Published in Image Processing On Line on 2014-03-26.
Submitted on 2013-02-13, accepted on 2013-04-16.

ISSN 2105-1232 (© 2014 IPOL & the authors CC-BY-NC-SA
This article is available online with supplementary materials,
software, datasets and online demo at

IMAGE PROCESSING ON LINE http://dx.doi.org/10.5201/ipol.2014.74

Extraction of Connected Region Boundary in
Multidimensional Images

David Coeurjolly!, Bertrand Kerautret?, Jacques-Olivier Lachaud?

I CNRS, LIRIS UMR5205, Université de Lyon
2 LORIA, Université de Lorraine
3 LAMA, Université de Savoie

Abstract

This paper presents an algorithm to extract the boundary of a connected region(s) using classical
topology definitions. From a given adjacency definition, the proposed method is able to extract
the boundary of an object in a generic way, independently of the dimension of the digital space.

Source Code

The implementation of the algorithm is available through the DGtal library'. The source
code and the demonstration are based on a special version of DGTal containing no external
dependencies. They are both available on the IPOL web page of this article?.

Supplementary Material

The DGtalTools® project gives several additional tools exploiting the proposed algorithms.
These tools are defined to process both 2D and 3D images.

Keywords: Nd connected components, discrete geometry, topology

1 Introduction

The aim of this work is to present an algorithm which extracts the boundary of connected region(s)
using classical topology definitions. It can be useful in particular for algorithms which need a discrete
contour as input. Such contours can be extracted from grayscale images like the ones displayed in
Figure 1.

These digital contours are level set contours in the displayed grey-level image, specified by a
threshold parameter (i.e. the level set), a reference point and a maximal distance. In order to describe
in a generic way the object on which the contour is extracted, the user must specify a predicate on
volume elements which specifies whether or not a given element belongs to the region(s) of interest.

L DGtal: Digital Geometry tools and algorithms library, http://1libdgtal .org
Zhttp://dx.doi.org/10.5201/ipol.2014.74
3https://github.com/DGtal-team/DGtalTools

DaviD COEURJOLLY, BERTRAND KERAUTRET, JACQUES-OLIVIER LACHAUD, Extraction of Connected Region Boundary in Multidimensional
Images, Image Processing On Line, 4 (2014), pp. 30-43. http://dx.doi.org/10.5201/ipol.2014.74

http://dx.doi.org/10.5201/ipol
http://dx.doi.org/10.5201/ipol
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://dx.doi.org/10.5201/ipol.2014.74
http://dx.doi.org/10.5201/ipol.2014.74
https://github.com/DGtal-team/DGtalTools
http://libdgtal.org
http://dx.doi.org/10.5201/ipol.2014.74
https://github.com/DGtal-team/DGtalTools

EXTRACTION OF CONNECTED REGION BOUNDARY IN MULTIDIMENSIONAL IMAGES

Figure 1: Example of contour extraction (b) from source image (a).

This information is sufficient to extract the interpixel boundaries of this or these region(s). The
boundaries are extracted by tracking along the frontier between the region and its complementary.
The user may choose between two adjacency definitions for object(s): the interior and the exterior
adjacency. The extracted set of connected surface elements satisfies the choice of adjacency. In
dimension 2, the surface elements can be ordered to form contour(s) composed of 4-connected points
in the half-integer plane. Predicates on volume elements can be very simple such as the example
described in Figure 1: the predicate is just a composition of thresholds on the image values.

Complexity note: extracting all the contours for a given predicate takes O(MN) calls to the
predicate, if M and N are respectively the width and height of the image. In arbitrary dimension,
the computational cost is proportional to the size of the predicate domain (number of grid points).
Extracting a single contour given a starting boundary element takes O(C') calls to the predicate, if
C' is the number of points of this contour.

Implementation note: although the examples and applications are given in 2D and 3D, the
surface extraction algorithm is presented and implemented for arbitrary dimension. The applications
of Section 3 can be reproduced from the demo version given IPOL web page of this article?.

