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Abstract

The integral image representation is a remarkable idea that permits to evaluate the sum of
image values over rectangular regions of the image with four operations, regardless of the size of
the region. It was first proposed under the name of summed area table in the computer graphics
community by Crow’84, in order to efficiently filter texture maps. It was later popularized in the
computer vision community by Viola & Jones’04 with its use in their real-time object detection
framework. In this article we describe the integral image algorithm and study its application in
the context of block matching. We investigate tradeoffs and the limits of the performance gain
with respect to exhaustive block matching.

Source Code

The source code and the online demo are accessible from the IPOL web page of this article1.

Keywords: stereo; block matching; integral image; summed area table; generalized integral
image

1 Introduction

The integral image representation was introduced [10, 5] with the purpose of evaluating sums of
image values over axis aligned rectangular regions in constant time. Crow [5] applied it in graphics
(under the name of summed area table) for efficiently computing mipmaps [26] by filtering the images
with spatially varying rectangular filters. Lewis [17] used integral images for accelerating template
matching. Viola and Jones [24] popularized it in the computer vision community with its application
in their real-time object detection framework. More recently, Bay et al. [1] took advantage of integral
images for the purpose of rapidly computing approximations of SIFT features with their Speeded Up
Robust Features (SURF).

Block-matching aims at identifying corresponding blocks (or patches) between two images. A
patch is a rectangular portion of an image. For each pixel of the first image (which we shall call
from now on reference image) we need to compute the matching cost (denoted also patch distance)

1https://doi.org/10.5201/ipol.2014.57
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between the patch centered at this reference pixel, and all the patches of the second image within
a given range around the reference pixel. For each patch in the reference image, the patch in the
second image yielding the minimum matching cost is called “the corresponding block”. A popular
matching cost is computed as the sum of squared differences (SSD) of pixel values within the patch.

The correspondences and matching costs provide valuable information about the similarity be-
tween the patches, which can be applied to image denoising [3], video compression [15], motion and
depth estimation [21] among others. One of the first uses of integral image applied to block matching
appears in the work by Faugeras et al. [8]. In that work the authors describe an optimization to spare
redundant computations, that is much in the spirit of integral images. Later, Veksler [23] applied
the integral images to stereo block matching for efficiently computing matching costs with multiple
window sizes, and Wang et al. [25] used integral images for accelerating the patch comparison in the
NL-means denoising algorithm [3].

The naive evaluation of the matching cost for a set of M relative offsets, using patches of size r2,
entails O(Mr2) operations for each patch in the reference image. Therefore, for an image with N
pixels, the naive computation of all the matching costs requires O(MNr2) operations. Note that the
patch size affects directly the computational cost. Many techniques have been proposed to reduce
this computational load by avoiding unnecessary comparisons, for instance exploiting the regularity
of the offset fields [20]. Covering all these techniques is well beyond the scope of this work. Here
we are going to describe how the integral image can be applied to compute the matching costs with
O(MN) operations. Thus, with a cost only proportional to the number of offsets, regardless of the
window size. This performance gain comes at the expense of some flexibility, a tradeoff that will be
discussed in detail.

We start by describing the integral image computation and its evaluation in Section 2. In Section 3
we explain how to apply the integral image for block matching and comment some issues. Sections 4
and 5 conclude by highlighting the benefits and limitations of the integral image applied to block
matching.

2 Algorithm for Computing Integral Images

For a discrete image i its integral image ii at the pixel (x, y) is defined as the sum of the pixel values
of i above and to the left of (x, y), namely

ii(x, y) =
∑

p≤x ,q≤y

i(p, q). (1)

Given the integral image, the sum of all the pixels within a rectangle aligned with the image axes
can be evaluated with four array references, regardless of the size of the rectangle. This is illustrated
in Figure 1, where the sum over the rectangle [x0, x] × [y0, y] is computed as L4 + L1 − (L2 + L3),
with L1 = ii(x0 − 1, y0 − 1), L4 = ii(x, y), L3 = ii(x0 − 1, y) and L2 = ii(x, y0 − 1).

In [24] the authors describe an algorithm for computing the integral image in one-pass over the
image by using the recurrence relation

s(x, y) = s(x, y − 1) + i(x, y)

ii(x, y) = ii(x− 1, y) + s(x, y),

where s(x, y) is the column-wise cumulated sum, and s(x,−1) = ii(−1, y) = 0. Algorithm 1 details
the implementation of this recurrence, where the image s is replaced with a scalar accumulator
storing the current row-wise sum. A performance comparison of this method with two other slower
algorithm variants is provided in Appendix A. Algorithm 2 details how to compute the sum of a
rectangular region of the image by evaluating the integral image.
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Figure 1: Integral image and evaluation over a rectangle. The diagram illustrates the com-
putation of the integral image: the value of ii(x, y) is the sum of the pixels in the gray region, where
the upper left corner of the image is the origin of the image’s coordinate system. The diagram on
the right shows how to compute the sum of the samples of the discrete image on a rectangle with
integer bounds, A = [x0, x]× [y0, y] using the integral image ii. It is enough to obtain the values of
the integral image at L1 = ii(x0 − 1, y0 − 1), L4 = ii(x, y), L3 = ii(x0 − 1, y) and L2 = ii(x, y0 − 1),
and to compute L4 + L1 − (L2 + L3).

Algorithm 1: Computing Integral Image.

input: An image of size nx× ny: i
output: The integral image of size nx× ny: ii
ii(0, 0)← i(0, 0);1

for x← 1 to nx− 1 do2

ii(x, 0)← ii(x− 1, 0) + i(x, 0);3

for y ← 1 to ny − 1 do4

s← i(0, y); /* scalar accumulator */5

ii(0, y)← ii(0, y − 1) + s;6

for x← 1 to nx− 1 do7

s← s+ i(x, y);8

ii(x, y)← ii(x, y − 1) + s;9

Algorithm 2: Summing the pixel values in a rectangle of an image using the Integral Image.

input: The integral image for an image i: ii. Position, width (w) and height (h) of a
rectangle contained in the image: [x0, x0 + w − 1]× [y0, y0 + h− 1].

output: Sum of the pixel values of i in the rectangle of size w × h : S
S ← ii(x0 + w − 1, y0 + h− 1);1

if x0 > 0, then S ← S − ii(x0 − 1, y0 − 1 + h);2

if y0 > 0, then S ← S − ii(x0 − 1 + w, y0 − 1);3

if x0 > 0 and y0 > 0, then S ← S + ii(x0 − 1, y0 − 1);4

2.1 Interpretation

The simplest interpretation of the integral image comes from considering a 1D discrete signal l of
length N . The sum over any interval of the signal l (for instance from x0 to x1) rewrites as

x1∑
j=x0

l(j) =

x1∑
j=0

l(j)−
x0−1∑
j=0

l(j) = ll(x1)− ll(x0 − 1), (2)
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Figure 2: Interpolating an integral image. The left image depicts a row of pixels and the right
one its associated integral line. Note, on the left image, that the samples are interpolated with nearest
neighbor and that the signal is displaced half-pixel to the right. With this convention the integral
image at an integer position coincides with the integral of the piecewise constant interpolation of the
samples (for instance the integral image at 2 accumulates the areas of the first and second pixels).
This also implies that linearly interpolating the integral image yields the integral of the piecewise
constant interpolation of the samples.

where ll(x) =
∑x

i=0 l(x) is the “integral line”. Thus given ll, any sum over an interval of l can be
computed with two lookups of ll.

