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Abstract

This work presents an algorithm which permits to detect locally on digital contours what is the
amount of noise estimated from a given maximal scale. The method is based on the asymptotic
properties of the length of the maximal segment primitive.

Source Code

The implementation of the algorithm is available through the ImaGene1 library framework. A
special version of this library is given without boost and gmp dependencies. The source code
and the online demonstration are accessible at the IPOL web page of this article2.

Keywords: noise estimation; meaningful scale detection

1 Overview

The estimation of the meaningful scale of a digital contour is a difficult problem that can have
important impacts for numerous applications which are dependent of a supervised noise parameter.
For instance, it is the case in various curvature estimators [4, 9, 10] or in contour polygonalisation
algorithms [1, 11].

This work presents an algorithm which permits to detect locally what is the amount of noise
estimated from a given maximal scale. The method is based on the asymptotic properties of the
length of the maximal segment primitive [7]. The presented algorithm is related to previous work
which was first presented in conference [5] and then further extended [6].

1ImaGene, {Gen}eric Digital {Ima}ge Library, http://gforge.liris.cnrs.fr/projects/imagene
2http://dx.doi.org/10.5201/ipol.2014.75
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Figure 1: First row: Illustration of the digitization process Digh() applied on the real shape X
with the set of maximal segments covering the digital contours. Second row: Illustration of several
subsampling with the same digitization grid size but with different shifts (x0, y0).

2 Method

The method is based on the study of the properties of the maximal digital straight segment which is a
classic primitive used in the field of discrete geometry. This primitive is for instance used for tangent
or curvature estimators. As mentioned in the introduction, the length of the maximal segments is
exploited to detect a meaningful scale through a given maximal scale. An illustration representing
this primitive with finer and finer scale is given in figure 1 (first row) where maximal segments are
represented by the boxes. Before describing the asymptotic property on the length of this primitive,
we briefly recall its classic definition.

2.1 Primitive of the Maximal Digital Straight Segment

Definition of a Standard Digital Straight Line (DSL) A Standard Digital Straight Line
(DSL) is some set {(x, y) ∈ Z2, µ ≤ ax − by < µ + |a| + |b|}, where (a, b, µ) are also integers and
gcd(a, b) = 1. The real lines of equation ax− by = µ and ax− by = µ+ |a|+ |b| − 1 are respectively
the lower and upper leaning lines (as illustrated in figure 2 (a)).

Definition of a Maximal Straight Segment A Digital Straight Segment (DSS) is a 4-connected
piece of DSL. The interpixel contour of a simple digital shape is a 4-connected closed path without
self-intersections. A maximal segment M of a 4-connected path C, is a subset of C that is a DSS
and which is no more a DSS when adding any other point of C \M .

The figure figure 2 (b) illustrates the recognition process of a maximal segment starting from
the point A. The points P1, Q1, P2, Q2, P3, Q3, P4, Q4, P5, Q5, Q6, Q7, Q8, and Q9 are added
alternately to the front and to the back of the current segment.
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Figure 2: Illustration of a Digital Straight Line (a) and example of a maximal segment recognition
process (b).

Extraction of Maximal Straight Segments through the ImaGene Library The maximal
segment recognition algorithm is included in the ImaGene3 library. The class C4CTangentialCover4

is defined to compute all the set of maximal segments (class MaximalSegment5) associated to a digital
contour (a 4-connected contour represented by the class C4CIterator6).

2.2 Asymptotic Properties of Maximal Straight Segments

The previous primitive presents some particular asymptotic properties with its length in number of
steps (or number of pixel minus one). The asymptotic behavior is defined by considering different
digitization steps h of a real shape X.

More precisely, theorem 5.26 of a research report by Lachaud [7] (in chapter 5) indicates that
given a real shape X, if we consider a digitization process Digh(X) = X∩hZ×hZ and if the shape X
has a C3 boundary and is strictly convex, then the smallest discrete length of the maximal segment
of Digh(X) is some Ω(1/h1/3). The longest discrete length of the maximal segments on the boundary
of Digh(X) is some O(1/h1/2). The experiments of figure 3 (a) confirm such a behavior.

However, since the shapes obtained with smaller and smaller digitization grid sizes are in general
not available, we choose another strategy by subsampling the initial shape to obtain coarser and
coarser shapes. The second line of figure 1 shows an example of several subsamplings defined with
various shifts (x0, y0). The lengths are thus defined for a given subsampling (characterized by the
size hi and shift x0, y0) by the average. If we denote by (Lhi,x0,y0)j=1..li the discrete lengths of the set

of li maximal segments covering P , the average length L
hi

is defined by:

L
hi

=
1

i2

∑
0≤x0,y0<i

1

lx0,y0
i

∑
j

Lhi,x0,y0
j ,

where lx0,y0
i represents the number of maximal segments containing the subsampled point P .

