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Abstract

This article proposes a fast and open-source implementation of the well-known Non-Local Means
(NLM) denoising algorithm, in its original pixelwise formulation. The fast implementation is
based on the computation of patch distances using sums of lines that are invariant under a
patch shift. The optimal parameters of NLM (in the average peak signal to noise ratio - PSNR
- sense) are computed from an image database, thereby leading to a parameter-free NLM imple-
mentation. Comparison is performed with the parameter-free blockwise NLM implementation
already proposed in IPOL journal by Buades, Coll and Morel. As expected the blockwise imple-
mentation offers better PSNR, at least when the noise standard deviation is large enough, but
there is no significant difference in quality when performing visual inspection. The highlight is
that the proposed parameter-free pixelwise NLM implementation is faster than the patchwise
one by a factor of 6 to 49.

Source Code

The reviewed source code and documentation for the parameter-free fast pixelwise NLM algo-
rithm are available from the web page of this article1. Compilation and usage instructions are
included in the README.txt file of the archive.

Keywords: image denoising; non-local means

1 Introduction

The Non-Local Means (NLM) image denoising algorithm was introduced in 2005 by Antoni Buades,
Bartomeu Coll and Jean-Michel Morel [1] and the success was such that this method has inspired
a great number of variants and articles, see [3] for some updated references. Three factors largely
explain why the image denoising community has been immersed in the NLM approach: the original
algorithm remains simple; it provides great visual quality; it introduces a basic tool to exploit
the non-local redundancy of natural images. Despite the subsequent introduction of more efficient
denoising algorithms (see [20, 16] for recent comparisons between NLM and some state of the art
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denoising schemes), NLM remains a reference method for image denoising. It is therefore essential
that the image denoising community has freely available a documented, verified and open-source
implementation of NLM in its original version.

Despite the number of NLM codes that can be found in the Internet, it seems that there are only
two implementations that fulfill these conditions: the nlmeans module included in MegaWave2 [11]
and written by Lionel Moisan and the IPOL article [4] from Buades, Coll and Morel. The first code
implements the pixelwise NLM algorithm given in [1] (Section 5.1) for gray-level images only and
using the Euclidean norm instead of the uniform one to define neighbor patches. The parameters’
default values correspond to those in [1], but they turn out to be non optimal for most images.
Finally, this code does not implement any algorithmic trick or parallelization of computing, making
it a slow running program. While the IPOL article [4] describes both the pixelwise NLM (NLM-P)
([1] Section 5.1) and the blockwise NLM (NLM-B) ([1] Section 5.5.2), the published demo and code
implement the blockwise version only2.

The present article aims to propose a fast and parameter-free implementation of the pixelwise
NLM as described in [1] (pages 510-512). In order to fix the notation, let us first recall the equations
that lead to this algorithm.

The input, noisy image v, is assumed to come from the classical additive noise model

v(x) = u(x) + ε(x), x ∈ Ω, (1)

where u is the original image, Ω is the set of pixels and ε is the noise perturbation: (ε(x))x∈Ω

are independent and identically distributed (i.i.d.) Gaussian variables with mean 0 and standard
deviation σ > 0. In the case of gray-level images, u and v take real values (integer values in the
discrete model) whereas for color images, u and v are vector-valued.

The output, denoised image, is the estimator ũ computed as

ũ(x) =
∑
y∈Ωx

w(x, y)v(y), (2)

where the weight w(x, y) estimates the similarity between the pixel x and y in the original image
and the sequence of weights satisfies

w(x, y) ≥ 0 and
∑
y∈Ωx

w(x, y) = 1, ∀x ∈ Ω, y ∈ Ωx. (3)

The set of pixels Ωx is a neighborhood of x ∈ Ω, it is defined as

Ωx = {y ∈ Ω : ‖x− y‖∞ ≤ D}, (4)

for D > 0 a fixed size parameter. The window Ωx is called the search window at x and, for simplicity
and faster computations, in [1] a choice of a square shape of fixed size is made while, according to
authors, the search window should cover the entire image plane, hence the non-local nature of the
algorithm. However, it has been reported that using for NLM a neighborhood instead of the whole
image plane allows to increase the denoising performance [12, 13, 21, 22], see also the discussion in [9]
and the specific study in [19] where it is experimentally established that the optimal window size D
is very small, when using a variant of the pixelwise NLM. As this present article will establish the
best parameters, it will give an answer for the original pixelwise NLM.