It is possible to compute sums over non integer intervals by interpolating the integral line [5].
Indeed, Figure 2 illustrates a 1D discrete signal which we interpret as a piecewise constant function
and the corresponding integral line. Linearly interpolating the integral line permits to integrate the
underlying piecewise constant function over any (non integer) interval.

In two dimensions the integral image ii at any position (x, y) is the sum of all the pixels in the
rectangular region above and to the left of (x, y) as illustrated in Figure 1. The orientation of the
summed rectangle determines the “privileged orientation” for evaluating the integral image. This
implies that the sums over any rectangle with sides parallel to the image axes can be evaluated with
four lookups of ii. But for rectangles non parallel to the axes the evaluation of the integral image has
a cost proportional to its perimeter. For 45° oriented rectangles, Lienhart and Maydt [18] proposed a
rotated integral image. The rotated integral image is computed traversing the image in the diagonal
directions. The sums over rotated rectangles are then computed, like the integral image, with four
table lookups.

Regarding the sum of values of a signal f as a convolution with a box filter g entails that any
invertible linear operator can be applied to f if its inverse is applied to g (for commodity we switch
to continuous notation). Concretely with the derivative/integral pair we have (in 1D)

(f ∗ g)(x) =

∫
f(t)g(x− t)dt =

∫
F ′(t)g(x− t)dt =

∫
F (t)g′(x− t)dt, (3)

where F (t) =
∫ t
−∞ f(t′)dt′. Observing that the derivative of the box filter is the sum of two delta

functions, the computation of the sum is reduced to the evaluation F at the two points. This insight
was used by the authors of [22] to efficiently filter signals with a piecewise constant filter g, by
converting g into a sequence of deltas at its discontinuities. The same computation extends to two
(and more) dimensions by simply taking partial derivatives and integrals on each dimension:

(f ∗ g)(x, y) =

∫∫
F (t, s)(

d

dy

d

dx
g(x− t, y − s))dtds, with F (t, s) =

∫ s

−∞

∫ t

−∞
f(t′, s′)dt′ds′.
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Figure 3: B-splines of order n. The order n B-spline is obtained by convolving the box filter
n− 1 times with itself, here shown for n = {1, 2, 3}. The n-th derivative of an order n B-spline is a
sequence of deltas depicted on the right. Note that the B-spline of order 3 is a good approximation
of the Gaussian.
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Figure 4: Coefficients for 2D B-spline filtering using generalized integral images. The
2D coefficients for filtering with an n-th order B-splines evaluating the corresponding n-fold integral
image. Adjusting the spacing between the samples yields filters of different widths. The zero order
corresponds to sampling the image with a delta.

2.2 Generalized Integral Images

An alternative proof of the property (3) expresses the integration and derivation using the Fourier
transform f(x) ←→ f̂(ω) [12]. The spatial integration and derivation of a function correspond to
division and multiplication by iω in the frequency domain, that is: df

dx
(x)←→ iωf̂(ω) and

∫
f(x)←→

f̂(ω)/(iω). Hence we have the chain of equivalent computations

f(x) ∗ g(x)←→ f̂(ω)ĝ(ω) =
f̂(ω)

(iω)n
(iω)nĝ(ω)←→

(∫ n

f

)
(x) ∗

(
dng

dxn

)
(x),

where
∫ n

f and dng
dxn

denote respectively the n-fold integration and n-th order derivative of the signals.
This observation leads to a generalization of the integral images [12, 9, 7] to n-fold integral images,

which allows to filter signals by piecewise polynomial filters in constant time (regardless of the filter’s
support). By increasing the integral order it is possible to define smoother and more isotropic filters,
which in turn reduce the artifacts common with the box filter.

As shown in Figure 3, convolving n box filters generates the n-th order B-spline [12, 7], whose
n-th derivative is a sequence of deltas. Therefore, given the n-fold integral of an image it is possible to
evaluate its convolution with a B-spline of the same order, by evaluating a few samples. In Figure 4
the coefficients of several low order 2D B-splines are shown. Adjusting the spacing between the
samples yields the filters of different widths.

There are a couple of issues to keep in mind when working with n-fold integral images. Firstly,
the representation precision (in bits per pixel) of an n-fold integral image increases linearly with n.
This means that storing the n-fold integral image of a signal of length 2m and with b bits per sample
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demands an integral image with a precision of n×m + b bits. For instance, the pixels of the 1-fold
integral image are represented with m+ b bits. Remarking that a 2-fold integral image accumulates
2m values from the 1-fold image, it follows that its maximum range is 2m+b 2m, which amounts to
2 ×m + b bits. Secondly, in 2D the cost of evaluating an n-fold integral image grows quadratically
with n. Thus for instance, applying an order 3 B-spline requires 16 accesses to the integral image
(see Figure 4), while the order 1 B-spline (the rectangle function) only requires 4. This means that
for small blocks (smaller than 7× 7, according to Table 1) it is more effective to compute the sums
exhaustively without recurring to integral images. For more details about the generalized integral
images we recommend [5, 12, 7] as further reading.

2.3 Numerical Precision Notes

The numerical precision of the integral image depends on the concrete data being accumulated, and
the precision of the data type used to store the image. In this section we analyze the precision limits
of the integral image representation for some typical cases. Experiments with different representation
precisions are performed by adapting2 the integral image code associated to this article3.

• Integer pixel values and arithmetic overflow. The simplest situation is the accumulation
of b-bit integers into an m-bit data type. In this case one can accurately accumulate at most
2(m−b) values. As an example, if the data vector contains 12-bit unsigned integers and the
integral image is stored on a 32-bit unsigned integer data type, then only 2(32−12) = 1024×1024
values can be accumulated without any risk of an integral value becoming larger than the 32-bit
integer capacity and resulting in an integer overflow4. Stored on 64-bit data, the integral image
can safely hold the much reassuring quantity of 252 = 4× 1015 values.

• Fixed point pixel values and precision loss. Usually we compute the square (SSD for
instance) of pixels with fixed point values. In that case the range of the data is duplicated.
For instance, the square of a 16-bit fixed point value has a range of 32-bits. A single precision
floating-point data type (IEEE754 32-bits) has only 23 bits of mantissa and is not sufficient here.
A double precision integral image (IEEE754 64-bit floating-point, 53-bit mantissa) can hold 2
million (or 253−32) of such 32-bit values without precision loss. As a reference a 1400 × 1400
pixels image contains 2 million pixels. With more values to be stored, the least-significant bits
of the mantissa in the integral image values are at risk of being dropped when the integral
values grow. These errors are relatively small when compared with the sum but will become
significant when the difference between two close locations of the integral image is computed
(ll(x1)− ll(x0 − 1) in equation (2)).