By using this strategy we can observe a similar behavior as shown on the experiments of fig-
ure 3 (b).

3http://www.lama.univ-savoie.fr/~lachaud/ImaGene/doc/html/index.html
4http://www.lama.univ-savoie.fr/~lachaud/ImaGene/doc/html/classImaGene_1_1C4CTangentialCover.

html
5http://www.lama.univ-savoie.fr/~lachaud/ImaGene/doc/html/structImaGene_1_1C4CTangentialCover_

1_1MaximalSegment.html
6http://www.lama.univ-savoie.fr/~lachaud/ImaGene/doc/html/classImaGene_1_1C4CIterator.html
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Figure 3: Experiments on measures of the length of maximal segments obtained from a flower shape
for finer and finer grid size (a). Experiments on measure of the length of maximal segments obtained
from a flower shape for different subsamplings (b).

2.3 Meaningful Scale Detection from the Previous Property

To exploit the previous property, we introduce the concept of multiscale profile defined for a contour

point. A multiscale profile Pn(P ) is defined as the sequence of samples (log(i), log(L
hi

)i=1..n). The
construction of such a multiscale profile is illustrated in figure 4 (a) with the contour sampled with
grid size equal to 8 (represented in light blue).

A meaningful scale of a sequence (Si, Ti)1≤i≤n is defined as a pair (i1, i2) such that:

∀i, i1 ≤ i < i2,
Ti+1 − Ti
Si+1 − Si

≤ tm,

and the preceding property is not true for i1 − 1 and i2. The parameter tm is related to the
previous theorem and this value has few influence towards the detection quality (see annex in the
paper by Kerautret et al. [6] or section 5.2). The default value giving slightly better result was set to
tm = 0. Note that from this definition the minimal length of the interval (i1, i2) is one. Increasing this
minimal value does not really improve the meaningful scale detection as you can see in section 5.2.

The noise level is defined as the first index for which the multiscale profile is going to decrease
(i.e.) i1. Figure 4 (c) illustrates the multiscale profile obtained on a point of a noisy contour part.
The curve is first going the increase and then recover a normal behavior from the scale i1. The noise
level of this point is thus equal to i1.

3 Algorithm

The algorithm for meaningful scale detection is composed of three main steps:

1. Subsampling the digital source contour to obtain the multiscale representation.

2. Tangential cover computation on all digital subsampled contours.

3. Computation of the multiscale profile and deduction of the noise level.
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Figure 4: Images (a,b), construction of a multiscale profile with the set of maximal segments covering
the red point for the grid size h equals to 8. Images (c,d), illustration of a multiscale profile defined
on a noisy contour point P2. The resulting meaningful scale is (i1, i2).

3.1 Subsampling the Discrete Source Contour

Different methods are possible for the subsampling step. A common approach is to apply the sub-
sampling by using the binary image of the contour and by covering it with a tilling of squares of
size i× i. Such an approach is simple but also presents the first inconvenient to not provide directly
the correspondence between the digital contour of O and the digital contour of the subsampling
of O (such a correspondence is illustrated in figure 5 (b)). A second inconvenient comes from the
topological point of view since a simply connected shape can be transformed into a shape containing
holes or vice versa.

We choose another approach by defining a contour based subsampling method. Given a digital 4-
connected contour C that is the boundary of the set of pixels O in the cellular model, the subsampling
is performed in four steps:

• step 1: the interpixel contour C is shifted toward the inside so that it defines the 4-connected
inner border of O. This 4-connected contour of pixels is denoted by C ′. It is not necessarily
simple and may contain some back-and-forth paths that are oriented toward the exterior of O
(outer spikes).

• step 2: the pixel contour C ′ is subsampled as the pixel contour C, composed of the sequence
of points (Xj, Yj) = ((xj − x0) ÷ i, (yj − y0) ÷ i), where C ′ is the sequence of points (xj, yj),
(x0, y0) represents the origin of the large pixels in Z2 and ÷ is the integer division defined by
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Figure 5: Image (a) illustrates a digital contour subsampling for i=8, 16, 32, 64 and image (b) gives
an illustration of the function (represented by red lines) associating each pixel P of C to a point of
the subsampled contour.

truncation.