2 Algorithm

2.1 Digital Surfaces for Boundary Extraction

Different definitions of digital surfaces can be found in the digital topology domain (refer to the
paper by Kong et al. [2] for a survey). A first group of approaches was introduced by Rosenfeld in
the 70s [5, 6] which consists in defining a digital surface as a subset S of Z" with the property to
have Z"\ S composed of two a-connected (with for instance o« = 4 or aw = 8 for the square pixels of
an 2D image) components and S is thin (i.e. if any point of S is removed, the preceding property
does not hold). Even if such a definition can be used in 2D, it appears more difficult to exploit
in higher dimension. A second type of definition considers surfaces as n — 1 dimensional cubical
complexes [3]. This representation is convenient to describe the object but is not adapted to process
geometric information of the object boundary. To extract the boundary of a digital surface, we shall
use another definition which relies on the set of n — 1-cells with some specific adjacency (in the same
spirit as Herman [1] or Udupa [7]). Note that we consider here only the implementation for regular
grids.

‘http://dx.doi.org/10.5201/ipol.2014.74

31

http://dx.doi.org/10.5201/ipol.2014.74
http://dx.doi.org/10.5201/ipol.2014.74

DaviD COEURJOLLY, BERTRAND KERAUTRET, JACQUES-OLIVIER LACHAUD

Digital surface as a set of n — 1-cells. Formally, the elements of a digital space Z" are called
spels (and often pixels in 2D and voxels in 3D). A surfel is a couple (u,v) of face adjacent spels. A
digital surface is a set of surfels. A spel is thus a n-cell in a cellular grid decomposition of the space,
while a surfel is clearly some oriented n — 1-cell which is incident to the two n-cells (see figure 2).

Figure 2: Illustration of a surfel (n — 1-cell) with its two incident spels (n-cells) in dimension 3.

From the implementation point of view, the set of n — 1-cells can be obtained with an incidence
relation from the given spels. In order to be able to extract object boundaries in a consistent way,
we also consider cells with a specific orientation (positive or negative). By convention, spels lying in
the interior of the object of interest are given a positive orientation. In the DGtal library framework,
the orientation can be specified in the KSpace class (see user documentation®):

#include "DGtal/helpers/StdDefs.h"

using namespace DGtal::Z3i;

KSpace K;

// An initial 3D signed spel defined for instance with positive <
ortentation

SCell v = K.sSpel(Point(0, O, O), KSpace::P0OS);
SCell sx = K.sIncident(v, 0, true); // surfel further along z

We can now obtain the digital surface that lies in the boundary of some digital shape S C Z" as
the set of oriented surfels between spels of S and spels not belonging in S. Algebraically, S is the
formal sum of its positively oriented spels, and its boundary is obtained by applying the boundary
operator on S. Figure 3 illustrates the linear boundary operator applied on the set of spels of the
object. By linearity, the operator is applicable spel by spel and when opposite cells appear they
cancel each other (see case (c,d) and (h,i)).

Algorithm 1 exploits this definition to extract, given an input shape, the set of surfels that
constitutes the shape boundary independently of its dimension. A nD digital Khalimsky space (the
class KhalimskySpaceND® in the DGtal library) is used to represent the cubical grid complex, whose
oriented cells are defined as an array of integers (see the paper by Lachaud [4] for more details).
In particular, the method uSpel(Point p) creates a cell of maximal dimension from a point with
coordinates in Z". Inversely, the coordinate of a Cell can be recovered from a Cell with the method
uCoords(Cell c).