Figure 5 , second row, illustrates the precision of the integral image evaluation for a large
(2048× 2048 pixels) synthetic image, for several different data types. The pixel values of this
image are in the range [2−19, 219]. This type of range could be the result of another processing
with fixed point precision. Note how in Figure 5, for the single precision case, the error grows
with the distance from (0, 0). This is due to the accumulation of truncation errors.

2In the code associated to this article, the preprocessor macro IIFLOAT and custom type name iifloat t define the
data type used for representing the integral image. By default it is set to extended precision with -DIIFLOAT=’long

double’ passed in the compiler options.
3https://doi.org/10.5201/ipol.2014.57
4In most situations an integer overflow results in the value being wrapped and stored modulo 232, which still allows

for some arithmetic operations to be performed on this data when we are aware of the possibility of an overflow. But in
general the consequences of an overflow are not safely predictable from the programming language standard alone [16,
section A7] and this situation should be avoided.
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Figure 5: Precision of the integral image for single, double and extended types. From
left to right, the first column corresponds to an extract from a 2048 × 2048 image to be filtered,
the second column shows the image obtained by computing the sum over 11 × 11 patches of the
first image. The third column shows the error (for the full 2048 × 2048 image) resulting from the
truncation of a single precision integral image, the labels indicate the averaged error values. The
forth and fifth columns show the errors produced by double precision and extended precision integral
images.
The image in the first row corresponds to synthetic data in the range [2−19, 219]. The concrete image
corresponds to squaring i.i.d. Gaussian noise. For this image the single precision representation is
clearly insufficient. With double precision the maximum error is 0.25 (corresponding to the white
dots), and for extended precision the error is 0 everywhere.
In the second row we repeated the experiment with a natural image with values in the range [0, 224]
(squared 12-bit integers). Again the single precision representation is insufficient, while double
precision and extended precision produce no errors.
The experiment in the third row corresponds to a “nightmare” scenario for the precision of the integral
image representation. The image is similar to the one of the first experiment (range [2−19, 219]), except
that 240 is added to the values of the first 100 columns (saturated in the image) making the range of
the whole image [2−19, 240]. For the single precision representation the errors are always above 107.
Observe that although the largest values are in the first columns of the image the precision there is
always relatively small compared to the rest of the image. This is due to the truncation induced by
the large values accumulated in the first band.
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Figure 6: Removing the average increases the precision. Each column corresponds to one
experiment of Figure 5: synthetic image (single precision), natural image (single precision) and
nightmare scenario (double precision). The first row shows the error from Figure 5, while the second
row shows the error when the input data have been pre-processed by removing the average value of
the image. In general this pre-processing reduces the truncation errors. In the third column note
that although the error is more concentrated, its maximum value is the same.

• Nightmare scenario. In practice the floating point data types are used to represent all non
integer values, because they can be used to represent very large and very small numbers. But
what matters for the integral image is the fixed point precision of its data type, namely the
number of evenly spaced values the data type can represent in a certain range. The nightmare
scenario for the integral image is to accumulate floating point data that spans an extreme range
of floating point values, for example 2−100 to 2100. Indeed, storing this data accurately at fixed
point precision requires more than 200 bits per pixel. The third row of Figure 5 shows an
example of this scenario, with an image containing floating point values in the range [2−19, 219],
but where we added 240 to the pixels of the first 100 columns (saturated on the images), thus
the range of the whole image is 240+19 = 259. For this case the double precision is insufficient
to store the integral image without error. Also note that, although the first columns contain
the largest image values, the precision there remains acceptable, while it deteriorates over the
portion of the image with smaller values. This is the result of the truncation induced by the
large values accumulated in the first band.

Although floating point data may easily surpass the integral image’s precision, usual data do not
span such large ranges of precisions, so one could still apply the integral image in most cases. As a
rule of thumb, we can say that single precision integral images should NEVER be used, unless being
very sure of not incurring in precision errors.

Preprocessing by removing the average value. Removing the average value from the data
increases the precision of the representation as seen in Figure 6. However, this improvement may be
less important for some images. The cost of this pre-processing is one extra sweep through the data
to compute the average, and one extra addition for each evaluation of the integral image.
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Figure 7: Rolling sums in 2D. Updating the boundary values while sliding the window permits to
filter the data with any window shape.

Figure 8: Block matching. The objective of block matching is to compute the matching costs
between every patch of the reference image (centered at p) and all the patches of the second image
centered at p + off , where off ∈ offsets .

The case of rolling sums. A frequent special case worth a special mention is when the sums are
computed on windows of fixed size r × r. In this case instead of computing the integral image, it is
possible to filter the data by using rolling sums with much less risk of precision loss. For a 1D signal
i(·) the filtered signal Si(·) is computed with rolling sums as

Si(x)← Si(x− 1) + i(x)− i(x− r − 1) ∀x ∈ [0 . . . nx− 1],

where i(x) = 0 for x < 0. Figure 7 illustrates the rolling sums in 2D. Note that it doesn’t really
compute the integral image, but in the same spirit [8] it recycles the computations performed for the
previous window.

3 Block Matching using Integral Images

In this section we describe an algorithm for efficiently performing block matching using integral
images. We then specify the matching costs that can be implemented using integral images. Lastly
we analyze the performance of this algorithm with respect to the exhaustive search and Fourier
correlation for different window sizes.

The objective is to compute the matching costs between patches of two images (which may be the
same image). For each pixel of the reference image, we want to compute the matching cost between
the patch centered on this reference pixel and all the patches of the second image centered at pixels
within a given range around the reference pixel, as illustrated in Figure 8. Let us denote u, v : Ω→ R
the reference and secondary images respectively, where Ω ⊂ Z2 denotes the discrete image domain,
and positions in Z2 are boldfaced, p = (x, y).

We consider matching costs that can be expressed as sums of distances between values at pixels
d : R×R→ R+. For instance, taking the pixel value distance d(x, y) = |x−y|2 summed over patches
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of size r2 yields the matching cost known as SSD (Sum of Squared Differences)

SSD(p,q) =
∑

t∈B(0,r)

d(u(p + t), v(q + t)) =
∑

t∈B(0,r)

|u(p + t)− v(q + t)|2,

where B(0, r) denotes the patch of side r centered at 0. Supposing that the size of the images
is |Ω| = N pixels, a naive evaluation of the matching costs for a set of M offsets entails (by the
algorithm shown hereafter) O(NMr2) operations.

for p ∈ u do1

for off ∈ offsets do2

cost← 0;3

for t ∈ B(0, r) do4

cost← cost+ d(u(p + t), v(p + off + t));5

Note, however, that the evaluated patches are overlapping, therefore many of the computations
are redundant. Particularly, if the pixels p are contiguous then each pixel is included in r2 patches,
so the same pixel value distance intervenes in the computation of r2 matching costs.

