail, the disparity was better estimated before the occlusion detection, even
though the densification process removed some errors.

(a) (b) (c)

Figure 25: Umbrella pair. (a) Left image. (b) Right image. (c) Result.

uses a set of windows (called compact windows) of different size and shape, and chooses the most
reliable (with minimal average error). However, this method does not consider general shapes of
window, which limits its performance.

More recently, a new adaptive-window method, proposed by [14], uses square weighted windows.
For each pixel, the weights are computed so that only neighboring pixels of interest (i.e. belonging to
the same object) have heavy weight. Since the Gestalt principles state that grouping rules based on
similarity and proximity are among the strongest, the weights should depend on the color similarity
and the spatial proximity. The weights are chosen so that they decrease quickly while the pixels i
and j are dissimilar or not close enough:

Wij :=
1

Ki

exp

(

−

∥

∥i− j
∥

∥

σ2
s

)

· exp

(

−

∥

∥IL(i)− IL(j)
∥

∥

c

σ2
c

)

(35)

where ‖ ·‖c denotes the Euclidean distance between two colors represented in color space7. Note that
this is close to the bilateral filter used in the post-processing. Figure 26 shows examples of weights
obtained by this formula. A limitation of this method is that it is computationally expensive, while
the guided filter discloses similar results with a lower complexity. Note that the name “bilateral

7The original article [14] uses Euclidean distance in CIELab color space, in our experiments we use L1 distance in
RGB space.
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(a) (b) (c) (d)

Figure 26: Adaptive weights in the guided filter (left image for each patch) and of Yoon-Kweon’s
bilateral filter [14] (right image for each patch).

filter” [10] is the most recent one for a filter known as the sigma filter [7], the Yaroslavsky filter [13]
and the SUSAN filter [9].

The bilateral weights in Figure 26 are computed with parameters: σ2
s = 17.5 (half the window

size 35× 35) and σ2
c = 14 · 3 (3 channels). The weights appear roughly equivalent by both methods.

Note that there is implicitly a decreasing tendency with the distance to central pixel i in the guided
filter, because the further pixel j, the fewer windows ωk containing i and j. A full comparison with
other adaptive-window methods will be the object of future work.

Image Credits

All images by the authors (license CC-BY-SA) except:

Middlebury.

References

[1] Y. Boykov, O. Veksler, and R. Zabih, A variable window approach to early vision, IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI), 20 (1998), pp. 1283–1294.
http://dx.doi.org/10.1109/34.735802.

273



Pauline Tan, Pascal Monasse

[2] F.C. Crow, Summed-area tables for texture mapping, ACM SIGGRAPH Computer Graphics,
18 (1984), pp. 207–212. http://dx.doi.org/10.1145/964965.808600.

[3] G. Facciolo, N. Limare, and E. Meinhardt-Llopis, Integral images for block matching.
preprint, http://www.ipol.im/pub/pre/57, 2013.

[4] K. He, J. Sun, and X. Tang, Guided image filtering, in 11th European Conference on Com-
puter Vision, Springer, 2010, pp. 1–14. http://dx.doi.org/10.1007/978-3-642-15549-9_1.

[5] A. Hosni. Personal communication (Feb. 2013).

[6] T. Kanade and M. Okutomi, A stereo matching algorithm with an adaptive window: theory
and experiment, IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 16
(1994), pp. 920–932. http://dx.doi.org/10.1109/34.310690.

[7] J-S. Lee, Digital image smoothing and the sigma filter, Computer Vision, Graphics, and Image
Processing, 24 (1983), pp. 255–269. http://dx.doi.org/10.1016/0734-189X(83)90047-6.

[8] C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz, Fast cost-volume
filtering for visual correspondence and beyond, in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), IEEE, 2011, pp. 3017–3024. http://dx.doi.org/10.1109/CVPR.
2011.5995372.

[9] S.M. Smith and J.M. Brady, Susan–a new approach to low level image processing, Inter-
national Journal of Computer Vision (IJCV), 23 (1997), pp. 45–78. http://dx.doi.org/10.

1023/A:1007963824710.

[10] C. Tomasi and R. Manduchi, Bilateral filtering for gray and color images, in 6th Interna-
tional Conference on Computer Vision (ICCV), IEEE, 1998, pp. 839–846. http://dx.doi.org/
10.1109/ICCV.1998.710815.

[11] O. Veksler, Stereo correspondence with compact windows via minimum ratio cycle, IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI), 24 (2002), pp. 1654–1660.
http://dx.doi.org/10.1109/TPAMI.2002.1114859.

[12] , Fast variable window for stereo correspondence using integral images, in IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, IEEE, 2003,
pp. I–556. http://dx.doi.org/10.1109/CVPR.2003.1211403.

[13] L.P. Yaroslavsky, Digital picture processing: an introduction., Springer-Verlag New York,
Inc., ISBN 3-540-11934-5, 1985.

[14] K-J. Yoon and I-S. Kweon, Adaptive support-weight approach for correspondence search,
IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 28 (2006), pp. 650–
656. http://dx.doi.org/10.1109/cvpr.2005.218.

274


	Introduction
	Algorithm Description
	Cost Volume
	Filtering with Guided Filter
	Implementation of the Box Filter gabriele
	Disparity Selection
	Left-Right Consistency
	Densification Process

	Algorithm Summary and Implementation
	Method Parameters
	Examples
	Comparison with Original Algorithm
	Results

	Discussion on Adaptive-Window Approaches