Shttp://libdgtal.org/doc/nightly/dgtal_cellular_topology.html
Shttp://libdgtal.org/doc/nightly/classDGtal_1_1KhalimskySpaceND.html

32

http://libdgtal.org/doc/nightly/dgtal_cellular_topology.html
http://libdgtal.org/doc/nightly/classDGtal_1_1KhalimskySpaceND.html
http://libdgtal.org/doc/nightly/dgtal_cellular_topology.html
http://libdgtal.org/doc/nightly/classDGtal_1_1KhalimskySpaceND.html

EXTRACTION OF CONNECTED REGION BOUNDARY IN MULTIDIMENSIONAL IMAGES

OO0ogooD OOo0oooog Cogooood Coogogod COooooooo
EE000EED EEef0DEe0 EEdodsed EE000csd EE0ogeEn
E00rEE00 E00gEE0l E00sEe0n EO08EE00 EO0CEa0n
OoOOoe000 DO00O=000 OOoO0€000 OO00s000 Coooeoog

(a) (b) () (d) L
H B B B L
Bl W It |]

(f) () (h) (i) ()

—~
@
~—

Figure 3: Application of the boundary operator to compute the boundary of a digital shape S,
defined either as a 2D set of pixels (images (a-e)) or a 3D set of voxels (images (f-i)).

Algorithm 1: Extract the (unstructured) set of surfels that forms the boundary of the digital
shape defined by the predicate Pred.
(Method DGtal: :Surfaces: :detectBoundarySurfels in the DGtal framework)

input : KhalimskySpaceND K ; // Any Khalimsky space

input : Point lowerB ; // Lowest point in the space

input : Point upperB ; // uppermost point in the space

input : PointPredicate Pred ; // A predicate Point -> bool

ouput: SurfelSet aBoundary; // The detected set of surfels, i.e. the boundary.

1 Integer k ; // Current dimension for searching surfels
2 bool inHere, inFurther;
3 for k=0 to K.dimension - 1 do
4 Cell kLowerB = K.uSpel(lowerB) ; // lowest spel along k
5 Cell kUpperB = K.uGetDecr(K.uSpel(upperB), k) ; // uppermost spel along k
6 Cell p = kLowerB ; // current spel
7 while p in bounds kLowerB and kUpper B do
8 Cell pNext = K.uGetlncr(p, k) ; // next spel along k
9 inHere = Pred(K.uCoords(p));
10 inFurther = Pred(K.uCoords(pNext));
11 if inHere != inFurther then
// boundary element, add it to the set
12 L aBoundary.insert(K .sIncident(K .signs(p, inHere), k, true));
13 p = first spel after p in bounds kLowerB and kUpperB ;

14 return aBoundary ;

33

DaviD COEURJOLLY, BERTRAND KERAUTRET, JACQUES-OLIVIER LACHAUD

The boundary operator algorithm is given by the method DGtal::Surfaces<TKSpace>: :de-
tectBoundarySurfels from the directory DGtal/topology/helpers. Images (a,f) of Figure 4 illus-
trate the result of this method applied on a set of pixels (a) and on a set of voxels (f) by calling the
same method detectBoundarySurfels.

Once the digital set of surfels is defined, the relation between surfels needs to be determined to
transform the digital surface into a graph.

Digital surface as a graph: adding adjacencies between surfels To —>
apply this transformation we have to connect surfels that share n — 2-cells.

. A i : o . b Y
The resulting adjacency relation are called bel adjacencies in the terminology a
of Herman [1], Udupa [7] and others. Generally an n — 2-cell is shared by two -
n — 1-cells, except in ”cross configuration” which are illustrated in the figure on X ld

the right.

The interior bel adjacency makes the choice to connect a to d and ¢ to b while the exterior
bel adjacency connects a to b and ¢ to d. This choice has to be made along each possible pair of
directions when going nD. In DGtal, it is encoded through the class SurfelAdjacency. Images (b,g)
in Figure 4 illustrate such possible choices for a given surfel in 2D and 3D. More precisely the green
(resp. red) surfel associated to the choice of exterior (resp. interior) adjacency is obtained as follows:

SurfelAdjacency<Dim> adjInt(true); // Intertor surfel
SurfelAdjacency<Dim> adjExt(false); // Eztrior surfel

// surfel 4is a given surfel boundary.
SurfelNeighborhood <KSpace> sNeighExt;
sNeighExt.init (&ks, &sAdjExt, surfel);