This is the following particular form of weights w(x, y) that makes the difference between NLM
and classical denoising methods known as neighborhood filters:

wNLM-Pa(x, y) =
1

n(x)
e−
‖V (x)−V (y)‖22,a

h2 , (5)

2Blockwise NLM is called patchwise NLM in [4].
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where n(x) is a generic normalization factor and h > 0 is a filtering parameter. We write here the
denominator of the fraction in the exponential as h2, thus following the notation in [3, 1, 4], whereas
one reads 2h2 in most subsequent articles about NLM.

The estimation of the oracle |u(x) − u(y)| is performed using the Gaussian Euclidean norm
‖V (x)− V (y)‖2,a, where a is the standard deviation of the Gaussian and where V (x) is the patch of
size d× d centered at x in image v:

V (x) = {v(y) : y ∈ Ω, ‖x− y‖∞ ≤ d}. (6)

Another significant difference with some subsequent articles is in the fact that weights are computed
without subtracting 2σ2 to the square of this norm. Such an alternative is written

wNLM-Pa-variant(x, y) =
1

n(x)
e−

max{‖V (x)−V (y)‖22,a−2σ2,0}

h2 (7)

and this variant is motivated by the fact that

E{‖V (x)− V (y)‖2
2,a} = ‖U(x)− U(y)‖2

2,a + 2σ2, (8)

where the expectation is taken over the noise distribution. The choice to consider (5) rather than (7)
is related to the concern to implement the original NLM algorithm. Note that in [4] and unlike [1, 3],
the authors do subtract 2σ2 to the square of the norm.

In the discrete setting, the Gaussian Euclidean norm writes

‖V (x)− V (y)‖2
2,a =

∑
{z∈Z2:‖z‖∞≤ds}

KGa(z) ‖v(x+ z)− v(y + z)‖2
2 (9)

with

KGa(z) =
e−
‖z‖22
2a2∑

{t∈Z2:‖t‖∞≤ds}

e−
‖t‖22
2a2

(10)

and ds = (d − 1)/2 being the patch side half-length, d being an odd number. In the right-hand of
Equation (9) the symbol ‖v(x)‖2 must be understood as the Euclidean norm of v(x), which is simply
the absolute value of v(x) in the case of a gray-level image. In the case of a color image, v(x) is a
vector of Nc components, Nc being the number of channels, and ‖v(x)‖2

2 is the sum of the squares of
each component.

We denote by NLM-Pa this pixelwise NLM denoising scheme, given by equations (2) and (5). The
letter “a” recalls the use of the Gaussian Euclidean norm (9) of parameter a. Besides the original
articles on NLM [3, 1], the Gaussian kernel is often dropped and the norm between patches becomes
the standard Euclidean one, being in the discrete case the mean square error between V (x) and V (y):

‖V (x)− V (y)‖2
2 =

1

d2

∑
{z∈Z2:‖z‖∞≤ds}

‖v(x+ z)− v(y + z)‖2
2 . (11)

In such a case, NLM-weights write

wNLM-P(x, y) =
1

n(x)
e−
‖V (x)−V (y)‖22

h2 . (12)

We denote by NLM-P the pixelwise NLM denoising scheme with the Euclidean norm instead of the
Gaussian Euclidean one. When mentioned in the literature, the reason for using NLM-P rather than
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NLM-Pa is that the increase in quality provided by the Gaussian kernel is low, while it requires the
additional parameter a to be tuned. However, it seems that there is no experimental study using
image databases to quantify the effect of the Gaussian kernel. It is a goal of this article to examine
to what extend the previous assertion is valid.

To unify the presentation of NLM-P and NLM-Pa, we may denote by K the kernel used to weight
the norm between patches (K = KGa for NLM-Pa, K = 1/d2 for NLM-P) and the corresponding
norm will be written ‖.‖2,K . Before considering optimization, let us present the basic algorithm.

2 Basic Algorithm for the Pixelwise NLM

The pixelwise NLM method may be implemented in a straightforward manner using the above
equations. To denoise a pixel x ∈ Ω, one has to compute the patch V (y) for all y ∈ Ωx and
therefore to scan each pixel z such that ‖y − z‖∞ ≤ d. A window of size (D + d)2 centered in x is
then to be accessed and this requires adding to the borders of the input image v a strip of width
D−1

2
+ d−1

2
= Ds+ds. As usual in image processing, the padding is performed by mirror reflection and

the resulting symmetrized image will be denoted Vsym in the following pseudo-codes (to assist the
reader, Table 1 lists the main notations specifying those used in the mathematical context and those
used for pseudo and source codes). The kernel K is precomputed as an array of size d2 using (10)
for NLM-Pa (or as a constant K = 1/d2 for NLM-P).