• step 3: Consecutive identical pixels of C ′′ are merged to get a pixel contour C ′′′.

• step 4: Outer and inner spikes of C ′′′ are removed (by several linear scans). The obtained
contour is shifted toward the outside so that it defines a 4-connected interpixel contour, that
is, the boundary of some digital shape.

By following these main steps and from a given maximal scale N, we are able to give as output the
set D of the subsampled digital contours of C (denoted as φx0,y0

i ). The function f
(x0,y0)
i associating

each contour point of C ′′′ should also be updated during steps 2, 3 and 4.
Algorithm 1 summarizes the subsampling process which can be obtained with the object Multi-

scaleFreemanChain7 of the ImaGene framework.

Algorithm 1: Subsampling.
(performed with object ImaGene::MultiscaleFreemanChain in the ImaGene framework)

input : digital contour C ′ (defined from previous step 1)

ouput: the set D of subsampled contours φx0,y0
i (C ′) stored in a map M and f

(x0,y0)
i

for integer k = 1 to k < N do1

for integer x0 = 1 to x0 < k do2

for integer y0 = 1 to y0 < k do3

compute φx0,y0
k (C ′) and f

(x0,y0)
k by following the previous steps 2, 3 and 4 ;4

define a key for the resulting map M from the elements (k, x0, y0);5

store the contour φx0,y0
k (C ′) in the map M by using the previous key ;6

3.2 Tangential Cover Computation and Length Statistic

The set of all the maximal segments of a digital contour can be computed in linear time according
the contour size [8]. Such an approach recognizes maximal segments by adding and removing points

7http://www.lama.univ-savoie.fr/~lachaud/ImaGene/doc/html/classImaGene_1_

1MultiscaleFreemanChain.html
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from an initial one. The tangential cover should also be computed on all the subsampled contours.

Once all the maximal segments are computed for a given scale, the statistics of the maximal
segment length are stored for each original contour point. The source contour point can be easily
recovered by the function f

(x0,y0)
i .

The algorithm is summarized in algorithm 2. The implementation of this algorithm is included
in ImaGene framework, in the class MultiscaleProfile from the directory ImaGene/helper.

Algorithm 2: Tangential cover.
(included in class ImaGene::MultiscaleProfile from the directory ImaGene/helper of the
ImaGene framework)

input : the map M of the subsampled contours φx0,y0
i (C ′)

ouput: a statistics tabular statTab[N][C’.size()] containing for each scale and for each point P
of the source contour the set of the length of maximal segment covering P.

for integer k = 1 to k < N do1

for integer x0 = 1 to x0 < k do2

for integer y0 = 1 to y0 < k do3

recover the subsampled contour φx0,y0
k (C ′) from map M with key (k, x0, y0) ;4

compute the set Sx0,y0
k of maximal segments of the subsampled contour φx0,y0

k (C ′) ;5

for each point P of index p of the subsampled contour, store in the tabular L[p] the6

set of lengths of maximal segments of Sx0,y0
k which cover P ;

for integer i=0 to C’.size()-1 do7

integer indiceSubsampled = f
(x0,y0)
k (i);8

statTab[k][i].add(mean(L[indiceSubsampled]));9

3.3 Computation of the Multiscale Profile and Deduction of the Noise
Level

Once all the length statistics have been computed for each point of the source contour, we are able
to determine a multiscale profile using algorithm 3.

The noise level can then be deduced from each multiscale profile (algorithm 4).

From this last algorithm, we are now able to give for each point of the discrete contour a noise
level related to the meaningful scale detection.

3.4 Complexity of the Global Algorithm

The complexity of the global algorithm depends on the algorithm used to extract the set of maximal
segments. Such extraction is implemented in linear time [3]. The tangential cover is computed for
each scale K which implies K2 contour shifts. The global complexity is then O(nK3) with n the
number of contour points and K the maximal scale. Note that this complexity could be improved
by using a multiscale recognition of the tangential cover [12].
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Algorithm 3: Multiscale profile.
(included in class ImaGene::MultiscaleProfile from the directory ImaGene/helper of the
ImaGene framework)

input : the statistics tabular statTab[m][i] containing for each contour point of index i ;
the set of lengths of maximal segments computed at scale m.
ouput: a tabular tabProfiles[] containing all the multiscale profile Pn(P ) of each source

contour point.
The multiscale profile Pn(P ) is represented by using two vectors (X0, . . . , Xi, . . . XN−1) and1