// Azis along which we search for neighbors.
Dimension i = *(ks.sDirs(surfel));

SCell surfelFollowerInt;
SCell surfelFollowerExt;

sNeighInt.getAdjacentOnDigitalSet (surfelFollowerInt, aSet, i, true);
sNeighExt.getAdjacentOnDigitalSet (surfelFollowerExt, aSet, i, true);

A more “classical topology” way of interpreting adjacencies is to consider an e-offset to the set of
cells (see Figure 5). In 2D, an outward e-offset to the boundary cells (or equivalently, the boundary of
the Minkowski sum of the set of spels and an e-ball) defines a 1-dimensional surface whose topology
corresponds to the exterior adjacency. Similarly, an inward e-offset to the boundary cells defines a
1-dimensional surface whose topology corresponds to the interior adjacency. Unfortunately, this is
no more true in 3D. Indeed, an outward e-offset in the great diagonal configuration (two diagonally
opposite spels in 2 x 2 x 2 cube) connects the surface cells, but they are not connected by the digital
exterior adjacencies. However, the inward e-offset to the set of cells still defines the interior adjacency.

2.2 Tracking Digital Surfaces

Once the surfels separating interior spels from exterior spels have been extracted by Algorithm 1,
the final step of tracking can be applied. We propose Algorithm 2 which is based on the more
generic method getAdjacentOnPointPredicate, which only requires a predicate on a digital point.
A digital set S is then simply defined as the predicate returning true on points belonging to S. This

34

EXTRACTION OF CONNECTED REGION BOUNDARY IN MULTIDIMENSIONAL IMAGES

Figure 4: Illustration of the extraction of the set of boundary surfel (b) from the pixel set (a). The bel
adjacency (interior in red, and exterior in green) is illustrated starting from the initial surfel in blue
(c). Images (d) and (e) illustrate the interior and exterior tracking from the initial blue surfel. The
source codes used to generate these illustrations is given in the directory I1lustrationsArticleIPOL
of the FrechetAndConnectedCompDemo archive (needs DGtal dependencies with QG Lviewer).

L

Figure 5: Interpreting digital adjacencies as offsets to the set of cells: (left) outward e-offset corre-
sponding to the exterior adjacency (in light grey), (right) inward e-offset corresponding to the interior
adjacency (in dark grey).

algorithm is independent of the chosen dimension. This method can be used indifferently for an open
or closed surface (with or without boundary). If we know that the surface is closed, the faster variant
trackClosedBoundary performs the scan by following only direct adjacent surfels.

For the specific aim of extracting an ordered sequence of boundary elements in 2D, we use a
variant of Algorithm 2, track2DBoundary which constructs the ordered sequence from one direction
and takes into account the case of open contour by reversing the sequence and by continuing in the
other direction.

2.3 Overall Description

The main steps of the surface extraction algorithm are the following:

1. B < detect boundary surfels (Algorithm 1, method Surfaces::detectBoundarySurfels in
DGtal framework)

2. pick a surfel in B

35

DaviD COEURJOLLY, BERTRAND KERAUTRET, JACQUES-OLIVIER LACHAUD

Algorithm 2: Tracking a boundary component in nD.
(method DGtal::Surfaces::trackBoundary in the DGtal framework)

input : KhalimskySpaceND K ; // Any Khalimsky space
input : SurfelAdjacency surfelAdj ; // A surfel adjacency
input : Surfel startS ; // the surfel where the tracking is initiated
input : PointPredicate Pred ; // A predicate Point -> bool
ouput: SurfelSet surface ; // The boundary component that contains startS
1 Surfel b; // the current surfel
2 Surfel bn; // the neighboring surfel
SurfelNeighborhood SN; // An object that extracts neighboring surfels,
initialized from K, surfelAdj and startS,