The main loop consists in going through each pixel x ∈ Ω and as explained in the next section,
parallelization may be performed at this stage by assigning a specific x to a specific thread. A first
pass of all neighboring pixels y ∈ Ωx is performed in order to compute the array of NLM-weights,
using (5) and (9) or (12) and (11). A second pass of all neighboring pixels y ∈ Ωx is performed to get
the denoised pixel ũ(x) using the estimation in (2). Note that, in case of gray-level images, these two
passes can be merged together. A more detailed sketch of this algorithm is proposed as pseudo-code
in Algorithm 1.

From this pseudo-code, one can easily deduce the complexity of the pixelwise NLM in its ba-
sic implementation. Let us count the number of operations following the standard uniform cost
model [27]. Let N = |Ω| = N1N2 be the number of pixels of the input image v, Nc the number of
color channels, NS = (N1 + 2(Ds + ds))(N2 + 2(Ds + ds)) the number of pixels of the symmetrized
image and c a generic constant. The symmetrization of the input image requires cNsNc operations
and the precomputation of the kernel K, cd2 operations. Inside the main loop x ∈ Ω, the first pass
of all neighboring pixels y ∈ Ωx used to compute NLM-weights requires cNcD

2d2 operations, while
the second pass that computes the estimator ũ(x) needs cNcD

2 operations only. Therefore and using
the big O notation to hide constant factors and smaller terms, the complexity of the plain pixelwise
NLM is given by that of the first pass of the main loop, that is O(NNcD

2d2).

3 Fast Algorithms for the Pixelwise NLM

Different strategies can be deployed to increase the speed of pixelwise NLM. First, it should be
noted that the algorithm is particularly well suited to parallel computing, thanks to the independent
processing of each pixel x ∈ Ω to be denoised. The easiest way to implement parallel computations
is therefore to assign, in the main loop level, a specific pixel x to a specific thread. This allows to
roughly divide the execution time by the number of available threads (the gain is actually a bit lower
due to input/output processes and because of the initialization pass, although this one may also be
parallelized). In the code associated to this article, parallelization is implemented in the main loop
level only, both for the plain and the proposed fast implementations.
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Mathematical notation Code notation Comments
d d Patch side length is d=2*ds+1

ds ds Patch side half-length
d2 d2 Number of pixels of the patch
D D Search window side length is D=2*Ds+1

Ds Ds Search window side half-length
D2 D2 Number of pixels of the search window D2 = |Ωx|

‖V (x)− V (y)‖2
2 or Dist2 Euclidean or Gaussian Euclidean norm between two

‖V (x)− V (y)‖2
2,a patches, see (11) and (9)

K K 2D-Kernel of weighted Euclidean norm, see (10)
K1, K2 K 1D-Kernel of weighted Euclidean norm (fast NLM-Pa

using sum of invariant lines), see (20)
L2
K L2 Weighted Euclidean distance between two patches at

one line (NLM-Pa using sum of invariant lines), see (22)
N N Number of pixels of the input image N= |Ω| = N1×N2

N1 N1 Number of columns of the input image (x1 axis)
N2 N2 Number of rows of the input image (x2 axis)
Nc Nc Number of channels (planes) in the input image (1 or 3)

NNc Image’s size N× Nc
NS NS Number of pixels of the symmetrized image:

NS = (N1 +Ds + ds)× (N2 +Ds + ds)
σ sigma Noise standard deviation
u U Input noiseless image
ũ Vd Output denoised image
- Vd[c] Color channel #c of the denoised image (pseudo-code)
v V Input noisy image
- Vsym Symmetrized noisy image
- Vsym[c] Color channel #c of Vsym (pseudo-code)
w W NLM-weights image

Table 1: Main mathematical notations (used in this PDF article) and main code notations (for
pseudo-codes in this PDF article and/or source codes) and correspondence between them.

Using parallelization should be regarded as a technical trick only, insofar as it does not reduce
the algorithmic complexity. More interesting strategies seek to change the way the calculations are
carried out, so that the complexity may be effectively reduced. As seen before, the biggest term
that sets the complexity of the plain pixelwise NLM is given by the first pass of the main loop
that computes the distance between patches V (x) and V (y). Therefore, strategies are committed to
reduce the cost associated with this distance computation.