The key of the integral image approach to block matching is to rewrite the previous algorithm so
that each pixel value distance is computed only once, and reused in all of the r2 patches, yielding a
cost of O(MN). This is shown in the algorithm hereafter.

for off ∈ offsets do1

for p ∈ u do2

dist(p)← d(u(p), v(p + off)) /* precompute pixel distances */3

ii← ComputeIntegralImage(dist) /* cost ∼ 2 additions per pixel */4

for p ∈ u do5

cost ← SumPixelsEvaluatingIntegralImage(ii,p, r);6

Concretely, note how the offset loop is placed outside the pixel loop. This implies that all the
costs associated to a single offset are evaluated simultaneously. Then, for each offset all the pixel
value differences are computed, and an integral image is produced from them, which in turn permits
to compute the sums in constant time.

3.1 Matching Costs That Can Be Implemented with an Integral Image

Integral images can be used to compute any matching cost which can be expressed as a sum of pixel
value distances d, provided that these distances are independent of the pixel positions p and q:

cost(p,q) :=
∑

t∈B(0,r)

d(u(p + t), v(q + t)).

Here we list some well-known costs that can be reduced to sums of independent pixel-wise distances,
and therefore be efficiently implemented using integral images.

1. SSD and SAD. These costs are obtained by taking d(a, b) = |a − b|p. Then for p = {1, 2}
we have the Sum of Absolute Differences (SAD) and the Sum of Squared Differences (SSD)
respectively. But any value of p will work as well.
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2. ZSSD. The Zero-mean SSD adds invariance with respect to additive contrast changes to the
SSD. It is defined by

ZSSD(p,q) :=
∑

t∈B(0,r)

|(u(p + t)− µu(p))− (v(q + t)− µv(q))|2 ,

where µv(q) = 1
|B(0,r)|

∑
t∈B(0,r) v(q + t) is the precomputed average of pixel values in v over

the block centered at q. The ZSSD cannot be implemented with integral images if expressed in
this form, because the pixel value distances are dependent of the position of the pixels. Indeed,
depending on the position, a different pair of means µv and µu are being subtracted. However,
expanding the square we get

ZSSD(p,q) := SSD(p,q)− |B(0, r)| (µv(q)− µu(p))2

and since µv(·) and µu(·) can be precomputed (also with integral images), the overall cost of
ZSSD is comparable to SSD.

3. ZSAD. The Zero-mean SAD [13] cannot be implemented using integral images, because the
corresponding pixel distance d(u(p + t), v(q + t)) = |u(p + t) − v(q + t) + µv(q) − µu(p)| is
not independent of the current patch centers (µv(q) and µu(p) depend on the patch center).

However, a similar distance can be computed by pre-filtering the input images.
Following the terminology introduced in the work by Hirschmüller and Scharstein [13] we call
this method mean filter. It amounts to precompute ũ = u−µu and ṽ = v−µv. Then compute
the SAD cost by taking ũ and ṽ instead of u and v. The same technique could also be used to
approximate ZSSD.

4. SSDNorm. Normalizing the patches by their L2-norms renders the comparison robust to
multiplicative contrast changes. The SSD/Norm is defined as

SSD/Norm(p,q) :=
∑

t∈B(0,r)

∣∣∣∣ u(p + t)

‖u|B(p,r)‖
− v(q + t)

‖v|B(q,r)‖

∣∣∣∣2 ,
where ‖u|B(p,r)‖ =

√∑
t∈B(0,r) (u(p + t))2. Expanding the above expression we get a correla-

tion formula

SSD/Norm(p,q) := 2− 2
Prod(p,q)

‖u|B(p,r)‖ ‖v|B(q,r)‖
,

where Prod(p,q) :=
∑

t∈B(0,r) u(p + t)v(q + t), which can be computed using integral images

by taking d(a, b) = ab, and the terms ‖u|B(p,r)‖ and ‖v|B(q,r)‖ can be precomputed.

The implementation of this cost should prevent divisions by zero. Under this circumstance,
the cost should be set to 2.

5. NCC. The Normalized Cross Correlation combines the benefits of ZSSD and SSDNorm as it
is invariant to affine contrast changes. It is defined as

NCC(p,q) := 1− Corr(p,q),

with

Corr(p,q) :=

1
|B(0,r)|

∑
t∈B(0,r) (u(p + t)− µu(p)) (v(q + t)− µv(q))√

σ2
(
u|B(p,r)

)
σ2
(
v|B(q,r)

) , (4)
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and where σ2
(
u|B(p,r)

)
is the sample variance of the block centered at p.

Corr() takes values in [−1, 1], where 1 indicates the maximum correspondence. For a consistent
notation across the different methods NCC is defined as 1 − Corr. The above expression can
be written as

Corr(p,q) :=

1
|B(0,r)|Prod(p,q)− µu(p) · µv(q)√

σ2
(
u|B(p,r)

)
σ2
(
v|B(q,r)

) ,

which can be computed using one integral image (for Prod()) for each offset value (q−p), and
where the terms µ and σ2 can be precomputed by integral images too.

The implementation of this cost must prevent divisions by zero. Under that circumstance the
cost should be set to 1.

6. AFF. The “affine” similarity measure [6] is designed to match patches independently of affine
contrast changes, but unlike the NCC it can distinguish flat patches from those containing
edges. It can be seen from Equation (4) that Corr becomes arbitrarily small when one of
the patches has low variance, which means that the distance between any patch and a quasi-
flat patch will be small. In contrast, the “affine” similarity measure [6] defined below can
distinguish patches under these circumstances:

AFF(p,q) := max

(
min
α≥0,β

‖Up − αVq − β‖ , min
α≥0,β

‖Vq − αUp − β‖
)
,

where Up = u|B(p,r) and Vq = v|B(q,r). It can be explicitly computed by the formula

AFF2(p,q) := max
(
σ2
(
u|B(p,r)

)
, σ2

(
v|B(q,r)

))
·min (1, 1− Corr(p,q)|Corr(p,q)|) ,

which can be implemented with integral images after precomputation of σ2
(
u|B(p,r)

)
and

σ2
(
v|B(q,r)

)
, which in turn can be done with two integral images, one for the square of u

and one for u. Note that, unlike the NCC, the value of the “affine” similarity measure is
not itself invariant to affine contrast changes. This implies that the cost associated to a pair
of bright patches is higher than the cost associated to a pair of dark patches with the same
structure as the bright pair.

7. LIN. This is a simpler variant of the AFF cost that drops the invariance to additive changes,
but has a similar performance

LIN(p,q) := max

(
min
α≥0
‖Up − αVq‖ ,min

α≥0
‖Vq − αUp‖

)
.