w

4 Queue<Surfel> () // Queue of surfels, the ‘‘head’’ of the tracking.
5 Q.push(startS) ;
6 surface.insert(startS) ;
7 while Q) is not empty do
8 b = Q.front();
o | Q.pop();
10 SN .setCurrentSurfel(b) ; // Position neighborhood around b
11 for All tracking directions trackDir around b do
// QOver a surfel there are n — 1 possible axis tracking directions.
// 1lst pass with positive orientation
12 if SN.getAdjacentOnPointPredicate(Out bn, Pred, trackDir, true) then
13 if surface.find(bn) == surface.end() // if not found
14 then
15 sur face.insert(bn) ;
16 L Q.push(bn) ;
// 2nd pass with negative orientation
17 if SN.getAdjacentOnPointPredicate(Out bn, Pred, trackDir, false) then
18 if surface.find(bn) == surface.end() // if not found
19 then
20 sur face.insert(bn) ;
21 L Q.push(bn) ;

22 return sur face;

3. S <« track the boundary component that contains B (Algorithm 2, method
Surfaces: :trackBoundary in DGtal framework)

4. remove S from B (line 10-13 of Algorithm 3).
5. go back to 2 until B is empty.

These steps are gathered in Algorithm 3, which extracts for each connected component its set of
surfels. In the DGtal library the algorithm is given in the method extractAllConnectedSCell in-
cluded in class Surfaces (file DGtal/topology/helpers/Surfaces.h). This algorithm can process
digital objects given in nD, and the resulting sets of surfels are not given in a particular order. To
obtain specifically a set of 2D contours (which can be represented as sequences), we just adapt the
algorithm by modifying the tracking (line 8 of Algorithm 3) with the specific 2D tracking (variant

36

EXTRACTION OF CONNECTED REGION BOUNDARY IN MULTIDIMENSIONAL IMAGES

of Algorithm 2, method Surfaces: :track2DBoundary in the DGtal library). Such variant of Algo-
rithm 3 is available in DGtal with the method DGtal: :Surfaces: :extractA112DSCellContours.

Algorithm 3: Given a 2D predicate describing a 2D digital shape implicitly, extracts all
boundary components as a vector of 2D contours. Each 2D contour is a sequence of surfels.

(method DGtal::Surfaces::extractAllConnectedSCell in the DGtal framework)

input : KhalimskySpaceND K ; // Any Khalimsky space
input : SurfelAdjacency surfelAdj ; // A surfel adjacency
input : PointPredicate Pred ; // A predicate Point -> bool

ouput: vector< vector<Surfel> > bdryComponents // A vector containing all the

vector of connected surfels
1 SurfelSet wholeBoundary ; // The whole detected boundary

N

// Call to Algorithm 1
while wholeBoundary is not empty do
vector<Surfel> aVector ; // initialize a vector of surfel
Surfel b = first element of the set whole Boundary;

N O ovbk®

all Boundaries.push_back(aVector);
// removing cells from boundary
for 4nti = 0 to aVector.size() -1 do
9 L whole Boundary.erase(aVector|i]) ;

@

10 return allBoundaries ;

aVector < track2DBoundary(K, surfelAdj, b, Pred) ; // Call Algorithm 2

whole Boundary < detectBoundarySurfels(K, Pred, K.lowerBound(), K.upperBound()) ;

3 Examples of Applications

We present two applications of these algorithms, first for 2D contour extraction, and second for 3D

connected components extraction.

3.1 Contour Extraction on 2D Grayscale Images

The algorithm of contour extraction was applied on the grayscale im-
ages of Figure 6 to extract level-set contours. The two adjacency defi-
nitions were tested (images (b and c)), and several thresholds and filter-
ing were used to extract the digital contours in (d,e). Figure 7 presents
complementary results to measure the robustness to noise. These results
were obtained from the console command pgm2freeman (from directory
FrechetAndConnectedCompDemo/demoIPOL ExtrConnectedReg). Note that
the ordered set of surfels was transformed into a set of pointels by calling
method extractAllPointContours4C.