The most known approaches involve estimating patches V (y) for which distance to V (x) is prob-
ably significant or, more generally, which are dissimilar to V (x) in some sense. In such a case the
pixel y is simply removed in the neighborhood Ωx or, equivalently, the weight w(x, y) is set to 0 and
the exact distance (9) or (11) is not computed. To be useful from the point of view of complexity,
the preselection of similar patches has to be carried out with less than cNcD

2d2 operations. Such
approaches have been proposed in [17] (preselection using mean and gradient similarities), [5] (using
first and second moments), [18] (using conditional probabilities and critical pixels), [23] (using a
multi-resolution decomposition). It is important to emphasize that these approaches do not imple-
ment the exact pixelwise NLM: the denoised image is different to the one obtained using Algorithm 1.
For this reason and even if the denoised image could be of better quality, such patches preselection
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Algorithm 1: Pseudo-code for pixelwise Non-Local Means (NLM-P and NLM-Pa): basic al-
gorithm

input : V, ds, Ds, h, a
output: Vd
*** INITIALIZATION ***

(N1, N2) ← image size
Nc ← number of color channels
Vsym ← symmetrized noisy image V with border Ds+ds
if a > 0 then Kernel for NLM-Pa

K ← 2D-kernel of Gaussian Euclidean norm, computed using (10)
else Kernel for NLM-P

K ← constant kernel 1/d2 for d = 2× ds + 1

*** MAIN LOOP *** denoise pixel x = (x1, x2), center of the 1st patch

for x = (x1, x2) = (0, 0) to (N1− 1, N2− 1) do
— FIRST PASS — compute NLM-weights

for y = (y1, y2) = (x1−Ds, x2−Ds) to (x1 +Ds, x2 +Ds) do
y = (y1, y2) is the center of the 2d patch

Compute distance between the two patches following (11) (NLM-P) or (9) (NLM-Pa)

Dist2 ← 0
for c = 0 to Nc− 1 do

for z = (z1, z2) = (−ds,−ds) to (+ds,+ds) do

Dist2 ← Dist2 + K(z)× (Vsym[c](x+ z)− Vsym[c](y + z))2

Compute unnormalized weight w(x, y) following (5) and (12)

W (x, y) = e−Dist2/(Nc× h2)

— SECOND PASS — compute denoised pixel ũ(x)

for c = 0 to Nc− 1 do
r ← 0 Sum of weighted pixel’s values, without normalization

s← 0 Sum of weights, for normalization

for y = (y1, y2) = (x1−Ds, x2−Ds) to (x1 +Ds, x2 +Ds) do
r ← r +W (x, y)× Vsym[c](y) The weighted average is done here

s← s+W (x, y) Compute sum of weights, for normalization

Final estimate based on the assumption that original planes take values in [0, 255]

Vd[c](x)← min(max(r/s, 0), 255)

is not considered in this article that aims to implement and study the original pixelwise NLM.

3.1 Fast NLM-P Using Integral Images

A strategy for reducing the complexity of patch distance computations while maintaining exact
calculations is described in [25] and [7]. The method is known as integral images [24] (or summed
area tables [6] in the context of texture mapping) and it allows to efficiently compute the sum of
values of any image in a rectangular subset of a grid. A recent review of the integral image algorithm
and its application is proposed in [10].

In the context of patch distance, the image to be summed takes the form

st(z) = ‖v(z)− v(z + t)‖2
2 , z = (z1, z2) ∈ Ω (13)
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where t = y − x ∈ [[−Ds,+Ds]]
2 is a translation vector. The associated integral image (or summed

area table) is given by

St(x) =
∑

{z=(z1,z2)∈N2:0≤z1≤x1,0≤z2≤x2}

st(z), x = (x1, x2) ∈ Ω, (14)

with symmetric or periodic extension at the image boundaries. Note that the integral image can be
calculated in O(NNc) operations using the recursive sequence

∀x = (x1, x2) ∈ Ω, x1 ≥ 1, x2 ≥ 1, St(x) = st(x)+St(x1−1, x2)+St(x1, x2−1)−St(x1−1, x2−1). (15)

The key point is that the Euclidean norm (11) may be written

‖V (x)− V (y)‖2
2 =

1

d2
( St(x1 + ds, x2 + ds) + St(x1 − ds, x2 − ds)
−St(x1 + ds, x2 − ds)− St(x1 − ds, x2 + ds) ) .