(Y0, . . . , Yi, . . . YN−1) associated respectively to the set of the two coordinates of the multiscale
profile points.
for integer i=0 to C’.size() do2

vector of type double: vectX;3

vector of type double: vectY;4

for integer k=0 to N − 1 do5

vectX.pushback(log(k+1));6

vectY.pushback(log(mean(statTab[k][i])));7

MultiscaleProfile MP (vectX, vectY);8

tabProfiles[i]= MP;9

Algorithm 4: Noise level estimation.
(included in class ImaGene::MultiscaleProfile from the directory ImaGene/helper of the
ImaGene framework)

input : a multiscale profile Pn(P );
a given threshold parameter tm set by default to 0 (see section 2.3);
a minWidth parameter set by default to 1 (see section 2.3);
ouput: an integer representing the noise level.
vector of type double x;1

vector of type double y;2

pair of type integer mScale;3

integer l = 0;4

fill the two vectors x and y from the coordinates of the multiscale profile Pn(P );5

for integer k = 1 to x.size()− 1 do6

float slope = ( y[ k ] - y[ k - 1 ] ) / ( x[ k ] - x[ k - 1 ] );7

if ( slope > tm ) || ( (k+1) == x.size() ) then8

if ( k - 1 - l ) >= minWidth then9

mScale= make pair(l + 1, k);10

l = k;11

return mScale.first;12
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4 Implementation

4.1 Source code

The C++ source code is provided in the ImaGene library8. A lighter version of this library has
been constructed to avoid some dependencies with the boost and gmp libraries. The source code is
available at the IPOL web page of this article9.

The installation uses cmake and was tested on Linux and Mac OSX. You just have to follow the
README and INSTALL files.

4.2 Input Format and Executable Test

Input format. The input contour of the multiscale analysis should be represented in a simple
Freeman chain format. Such a representation is defined as follows: X0 Y0 C0C1C2C2...CN. The two
first integers X0 and Y0 represent the coordinates of the initial contour point. The other numbers
Ci represent the directions of the move to go from the current point to the next one. The code
convention is the following:

• code 0: move left (x+1)

• code 1: move up (y+1)

• code 2: move left (x-1)

• code 3: move down (y-1)

Such contour examples are given in the directory meaningfulscaleDemo/demoIPOL/Contours

with the ”.fc” file extension. The file meaningfulScaleEstim located in the directory meaningful-

scaleDemo/demoIPOL can be used to detect noise from the meaningful scales.

Noise detection test program. To perform the noise detection you can use the following com-
mand lines:

cd meaningfulscaleDemo/build/demoIPOL

./ meaningfulScaleEstim < ../../ demoIPOL/Contours/ellipseBruit.fc -←↩
drawXFIGNoiseLevel -enteteXFIG -drawContourSRC 4 1 > tmp.fig

The previous command generates an xfig file which can be transformed with 10:

fig2dev -L eps tmp.fig tmp.eps

You should obtain the results presented in figure 6.

4.3 Including Meaningful Scale Detection in Other Programs

To include the meaningful scale detection in a C++ program with the ImaGene library, you need
first to include the following header files:

8http://gforge.liris.cnrs.fr/projects/imagene
9http://dx.doi.org/10.5201/ipol.2014.75

10the fig2dev command can be found in the transfig package
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(a) (b)

Figure 6: (a) Source contour of the Freeman chain ellipseBruit.fc located in the directory
demoIPOL/Contours and (b) Meaningful scale results represented with blue boxes of size equal to
the noise level and centered on each contour point.

#include "ImaGene/dgeometry2d/FreemanChain.h"

#include "ImaGene/dgeometry2d/FreemanChainTransform.h"

#include "ImaGene/helper/MultiscaleProfile.h"

and then follow these steps:

• Step 1: read the Freeman chain from the standard input. And then read the Freeman chain
from input:

FreemanChain fc;

FreemanChain ::read(cin , fc );

• Step 2: construction of the multiscale profile.

This step needs the setting of the parameter associated to the maximal scale for which the
shape is analyzed. Since we are just searching for the first meaningful scale, the maximal scale
is not really important and depends only of what maximal amount of noise you have to detect
(for instance 10 looks sufficient in most cases). The variable nbIterationSpikeDetection is
used to avoid degenerated contours and a value of 5 appears sufficient for all experiments.