The obtained contours are represented with a freeman chaincode: it is a word whose letters are
codes defining the direction when going from a point to another (0 is right, 1 up, 2 left, 3 down).
Such a contour is illustrated on the previous floating figure with the starting point A and with the
chain code 101212323300. All these experiments can be reproduced from the demonstration source

by using the command lines that follows (from the build directory).

37

DaviD COEURJOLLY, BERTRAND KERAUTRET, JACQUES-OLIVIER LACHAUD

Dﬂ"—-'ir:]fﬁ&"—-'ﬂ]

m] m]
C C
(a) source image. (b) interior adjacency. (c) exterior adjacency.
R -

(e) contour extraction fro (f) extraction from gray scale
gray scale range. range and contour selection.

(d) source image.

Figure 6: Visualization of the level set contours extracted with the proposed algorithm (given from
pgm2freeman tool). Images (a-c) illustrates the setting of the interior or exterior adjacency parameter.
Image (e) shows the extraction of contours from the Lena image with a threshold step equal to 20 and
with minimal contour size equal to 20. Image (f) shows a filtering of such contours from a reference
point and a minimal distance (respectively equal to (150,150) and 50).

e Extraction of contours with different adjacency definitions. (results given on Figure 6 (a-c)
with specific colors to highlight each contour.)

./demoIPOL_ExtrConnectedReg/pgm2freeman -image ../demoIPOL_ExtrConnectedReg«
/Images/shapeTest.pgm -minThreshold 200 -maxThreshold 255 -badj 0 >«
shapeTestInt.fc

./demoIPOL_ExtrConnectedReg/pgm2freeman -image ../demoIPOL_ExtrConnectedReg<
/Images/shapeTest.pgm -minThreshold 200 -maxThreshold 255 -badj 1 >«
shapeTestExt.fc

The set of contours can be displayed with the source image in background:

./demoIPOL_ExtrConnectedReg/displayContours -fc shapeTestExt.fc -outputFIG«+
shapeTestExt.fig -backgroundImageXFIG ../demoIPOL_ExtrConnectedReg/«
Images/shapeTest. jpg 30 30;

./demoIPOL_ExtrConnectedReg/displayContours -fc shapeTestInt.fc -outputFIG«+
shapeTestInt.fig -backgroundImageXFIG ../demoIPOL_ExtrConnectedReg/<«
Images/shapeTest.jpg 30 30;

38

EXTRACTION OF CONNECTED REGION BOUNDARY IN MULTIDIMENSIONAL IMAGES

(a) source image. (b) level set contours. (c) noisy version of (a). (d) level set contours.

Figure 7: Level set contours extraction on gradient image with (c,d) and without noise (a,b).

fig2dev -L pdf shapeTestExt.fig shapeTestExt.pdf
fig2dev -L pdf shapeTestInt.fig shapeTestInt.pdf

e Extraction of contours given by a threshold range. Extraction of all digital contours from
0 to 256 by step of 20 gray levels with a minimal size equal to 20 (result given in Figure 6 (d,e)):

./demoIPOL_ExtrConnectedReg/pgm2freeman -image ../demoIPOL_ExtrConnectedReg¢
/Images/lena.pgm -thresholdRange O 20 128 -min_size 20 >
lenaContourSet . fc

The set of contours can be displayed with the source image in background:

./demoIPOL_ExtrConnectedReg/displayContours -fc lenaContourSet.fc -4
outputFIG lenaContourSet.fig -backgroundImageXFIG ../«
demoIPOL_ExtrConnectedReg/Images/lenaBG.gif 256 256

e Selection of a set contours from a reference point. (result given in Figure 6 (d,f))

./demoIPOL_ExtrConnectedReg/pgm2freeman -image ../
demoIPOL_ExtrConnectedReg/Images/lena.pgm -thresholdRange 0 20 128 -¢
min_size 20 --contourSelect 150 150 50 > lenaContourSetSelected.fc

./demoIPOL_ExtrConnectedReg/displayContours -fc lenaContourSetSelected.fc <

-outputFIG lenaContourSetSelect.fig -backgroundImageXFIG ../«
demoIPOL_ExtrConnectedReg/Images/lenaBG.gif 256 256
fig2dev -L pdf lenaContourSetSelect.fig lenaContourSetSelect.pdf

The experiments of Figure 7 are obtained with the same command lines (with images
circularGradient.png and circularGradientNoise.png).