It can also be implemented with integral images by re-writing it as

LIN2(p,q) := max(‖Up‖2, ‖Vq‖2)

(
1− [Prod(p,q)]2

‖Up‖2‖Vq‖2

)
.

The implementation of AFF and LIN costs must prevent divisions by zero. Under that cir-
cumstance, the cost should be set respectively to the maximum variance or norm of the two
patches.

8. BTSAD and BTSSD. By BTSAD or BTSSD, we mean an adaptation to SAD or SSD of
the Birchfield and Tomasi [2] sampling insensitive pixel dissimilarity. This matching cost,
originally proposed for stereo matching, is designed to be insensitive to image sampling. For
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smooth (non aliased) images this cost is proven to be stable with respect to subpixel translations
of the patches, while still evaluating the costs at integer positions.

This cost is particularly useful in combination with global block matching methods (Dynamic
Programming for instance), where the dissimilarity is accumulated along scanlines, and where
the subpixel computations are too expensive. The insensitivity usually prevents the wrong
classification of some pixels as occlusions.

The usefulness of this matching cost for a “local” block matching method is less clear, since the
minimum SAD/SSD cost may not change. Nevertheless it is worth comparing its performance
with subpixel matching.

The matching costs proposed by Birchfield & Tomasi replace the definition of the pixel value
distances with dBT . For the case of the SSD we get

BTSSD(p,q) :=
∑

t∈B(0,r)

|dBT (IL(p + t), IR(q + t))|2,

where the distance dBT is defined as a symmetrization of the distance by

dBT (IL(p), IR(q)) = min(d̄(IL(p), IR(q)), d̄(IR(q), IL(p))),

and where d̄ is the distance of IL to the interval [IminR , ImaxR ]

d̄(IL(p), IR(q)) = max(0, IL(p)− ImaxR (q), IminR (q)− IL(p)),

d̄(IR(q), IL(p)) = max(0, IR(q)− ImaxL (p), IminL (p)− IR(q)).

The four precomputed images ImaxR , IminR , ImaxL , IminL contain the maximum and minimum inter-
polated values of the image in a half pixel neighbor. For instance, with IR we have

IminR (q) = min(I−R (q), I+R (q), IR(q)) and ImaxR (q) = max(I−R (q), I+R (q), IR(q)),

where the interpolated values are computed by bilinear interpolation:

I−R (q) =
1

2
(IR(q) + IR(q− (1, 0)T )), I+R (q) =

1

2
(IR(q) + IR(q + (1, 0)T )).

Note that the maximum (and minimum) of the interpolated pixels Imax (resp. Imin) are only
computed along the horizontal axis (definitions of I+ and I−). This is because the cost was
originally proposed for stereo matching, so the subpixel differences are supposed to occur only
along the horizontal axis. A straightforward extension of this cost for two dimensional block
matching (BT2DSAD and BT2DSSD) replaces the definition of Imax (resp. Imin) to consider
subpixel offsets also in the vertical direction

Imax(q) = max
{
Î(q + V)

}
with V = [−1/2, 1/2]2 ,

where Î denotes the bilinear interpolation of the image I. For this interpolation the maximum
(resp. minimum) will occur at one of nine possible positions, therefore

Imax(q) = max

{
Î(q + s) : s ∈ {−1

2
, 0,

1

2
} × {−1

2
, 0,

1

2
}
}
.
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Figure 9: 1D illustration of matching and reverse matching. The above figure shows a
disparity space diagram representing all the possible matchings that can be computed from pixels
in one line of the reference image and the corresponding line of the secondary image. The pixels
of the reference image are represented in the vertical axis while the horizontal coordinates are the
pixels of the secondary image. The dots on the grid represent the computed costs: for a pixel in
the reference image several costs are computed corresponding to a set of 1D offsets. If the matching
cost is symmetric, that is cost(p,q) = cost(q,p), then the computed costs also contain the matching
costs from secondary to the reference image, for instance for the green pixel five negative offsets have
been considered.

9. Pre-filtering. Hirschmüller and Scharstein in their work [13] describe a set of matching
costs that amount to pre-filtering the input images. They consider: the mean filter which
subtracts from each pixel the mean intensities within a fixed neighborhood of 15 × 15 pixels,
the Laplacian of Gaussian which performs a smoothing that removes noise and intensity offsets,
the background subtraction by bilinear filtering which smooths the image without removing high
contrast textures working on windows of 15× 15 pixels.

Other types of pre-filters [13] such as the rank filter, soft rank and the consensus filter, cannot
be implemented using integral images because they modify the pixel values on a patch basis.

It is important to remark that evaluating an integral image on a rectangle always reduces to a
sum: L4 + L1 − (L2 + L3), which is not guaranteed to be positive. To prevent the appearance of
negative matching costs, due to the limited numerical precision, the implementation of the costs
always truncates them at 0.

3.2 Block Matching Algorithm

We now detail the algorithm for performing block matching using integral images. As anticipated
in the beginning of this section, the algorithm will evaluate all the matching costs for a given offset,
one offset at a time (see Algorithm 3). For each offset, the costs of all the pixels p are computed,
and at each position only the offset yielding the minimum cost is kept.

The same algorithm permits to compute the reverse matchings from the second to the reference
image without overhead. If the cost is symmetric, that is cost(p,q) = cost(q,p), and the considered
offsets are all contiguous, then the costs computed for the reference image coincide with the costs from
the secondary to the reference image (considering negative offsets). This is illustrated in Figure 9.
This permits to compute the reverse matchings without overhead. Conversely, if the computed offsets
are not contiguous, then some of the reverse matchings may not be considered.

Roughly, the block matching algorithm as detailed in Algorithm 3 is:
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• First initialize the variables containing the minimum costs, and precompute the images needed
for evaluating the current cost. These images contain the patch averages, the patch variances,
or patch norms, depending on the chosen cost.

• For each offset, an image of pixel-wise distances is computed: dist(p) ← d(u(p), v(p + off))
Summing the values of dist over patches yields the matching costs for the current offset. The
computation of some costs may also require to access the precomputed images. The sums over
patches is efficiently computed using integral images.

– The integral image of dist is computed. This permits to evaluate the matching cost of
each patch in constant time.

– For each pixel of the reference image, the cost for the current offset is computed. If the
cost is smaller than any previous cost, then the offset is associated to the pixel. Likewise,
the costs and the (reverse) matchings corresponding to the secondary image are updated
as well.

Algorithm 3: Block matching from image u to image v, and the reverse matching (v to u),
using integral images for computing the matching costs.

input: The reference and secondary images: u and v. A patch size: r.
A set of offsets to evaluate: offsets.

output: The offsets of the matches from u to v and the corresponding minimum matching
costs between the patches: matchOffset, minCost.
Offsets and costs for the reverse matches from v to u: R matchOffset , R minCost.