FreemanChainSubsample fcsub( 1, 1, 0, 0 );

FreemanChainCleanSpikesCCW fccs( nbIterationSpikeDetection );

FreemanChainCompose fcomp(fccs , fcsub );

FreemanChainTransform* ptr_fct = &fcomp;

FreemanChainSubsample* ptr_fcsub = &fcsub;

MultiscaleProfile MP;

MP.chooseSubsampler( *ptr_fct , *ptr_fcsub );

MP.init( fc , maxScale);

• Step 3: estimate and display noise levels.

The minSize and maxSlope values should be set to the default value, respectively to 1 and 0.

int i=0;

for(FreemanChain :: const_iterator it=fc.begin(); it!=fc.end(); ++it){

uint noiseLevel=MP.noiseLevel(i, minSize , maxSlope);

cout << "noise level point index" << i << ": " << noiseLevel << ←↩
endl; i++;

}
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This simple minimal example is given in the meaningfulscaleDemo archive in the file minimal-

CodeNoiseDetection.cxx of the directory meaningfulscaleDemo/demoIPOL/.

5 Examples and Experiments

5.1 Examples on Various Noisy Shapes

We present experiments obtained with various noisy shapes by using the default intern parameters
tm = 0.0, max scale=15 and minimal meaningful scale size min size=1. Figures 7 and 8 show the
results obtained on digital contours extracted from binary and grayscale images. The contours extrac-
tion was performed from the multidimensional algorithm based on boundary extraction and contour
tracking [2] which is available from the IPOL site11. This extraction is also implemented in the Im-
aGene framework and given in the source demo in: meaningfulscaleDemo/bin/pgm2freeman.cxx.

5.2 Stability Measure from Internal Parameters

Even if the meaningful scale detection can be considered as parameter free, it contains some internal
parameters which have only small influence on the detection quality. To demonstrate this stability,
several experiments were performed on the shapes of figure 9 (a,c) for which the default meaningful
scale detection is given on images (b,d). First we experiment the influence of the change of each
particular parameter and then the change of all parameters together.

Experiments with the change of the threshold of the minimal slope (tm). As introduced
in section 2.3 a threshold tm was defined to discriminate smooth and noisy contour parts. By default,
the value was set to 0 and as it can be seen in figure 10 (two first upper rows), modification of this
particular parameter does not really change the global quality of the noise detection.

Experiments by adding a minimal length for the meaningful scale interval (msMinLength).
In the definition of the meaningful scale of section 2.3, a minimal size of one was introduced to define
the interval (i1, i2). Figure 10 (two last lower rows) shows the results obtained by changing this
definition. As illustrated, the change of the initial definition does not really improve the meaningful
scale detection and with too large values of the scale interval some corners tend to be detected as
noise.

These experiments with the change of the tm and msMinLength can be reproduced by the following
command line from the meaningfulscaleDemo/build directory:

./ demoIPOL/meaningfulScaleEstim -drawContourSRC 0 1 -meaningfulScale 1 ←↩
-0.3 -enteteXFIG -drawXFIGNoiseLevel < ../ demoIPOL/Contours/←↩
ellipseBruit2.fc > tmp.fig ;

fig2dev -L eps tmp.fig ellipseBruit2MS1_ -0.3. eps;

where the option -meaningfulScale permits to set the parameters associated to minimal length for
the meaningful scale definition and the threshold tm.

Experiments with the change of the analysis maximal scale (maxScale). A last internal
parameter is the maximal scale for which the shape is analyzed. Since the noise level is defined as the
first scale of the meaningful scale interval, a change of this value has small influence. The experiments

11http://www.ipol.im
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source contour 1 source contour 2 source contour 3

meaningful scale meaningful scale meaningful scale

source contour 4 source contour 5 source contour 6

meaningful scale meaningful scale meaningful scale

Figure 7: Illustration of the meaningful scale detection on some noisy shapes. The meaningful scales
are represented with blue boxes of size equal to the noise level and centered on each contour point.
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source contour 7 source contour 8 source contour 9

meaningful scale meaningful scale meaningful scale

Figure 8: Illustration of the meaningful scale detection on some noisy shapes. The meaningful scales
are represented with blue boxes of size equal to the noise level and centered on each contour point.

presented in figure 11 (two first upper rows) confirm this fact. Note that the areas displayed in green
correspond to the points for which no meaningful scale was found below the maximal scale. In this
particular case a box is displayed with the given maximal scale.