3.2 Surface Tracking on Digital 3D Objects

We also illustrate the surface extraction for digital 3D objects. First, a simple set of 3D voxels
was generated on Figure 8 to display the connected components obtained with different values of
adjacency. Each color represents one connected component. As expected, the exterior adjacency
connects components which were disconnected with the interior adjacency. Figure 9 shows other
surface extraction (with interior adjacency) from a set of voxels obtained by thresholding image (a).

These experiments can be obtained from the demonstration source with the following command
that extracts a set of surfels with interior adjacency and export it in a 3D mesh representation (.off
format):

39

DAviD COEURJOLLY, BERTRAND KERAUTRET, JACQUES-OLIVIER LACHAUD

(b) extraction with interior(c) extraction with exterior

1 set
(a) voxel se adjacency adjacency

Figure 8: Illustration of surface tracking on a digital 3D object. Each color represents a connected
component. For image (b) (resp. (c)) the connected components are obtained with interior (resp.
exterior) adjacency.

(a) set of voxels. (b) connected set of connected surfels.

Figure 9: Illustration of connected surfel extraction (b) from a set of voxel (a). Each color represents
a connected component defined according to the interior adjacency.

./demoIPOL_ExtrConnectedReg/extract3D -image ../demoIPOL_ExtrConnectedReg/<+
Images/sample3D1.vol -badj O -output surfelCAdjInt.off -exportSRC <
surfelCSRC.off

The threshold can also be set to particular values as for the lobster 3D image of Figure 9:

./demoIPOL_ExtrConnectedReg/extract3D -image ../demoIPOL_ExtrConnectedReg/+«+
Images/lobster.vol -badj O -threshold 120 255 -output lobIntAdj.off -¢
exportSRC 1obSRC.off

40

EXTRACTION OF CONNECTED REGION BOUNDARY IN MULTIDIMENSIONAL IMAGES

4 Minimal Code to Include the Contour Extraction in a
C++4 Program

To extract the contour directly in your own C++ program you have just to use the following code:

e Include the following header files :

// To use timage and import:
#include "DGtal/images/ImageContainerBySTLVector.h"
#include "DGtal/io/readers/PNMReader.h"

//To exztract connected components
#include "DGtal/topology/helpers/Surfaces.h"

e Import an image:

typedef DGtal::ImageContainerBySTLVector < Z2i::Domain, unsigned <
char> Image;
Image image = PNMReader<Image>::importPGM("circleR10.pgm");

e Define the threshold with Binarizer object:

typedef IntervalThresholder <Image::Value> Binarizer;
Binarizer b(0, 128);
PointFunctorPredicate <Image ,Binarizer > predicate(image, Db);

e Extract all contours:

Z2i::KSpace ks; //Khalimsky space in 2D

ks.init (image.domain().lowerBound (), image.domain().upperBound+«
(), true);

SurfelAdjacency<2> sAdj(true); // Interior adjacency in 2D

std::vector< std::vector< Z2i::Point > > contours;

//extraction of all the contours

Surfaces<Z2i::KSpace>::extractAllPointContours4C(contours, ks, <
predicate, sAdj);

The extraction in 3D images can also be processed in a similar way:

e Include the supplementary header files for the 3D images:

// To import wvolume <images:
#include "DGtal/io/readers/VolReader.h"

// To ezport the display
#include "DGtal/io/Display3D.h"

41

DaviD COEURJOLLY, BERTRAND KERAUTRET, JACQUES-OLIVIER LACHAUD

e Import a 3D volume image and define a binarizer:

typedef ImageSelector < Domain, int>::Type Image;
Image image = VolReader<Image>::importVol("sample3D1.vol");

typedef IntervalThresholder<Image::Value> Binarizer;
Binarizer b(1, 255);
PointFunctorPredicate <Image ,Binarizer> predicate(image, b);

o Extract all the sets of connected surfels:

// We just have to update the dimension to 3:

Z231i::KSpace ks;

ks.init (image.domain () .lowerBound (), image.domain().upperBound (), ¢
true) ;

SurfelAdjacency<3> sAdj(badj);
vector<vector<SCell> > vectConnectedSCell;

// Eztract of the sets of conmnected surfel set:
Surfaces <KSpace>::extractAllConnectedSCell (vectConnectedSCell , ks,<+
sAdj, predicate, false);

Image Credits

All images created by the authors except:

. VolVis distribution of SUNY Stony Brook, NY, USA.”

Standard test image.

References

[1] G. T. HERMAN, Discrete multidimensional Jordan surfaces, CVGIP: Graphical Models and Im-
age Processing, 54 (1992), pp. 507-515. http://dx.doi.org/10.1016/1049-9652(92)90070-E.

[2] T. Y. KONG AND A. ROSENFELD, Digital topology: Introduction and survey, Computer Vi-
sion, Graphics, and Image Processing, 48 (1989), pp. 357-393. http://dx.doi.org/10.1016/
0734-189X(89)90147-3.

[3] V. A. KOVALEVSKY, Finite topology as applied to image analysis, Computer Vision, Graphics,
and Image Processing, 46 (1989), pp. 141-161. http://dx.doi.org/10.1016/0734-189X(89)
90165-5.

[4] J.-O. LAcHAUD, Coding cells of digital spaces: a framework to write generic digital topol-
ogy algorithms, in Proceedings of 9th International Workshop on Combinatorial Image Anal-
ysis (IWCIA’2003), Palermo, Italy, vol. 12 of ENDM, Elsevier, 2003, pp. 337-348. http:
//dx.doi.org/10.1016/S1571-0653(04)00497-4.

"http://labs.cs.sunysb.edu/labs/vislab/volvis-gallery

42

http://labs.cs.sunysb.edu/labs/vislab/volvis-gallery
http://dx.doi.org/10.1016/1049-9652(92)90070-E
http://dx.doi.org/10.1016/0734-189X(89)90147-3
http://dx.doi.org/10.1016/0734-189X(89)90147-3
http://dx.doi.org/10.1016/0734-189X(89)90165-5
http://dx.doi.org/10.1016/0734-189X(89)90165-5
http://dx.doi.org/10.1016/S1571-0653(04)00497-4
http://dx.doi.org/10.1016/S1571-0653(04)00497-4
http://labs.cs.sunysb.edu/labs/vislab/volvis-gallery

EXTRACTION OF CONNECTED REGION BOUNDARY IN MULTIDIMENSIONAL IMAGES
[5] A. ROSENFELD, Connectivity in digital pictures, Journal of the ACM, 17 (1970), pp. 146-160.
http://dx.doi.org/10.1145/321556.321570.

6] ——, Adjacency in digital pictures, Information and Control, 26 (1974), pp. 24-33. http://dx.
doi.org/10.1016/s0019-9958(74)90696-2.

[7] J. K. UpupA, Multidimensional digital boundaries, CVGIP: Graphical Models and Image Pro-
cessing, 56 (1994), pp. 311-323. http://dx.doi.org/10.1006/cgip.1994.1028.

43

http://dx.doi.org/10.1145/321556.321570
http://dx.doi.org/10.1016/s0019-9958(74)90696-2
http://dx.doi.org/10.1016/s0019-9958(74)90696-2
http://dx.doi.org/10.1006/cgip.1994.1028

	Introduction
	Algorithm
	Digital Surfaces for Boundary Extraction
	Tracking Digital Surfaces
	Overall Description

	Examples of Applications
	Contour Extraction on 2D Grayscale Images
	Surface Tracking on Digital 3D Objects

	Minimal Code to Include the Contour Extraction in a C++ Program