/* initialize the costs */

minCost ←∞ ;1

R minCost ←∞ ;2

/* Precomputed images needed for the cost evaluation (µu, µv, σu,...) */

Stuff ← Precompute Stuff(u, v) ;3

for off ∈ offsets do4

/* precompute pixel distances */

for p ∈ u do5

dist(p)← d(u(p), v(p + off))6

/* compute integral image */

ii← ComputeIntegralImage(dist);7

for p ∈ u do8

/* compute matching cost for pixel p and offset off by evaluating the

integral image and the precomputed images */

newCost ← EvalCostWithIntegralImage( ii,p,off , Stuff );9

/* update the minimum costs */

if minCost(p) > newCost then10

minCost(p) ← newCost;11

matchOffset(p) ← off ;12

/* update the Reverse matching */

if R minCost(p + off) > R newCost then13

R minCost(p + off) ← R newCost;14

R matchOffset(p + off) ← −off ;15
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Figure 10: Stereo Block matching. For a stereo rectified image pair the possible correspondences
are restricted to horizontal lines, therefore the stereo block matching only considers horizontal offsets.

A remark about parallelization. The previous algorithm can be parallelized by splitting the
reference image into smaller sub-images and applying the algorithm in parallel to each sub-image.
Besides reducing the computing time, this strategy also provides a way to deal with the numerical
precision issues connected to the use of large integral images (as mentioned in Section 2.3). The
block matching implementation associated to this work5 processes the reference image by horizontal
bands, with each band treated in parallel.

3.3 Subpixel Stereo Block Matching

The apparent motion of a point in an image due to camera displacement is related to its distance
from the camera. This is the principle of stereoscopy, which allows to estimate the depths of a scene
by determining the relative motion (parallax movement) of corresponding points in two images. In
the pinhole camera geometry it can be shown that the parallax movement of a point occurs only
along a line (called epipolar line), and that the image pairs can always be rectified (transformed by
an homography) so that the apparent motion of pixels is horizontal everywhere [11]. The apparent
motion on rectified images is often referred to as disparity.

The block matching algorithm described above can be used to estimate the disparity in rectified
stereo pairs by restricting it to consider only horizontal offsets (see Figure 10). However, for esti-
mating the depth it is useful to compute disparities with subpixel precision. Algorithm 4 extends
the block matching for integer offsets to consider subpixel disparities. The principle is to compute
several disparity maps with integer disparities, where in each pair one image is shifted by a subpixel
quantity, and then combine the results in a single subpixel disparity map. To attain a precision
of 1/n-th of pixel for both the direct and reverse disparity maps, the integer precision algorithm
must be invoked 2n times, meaning that the overall cost depends linearly on the precision O(NnM)
(where N is the number of pixels and M the number of offsets). The same subpixel procedure can
be applied for estimating subpixel bi-dimensional offsets. However, the cost becomes O(Nn2M),
which dims the value of the integral image with respect to other subpixel techniques for optical flow
computation [14, 19].

3.4 Comparison with Exhaustive Block Matching

As hinted in the introduction the performance of the exhaustive block matching decreases when the
patch size grows, whereas the performance of integral images does not significantly depend on patch
size. The results summarized in Table 1 corroborate this. We also note that for patches smaller than
3× 3 the exhaustive search becomes more efficient than applying the integral image.

5https://doi.org/10.5201/ipol.2014.57
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Algorithm 4: Subpixel stereo block matching using integral image.

input: Images: u and v. A subpixel precision s < 1. A disparity range: offsets.
output: Disparities and minimum matching costs: matchOffset, minCost.

Reverse matches: R matchOffset, R minCost.
/* initialize the costs */

minCost ←∞ ;1

R minCost ←∞ ;2

/* subpixel block matching: u to v */

for shift ∈ {ns : n ∈ N, ns < 1} do3

shifted u← Shift Horizontally(u, shift);4

[newOff,newCost,R newOff,R newCost] ← BlockMatching(shifted u, v, offsets);5

for p ∈ u do6

if minCost(p) > newCost(p) then7

minCost(p) ← newCost(p);8

matchOffset(p) ← newOff(p) + shift;9

/* subpixel block matching: v to u */

for shift ∈ {ns : n ∈ N, ns < 1} do10

shifted v ← Shift Horizontally(v, shift);11

[newOff,newCost,R newOff,R newCost] ← BlockMatching(u, shifted v, offsets);12

for p ∈ v do13

if R minCost(p) > R newCost(p) then14

R minCost(p) ← R newCost(p);15

R matchOffset(p) ← R newOff(p) + shift;16

Patch size (side r) Integral image Exhaustive search
3 6 s 6 s
5 6 s 15 s
7 6 s 28 s
9 6 s 48 s
11 6 s 71 s

Table 1: Performance comparison of block matching with integral image against the exhaustive
search. The former is O(MN) while the latter is O(r2MN), where M is the number of considered
offsets, N is the number of pixels in the image and the side of the patch is r. Here N = 5122 and
M = 100. The execution times are obtained running a C implementation of the algorithms on a
1.8Ghz CPU.
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Figure 11: Disparity range. On the right we show the disparity corresponding to the stereo pair
on the left. The range of the offset spans a large set of disparities because of the “ground plane”.
This tendency could be determined at lower resolutions at a lower cost.

There are however many cases in which an exhaustive block matching is preferable to using the
integral images.

• Non overlapping patches. A common trick to accelerate block matching is to compute the
correspondences only on a coarse grid over the reference image. However, there is no benefit in
using the integral image to compute the costs if the considered patches do not overlap. Indeed,
when computing the correspondences for points on a grid with a stride bigger than the patch
width, there is no gain in using the integral image, since the considered patches are all disjoint.

• Matching costs based on feature vectors. The block matching can be performed by
comparing vectors of local features extracted from the image, instead of comparing the pixels in
a patch. These features vectors are high level descriptions of the patch which usually introduce
some invariance.

However, as in the previous case, there is no benefit in using the integral image if the patch
representations do not overlap. The integral image may be useful, however, for computing the
features themselves [1].

• Matching costs using non uniform weights. A drawback of block matching methods is
their inability to distinguish distinct heights within the patch. This leads to incorrect esti-
mations near the objects’ boundaries and to the appearance of artifacts like the foreground
fattening. The adaptive weights technique [27] prevents some of these issues by introducing
weights in the computation of the matching costs. The weights are computed taking into ac-
count the image geometry in order to avoid considering more than one object in each patch.
This leads to improved results near the boundaries of the objects.

Although the weighted matching costs can be computed using integral images (see Section 2.2),
their cost will be proportional to the complexity of the weight function (for weights w(x, y) it
is proportional to the cardinality of the set {(x, y) : d2

dx2
w(x, y) 6= 0}). Usually the adaptive

weights are incorporated as a refinement step operating over an initial coarse disparity map.