These experiments can be reproduced by the following command lines from the meaningful-

scaleDemo/build directory:

./ demoIPOL/meaningfulScaleEstim -drawContourSRC 0 1 -setSamplingSizeMax 10←↩
-enteteXFIG -drawXFIGNoiseLevel < ../ demoIPOL/Contours/ellipseBruit2.←↩

fc > tmp.fig ;

fig2dev -L eps tmp.fig ellipseBruitMS1_0 .0 Max10.eps;

where the analysis maximal scale (parameter maxScale) is set with option -setSamplingSizeMax.

Experiments with the change of all the parameters together. To apply a last test on the
independence towards the internal parameters, we apply the meaningful scale detection with various
changes on all the three parameters. The lower part of figure 11 shows globally good results even
if with the case of parameters (msMinLength=4, tm = −0.1, maxScale=20) one area between two
corners is detected as noise.
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(a) source (b) result (default parameters)

(c) source (d) result (default parameters)

Figure 9: Noise estimation with the default parameters on the polygon (a,b) and ellipse shapes (c,d).
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Image Credits

All images and contours created by the authors except:

which is a standard test contour and

which is a noisy version of a standard test image.
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deaux 1, Talence, France, 2006. (in french).

[8] J.-O. Lachaud, A. Vialard, and F. de Vieilleville, Fast, accurate and convergent tan-
gent estimation on digital contours, Image and Vision Computing, 25 (2007), pp. 1572–1587.
http://dx.doi.org/10.1016/j.imavis.2006.06.019.

[9] H. Liu, L. Latecki, and W. Liu, A unified curvature definition for regular, polygonal, and
digital planar curves, International Journal of Computer Vision, 80 (2008), pp. 104–124. http:
//dx.doi.org/10.1007/s11263-008-0131-y.

[10] T.P. Nguyen and I. Debled-Rennesson, Curvature estimation in noisy curves, in Com-
puter Analysis of Images and Patterns, WalterG. Kropatsch, Martin Kampel, and Allan Han-
bury, eds., vol. 4673 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2007,
pp. 474–481. http://dx.doi.org/10.1007/978-3-540-74272-2_59.

114

http://dx.doi.org/10.1109/TPAMI.2007.1082
http://dx.doi.org/10.5201/ipol.2014.74
http://dx.doi.org/10.5201/ipol.2014.74
http://dx.doi.org/10.1007/3-540-49126-0_3
http://dx.doi.org/10.1016/j.patcog.2008.11.013
http://dx.doi.org/10.1016/j.patcog.2008.11.013
http://dx.doi.org/10.1007/978-3-642-10210-3_15
http://dx.doi.org/10.1007/978-3-642-10210-3_15
http://dx.doi.org/10.1109/TPAMI.2012.38
http://dx.doi.org/10.1016/j.imavis.2006.06.019
http://dx.doi.org/10.1007/s11263-008-0131-y
http://dx.doi.org/10.1007/s11263-008-0131-y
http://dx.doi.org/10.1007/978-3-540-74272-2_59


Meaningful Scales Detection: an Unsupervised Noise Detection Algorithm for Digital Contours

[11] T.P. Nguyen and I. Debled-Rennesson, A discrete geometry approach for dominant point
detection, Pattern Recognition, 44 (2011), pp. 32–44. http://dx.doi.org/10.1016/j.patcog.
2010.06.022.

[12] M. Said and J.-O. Lachaud, Computing the characteristics of a subsegment of a digital
straight line in logarithmic time, in Discrete Geometry for Computer Imagery, Isabelle Debled-
Rennesson, Eric Domenjoud, Bertrand Kerautret, and Philippe Even, eds., vol. 6607 of Lecture
Notes in Computer Science, Springer Berlin Heidelberg, 2011, pp. 320–332. http://dx.doi.

org/10.1007/978-3-642-19867-0_27.

115

http://dx.doi.org/10.1016/j.patcog.2010.06.022
http://dx.doi.org/10.1016/j.patcog.2010.06.022
http://dx.doi.org/10.1007/978-3-642-19867-0_27
http://dx.doi.org/10.1007/978-3-642-19867-0_27

	Overview
	Method
	Primitive of the Maximal Digital Straight Segment
	Asymptotic Properties of Maximal Straight Segments
	Meaningful Scale Detection from the Previous Property 

	Algorithm
	Subsampling the Discrete Source Contour
	Tangential Cover Computation and Length Statistic
	Computation of the Multiscale Profile and Deduction of the Noise Level
	Complexity of the Global Algorithm

	Implementation
	Source code
	Input Format and Executable Test
	Including Meaningful Scale Detection in Other Programs 

	Examples and Experiments
	Examples on Various Noisy Shapes
	Stability Measure from Internal Parameters