(16)

Hence the fast NLM-P algorithm using integral images may work as follows: first, all integral
images are computed using (15). As there are D2 = (2Ds+1)2 translations t = y−x, this initialization
pass needs O(NNcD

2) operations. In the first pass of the main loop, the distance between two patches
is computed in constant time using (16). The remaining of the algorithm is identical to the basic
version, see Algorithm 2 for the adapted pseudo-code. A noticeable fact of this fast algorithm is
that the computation of the NLM-weights is now independent to the patch size. The total cost of
the fast NLM-P algorithm using integral images is therefore determined by that of the initialization
pass and the second pass of the main loop, that is O(NNcD

2). Note that this implementation, the
closest to that of the basic one, uses lot of memory since it requires recording all integral images St
for t ∈ [[−Ds,+Ds]]

2 that is, D2 times the size of the input image.
To reduce the memory size, a solution is to change the order of loops so that the main loop

becomes the shift vector t ∈ [[−Ds,+Ds]]
2. One then no longer needs to index the integral image St

by the parameter t. However, it becomes necessary to allocate an array to compute the sum of weights
needed for the normalization. Finally, the additional memory size required by the integral images
implementation is only two times the size of the input image, see Algorithm 3 for the corresponding
pseudo-code. Note that, due to the partial calculation of the estimate in the main loop, this version
optimized for memory usage would be less suitable for parallel processing (it would require threads
to be synchronized to protect access to shared data).

A drawback of this integral images approach is that it does not directly allow the computation of
a weighted norm using a kernel K, as the Gaussian one in (9). Another problem may occur even in
the simple case of NLM-P: when image size as well as patch distances are large, some values of the
integral image (14) may become so huge that the accuracy of the final result may drop, even when
using a double precision representation (see [10] for a discussion of this phenomenon). Therefore
this fast algorithm can hardly be used to implement NLM-Pa, unlike the two ones that will be now
presented.

3.2 Fast NLM-Pa Using FFT

In [8], C-A. Deledalle, V. Duval and J. Salmon introduce a fast algorithm to compute the pixelwise
NLM using the Fast Fourier Transform (FFT). Their algorithm has a broader scope since it considers
patches of arbitrary shapes, but it can obviously be applied in the particular case of square patches.
The computational complexity decrease is achieved by two modifications. First, loops are rearranged
so that one considers all pixels x for all translation vectors t ∈ [[−Ds,+Ds]]

2, in a manner similar
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Algorithm 2: Pseudo-code for a fast NLM-P: integral images algorithm, version 1 (without
memory optimization)

input : V, ds, Ds, h
output: Vd
Function st(t; z) Compute st(z) following (13)

Dist2 ← 0
for c = 0 to Nc− 1 do

Dist2 ← Dist2 + (Vsym[c](z)− Vsym[c](z + t))2

return (Dist2)

*** INITIALIZATION ***

(N1, N2) ← image size
Nc ← number of color channels
Vsym ← symmetrized noisy image V with border Ds+ds
Compute integral images S[t] for all t, following (15)

for t = (t1, t2) = (−Ds,−Ds) to (+Ds,+Ds) do
S[t](0,0) ← 0
for x1 = 1 to N1− 1 do

S[t](x1,0)=st(t;(x1,0))+S[t](x1-1,0)

for x2 = 1 to N2− 1 do
S[t](0,x2)=st(t;(0,x2))+S[t](0,x2-1)

for x = (x1, x2) = (1, 1) to (N1− 1, N2− 1) do
S[t](x)=st(t;x)+S[t](x1-1,x2)+S[t](x1,x2-1)-S[t](x1-1,x2-1)

*** MAIN LOOP *** denoise pixel x = (x1, x2), center of the 1st patch

for x = (x1, x2) = (0, 0) to (N1− 1, N2− 1) do
— FIRST PASS — compute NLM-weights

for y = (y1, y2) = (x1−Ds, x2−Ds) to (x1 +Ds, x2 +Ds) do
y = (y1, y2) is the center of the 2d patch

Compute distance between the two patches using integral images, see (16)

Dist2 ← S[t](x + (ds, ds)) + S[t](x− (ds, ds))− S[t](x + (ds,−ds))− S[t](x + (−ds,+ds))

Dist2 ← Dist2 /d2

Compute unnormalized weight w(x, y) following (12)

W (x, y) = e−Dist2/(Nc× h2)

— SECOND PASS — compute denoised pixel ũ(x)

for c = 0 to Nc− 1 do
r ← 0 Sum of weighted pixel’s values, without normalization

s← 0 Sum of weights, for normalization

for y = (y1, y2) = (x1−Ds, x2−Ds) to (x1 +Ds, x2 +Ds) do
r ← r +W (x, y)× Vsym[c](y) The weighted average is done here

s← s+W (x, y) Compute sum of weights, for normalization

Final estimate based on the assumption that original planes take values in [0, 255]