• Variable offset ranges. The block matching computational cost depends linearly on the
number of offsets being evaluated; for this reason it is always preferable to explore a small
range of offsets. In many cases, although the overall offset range can be large, the range
remains locally small. The stereo pair shown in Figure 11 illustrates this situation. In spite
of the fact that the disparities induced by the structures are all relatively small, the disparity
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map is dominated by a global motion due to the change of view angle, which could be easily
estimated at a lower resolution. This idea of progressively refining coarse approximations of
the offset field is at the base of coarse-to-fine [20] techniques for block matching.

An exhaustive block matching algorithm can be easily adapted to implement a coarse-to-fine
refinement, just by locally adapting the offset range. But, an algorithm based on integral
images (such as Algorithm 3) must test every offset for all the pixels, which is inefficient for a
coarse-to-fine technique. A possible way to adapt the disparity range in Algorithm 3 consists
in splitting the reference image in small overlapping tiles, and then applying the algorithm on
each tile with a more reduced range.

3.5 Comparison with Fourier Methods

The convolution theorem provides another way to accelerate the block matching. Any matching cost
that can be expressed in terms of Prod(p,q) (including SSD) admits a re-writing as convolution of
images

Prod(p,x) = (ũ ∗ ṽ)(x),

where ũ(x) = 1B(0,r)(−p−x)u(−p−x) and ṽ(x) = v(x). Applying the convolution theorem we have

Prod(p,x) = (ũ ∗ ṽ)(x) = F−1{F{ũ} · F{ṽ}}(x).

This implies that, for a patch of size r × r of the reference image (centered at p), all the matching
costs within the search window can be computed at a cost proportional to the Fourier transform of
the search region. Then, it is the size of the search region that determines the computational cost.
Indeed, assuming that the M offsets to be evaluated are arranged in a squared region, and that
r2 < M , then the cost becomes approximately O(M log2(M)) (with a conservative constant of 30
due to the FFTs). We deduce that the Fourier transform computes the matching costs faster than
the exhaustive search, as soon as r2 > 30 log2(M). This is the case for template matching [17], where
the patches (r2) and the search regions (M) are both large.

A key characteristic of template matching is that the set of features to be matched is usually small
and sparse, be they points of interest or tracking points. In this case where there is no overlap between
the features, the integral image will perform as the exhaustive search with O(Mr2) operations for
each feature, while the Fourier method’s cost is O(M log2(M)) operations per feature. Conversely,
applying the Fourier method for computing the matches for all the pixels in the reference image is
O(NM log2(M)), which is worse than using the integral image.

4 Limitations

In the previous sections we pointed out some limitations of using integral images for block matching,
let us summarize them here:

• The limited performance gain with respect to exhaustive block matching for small patch
sizes.

• There is no performance gain with respect to exhaustive block matching when computing
the integral image on a coarse grid with non overlapping patches.

• Integral images cannot be used to implement all matching costs. For example, they
do not adapt to ZSAD. Neither are they applicable to matching costs based on feature
vectors or to computing costs with adaptive weights.
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(a) stereo pair (b) increased contrast

(c) exhaustive BM (d) integral image BM (e) bands

Figure 12: Ghost artifacts in block matching. Subfigure (a) shows a crop from a stereo pair.
Although the sky looks saturated it is not uniform. To highlight the noisy values in the sky region
the pair is visualized in (b) with higher contrast. The disparity map obtained using exhaustive block
matching is shown in (c). As expected, the matches in the sky are erratic. The disparity map shown
in (d) is computed using a single precision integral image. Note the appearance of a “ghost” of the
main structure in the sky region, caused by the truncation errors in the integral image representation.
The result obtained using a double precision integral image (not shown) coincides with the one of the
exhaustive matching. The result obtained with a single precision integral image but processing the
image by horizontal bands is shown in (e). Although the artifact has disappeared the result differs
from the exact one, which indicates that some truncation errors are still present.

• The limited precision of the data type used for representing the integral image was
remarked in Section 2.3. Let us illustrate how this issue affects the performance of block
matching. Figure 12 shows a disparity map with a ghost artifact which is the product of the
insufficient precision of the integral image representation. Indeed, the single precision float is
insufficient in this case. There are two ways to deal with this issue, one by reducing the size
of the integral image, and the other by involving a higher precision. A possibility to reduce
the size of the integral image is to process the input images by bands. Figure 12 illustrates the
results of both approaches.

5 Take Home Message

The integral image is a powerful tool for computer vision, that is also effective for accelerating
block matching algorithms, as long as the matching cost can be expressed as a sum of pixel-wise
costs and the offset set to be tested is small. Its performance comes from a re-arrangement of the
computations that capitalizes on patch overlap. Therefore, if the “query patches” do not overlap,
it is more convenient to resort to Fourier based correlation, as it is the case for template matching.
Moreover, for applications where the patches are encoded by feature vectors, there is no advantage
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in using the integral image. Lastly, single precision should be avoided for integral images, as it may
cause truncation errors.

A Comparison of Different Implementations of the Integral

Image Loop

As shown in previous sections of this article, the integral image can be used as a building-block for
many computations, so its performance is critical and optimization efforts focusing on this core loop
could benefit other algorithms.

We present in this appendix a comparison of three versions of the integral image computation
algorithm. These three versions, detailed hereafter, only differ by the order of the operations and
storage of the temporary values, all implemented in general-purpose C language.

Two Loops
We can compute the integral image by performing cumulative sums by row and column in two

passes over the source image (Algorithm 5). This version avoids the use of temporary variables, but
it implies more memory traffic with the two passes.

Vector Accumulator
This version interprets the Viola-Jones [24] formula

s(x, y) = s(x, y − 1) + i(x, y)

ii(x, y) = ii(x− 1, y) + s(x, y),

as a sum over columns. With arrays stored by row (C-style), this implies the use of a vector
accumulator to store the current column-wise sums (Algorithm 6).

Scalar Accumulator
Since the Viola-Jones formula is symmetric, one can swap row and column indices and summing

over rows leads to another variant with a single scalar accumulator to store the current row-wise sum
(Algorithm 7).

We implemented these three variants in C and compared their speed on arrays of pseudo-random
values in [0, 1] stored as long double variables. Processing time for these core routines only was
measured from a single thread execution with high-precision POSIX clock *() calls, on an idle Linux
3.10 system with two CPU cores (Intel Core i5 2.4GHz), no hyper-threading, and no CPU frequency
scaling. For each array size, 32 measures were collected and their median was kept, hence discarding
outliers.

The result, displayed in Figure 13 and Table 2, shows that the “scalar accumulator” version is
faster for all array sizes (212 to 224 pixels), all compilers (gcc 4.7.3 and clang 3.2) and all optimization
settings (-O0 and -O3). On average over the input size, the “scalar accumulator” version is 1.3 to 2
times faster than the “two loops” variant, depending on the compiler and compilation options. Sim-
ilar results were obtained with different optimization settings, other compilers, and other hardware
architectures6.

6Additional tests were performed with -O1 and -O2 optimization settings on gcc and clang, with the icc 12.0.4, suncc
5.11, and tcc 0.9.25 compilers, and with the gcc compiler on Intel Xeon X7560 and Marvell ARM Feroceon 88FR131
CPUs.
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Algorithm 5: Two loops algorithm variant.

input: An image of size nx× ny: i
output: The integral image of size nx× ny: ii
for x← 0 to nx− 1 do1

/* copy the first row */

ii(x, 0)← i(x, 0);2

for y ← 1 to ny − 1 do3

/* cumulative sum over y indices */

for x← 0 to nx− 1 do4

ii(x, y)← i(x, y) + ii(x, y − 1);5

for y ← 0 to ny − 1 do6

/* cumulative sum over x indices */

for x← 1 to nx− 1 do7

ii(x, y)← ii(x, y) + ii(x− 1, y);8

Algorithm 6: Vector accumulator algorithm variant.

input: An image of size nx× ny: i
output: The integral image of size nx× ny: ii
s(0 . . . nx− 1)← 0; /* vector accumulator of length nx initialized to 0 */1

for y ← 0 to ny − 1 do2

s(0)← s(0) + i(0, y);3

ii(0, y)← 0 + s(0);4

for x← 1 to nx− 1 do5

s(x)← s(x) + i(x, y);6

ii(x, y)← ii(x− 1, y) + s(x);7

Algorithm 7: Scalar accumulator algorithm variant.

input: An image of size nx× ny: i
output: The integral image of size nx× ny: ii
ii(0, 0)← i(0, 0);1

for x← 1 to nx− 1 do2

ii(x, 0)← ii(x− 1, 0) + i(x, 0);3

for y ← 1 to ny − 1 do4

s← i(0, y); /* scalar accumulator */5

ii(0, y)← ii(0, y − 1) + s;6

for x← 1 to nx− 1 do7

s← s+ i(x, y);8

ii(x, y)← ii(x, y − 1) + s;9
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Figure 13: Comparison of three implementations of the core loop. The “scalar accumulator” version
is faster on different compilers and optimized compilation settings. These measures, on arrays filled
with 212 to 224 pseudo-random values in [0, 1] stored as long double variables, are the median of
32 independent runs. Average and normalized performance are summarized in Table 2. The test
platform has an Intel Core i5 CPU at 2.4GHz (frequency scaling disabled), with 2 cores, no hyper-
threading, and the software was run on a single thread, on an idle system, without memory paging
to disk (swapping). Compilers here are gcc 4.7.3 and clang 3.2, on a Linux 3.10 system.

scalar vector two loops
gcc -O0 7.74218e+07 6.67072e+07 5.66965e+07

1.3655 1.1765 1
gcc -O3 1.83359e+08 1.27013e+08 1.09579e+08

1.6733 1.1591 1
clang -O0 7.23631e+07 5.35246e+07 5.18055e+07

1.3968 1.0332 1
clang -O3 1.25750e+08 8.93577e+07 6.20220e+07

2.0275 1.4407 1

Table 2: Average performance of three implementations of the core loop, in pixels per second. This
measure is the average of the values presented in Figure 13, i.e. on square arrays of 212 to 224 values.
Numbers in italic are normalized versions of the previous lines, for easier comparison.
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We propose two explanations for the difference. First, the “two loops” variant requires two passes
over the whole array, which implies more time to fetch the data from RAM to CPU and back when the
array doesn’t fit entirely on CPU cache memory. This might explain why Viola and Jones mentioned
that with their formula “the integral image can be computed in one pass over the original image”.
Then, using a “scalar accumulator” instead of a “vector accumulator” means this variable can live
entirely as a single CPU register; it doesn’t need any space on the CPU cache memory, hence less
CPU cycles to load cache values into registers and back, and less cache miss.

This comparison illustrates how much implementation details can matter and make a difference
between two algorithm variants with the same mathematical properties and same arithmetic oper-
ations. When even small performance improvements are important, as in core routines of generic
algorithmic building blocks, anything less than the source code doesn’t really tell us how the software
is going to behave7.

We intend to complete this analysis with more subtle variants in a future work focused on im-
plementation details, such as the choice of the variable data type, floating-point precision control,
loop unrolling, vector instructions, parallel processing, and other optimizations specific to a compiler,
architecture or programming language.
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National d’Études Spatiales (MISS Project) and the European Research Council (advanced grant
“Twelve Labours”).

Image Credits

© Jan C̆ech [4], crop from StMartin rectified stereo pair8

© CNES, satellite image of Melbourne 2012.

References

[1] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, Speeded-Up robust features (SURF),
Computer Vision and Image Understanding, 110 (2008), pp. 346–359. http://dx.doi.org/10.
1016/j.cviu.2007.09.014.

[2] S. Birchfield and C. Tomasi, A pixel dissimilarity measure that is insensitive to image
sampling, IEEE Transactions on Pattern Analysis and Machine Intelligence, 20 (1998), pp. 401–
406. http://dx.doi.org/10.1109/34.677269.

[3] A. Buades, B. Coll, and J. M. Morel, A review of image denoising algorithms, with a
new one, SIAM Multiscale Modeling & Simulation, 4 (2005), pp. 490–530. http://dx.doi.

org/10.1137/040616024.

7The last part of this sentence is based on a quote of Douglas Crockford in Coders at Work: Reflections on the
Craft of Programming, by Peter Seibel.

8http://cmp.felk.cvut.cz/~cechj/GCS/stereo-images/StMartin/

367

http://cmp.felk.cvut.cz/~cechj/GCS/stereo-images/StMartin/
http://dx.doi.org/10.1016/j.cviu.2007.09.014
http://dx.doi.org/10.1016/j.cviu.2007.09.014
http://dx.doi.org/10.1109/34.677269
http://dx.doi.org/10.1137/040616024
http://dx.doi.org/10.1137/040616024
http://cmp.felk.cvut.cz/~cechj/GCS/stereo-images/StMartin/


Gabriele Facciolo, Nicolas Limare, Enric Meinhardt

[4] J. Cech and R. Sara, Efficient Sampling of Disparity Space for Fast And Accurate Matching,
in Proceedings of the 2007 Conference on Computer Vision and Pattern Recognition, IEEE,
June 2007, pp. 1–8. http://dx.doi.org/10.1109/CVPR.2007.383355.

[5] F.C. Crow, Summed-area tables for texture mapping, ACM SIGGRAPH Computer Graphics,
18 (1984), pp. 207–212. http://dx.doi.org/10.1145/964965.808600.

[6] J. Delon and A. Desolneux, Stabilization of Flicker-like effects in image sequences through
local contrast correction, SIAM Journal on Imaging Sciences, 3 (2010), pp. 703–734. http:

//dx.doi.org/10.1137/090766371.

[7] K.G. Derpanis, E.T.H. Leung, and M. Sizintsev, Fast scale-space feature representations
by generalized integral images, in Proceedings of the 2007 International Conference on Image
Processing, vol. 4, IEEE, Oct. 2007, pp. 521–524. http://dx.doi.org/10.1109/ICIP.2007.

4380069.
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