Vd[c](x)← min(max(r/s, 0), 255)

to the trick used in Algorithm 3 to avoid recording all integral images. Second, given such a t the
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Algorithm 3: Pseudo-code for a fast NLM-P: integral images algorithm, version 2 (with mem-
ory optimization)

input : V, ds, Ds, h
output: Vd
Function st(t; z) Compute st(z) following (13)

Dist2 ← 0
for c = 0 to Nc− 1 do

Dist2 ← Dist2 + (Vsym[c](z)− Vsym[c](z + t))2

return (Dist2)

*** INITIALIZATION ***

(N1, N2) ← image size
Nc ← number of color channels
Vsym ← symmetrized noisy image V with border Ds+ds
Vd ← all planes filled with 0
SW ← array filled with 0 Sum of Weights image

*** MAIN LOOP *** shift vector t = (t1, t2)

for t = (t1, t2) = (−Ds,−Ds) to (+Ds,+Ds) do
— Step 1 — Compute the integral image St, t being fixed, following (15)

St(0,0) ← 0
for x1 = 1 to N1− 1 do

St(x1,0)=st(t;(x1,0))+St(x1-1,0)

for x2 = 1 to N2− 1 do
St(0,x2)=st(t;(0,x2))+St(0,x2-1)

for x = (x1, x2) = (1, 1) to (N1− 1, N2− 1) do
St(x)=st(t;x)+St(x1-1,x2)+St(x1,x2-1)-St(x1-1,x2-1)

— Step 2 — Compute weight and estimate for patches V (x), V (y) with y = x + t

for x = (x1, x2) = (0, 0) to (N1− 1, N2− 1) do
y ← x+ t
Compute distance between the two patches using integral images, see (16)
Dist2 ← St(x + (ds, ds)) + St(x− (ds, ds))− St(x + (ds,−ds))− St(x + (−ds,+ds))

Dist2 ← Dist2 /d2

Compute unnormalized weight w(x, y) following (12)

W (x, y) = e−Dist2/(Nc× h2)

SW (x)← SW (x) +W (x, y) Compute sum of weights, for subsequent normalization

Compute estimate as weighted average

for c = 0 to Nc− 1 do
Vd[c](x)← Vd[c](x) +W (x, y)× Vsym[c](y)

*** FINAL LOOP *** Compute final estimate at pixel x = (x1, x2)

for x = (x1, x2) = (0, 0) to (N1− 1, N2− 1) do
for c = 0 to Nc− 1 do

Vd[c](x)← min(max(Vd[c](x)/SW (x), 0), 255)

weighted norm of patches differences is written as a discrete convolution product

‖V (x)− V (x+ t)‖2
2,K =

∑
{z∈Z2:‖z‖∞≤ds}

K(z) ‖v(x+ z)− v(x+ t+ z)‖2
2 = (K̃ ∗ st)(x) (17)
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where K̃(z) = K(−z), ∗ is the discrete convolution product and st is the square difference image
defined in (13). As it is well known, the convolution product may be computed in O(NNc log(NNc))
operations using the 2D discrete Fourier transform (2D-FFT) denoted by F and its inverse F−1:

‖V (x)− V (x+ t)‖2
2,K = F−1(F(K̃)F(st))(x). (18)

Apart from this patch distance computation done using 2D-FFT rather than the integral images
concept, the structure of this method, detailed in Algorithm 4, is similar to Algorithm 3. The
final complexity of NLM-Pa using FFT, given by the one of its main loop where (18) has to be
computed for any translation vectors t ∈ [[−Ds,+Ds]]

2, is O(NNcD
2 log(NNc)). Thus, as with

integral images, the computation of the NLM-weights is independent from the patch size. However,
the term O(log(NNc)) emerges as a cost to pay to weight the Euclidean norm using a kernel K and
this can be a major drawback for denoising images of large sizes.

3.3 Fast NLM-Pa Using Sums of Invariant Lines (SIL)

In what follows is proposed the SIL algorithm for NLM-Pa whose complexity is O(NNcD
2d) instead

of O(NNcD
2 log(NNc)), which is therefore faster than the FFT approach for sufficiently large images.

The only condition is for the kernel K to be a separable function, that is

∀z = (z1, z2) ∈ Z2, ‖z‖∞ ≤ ds, K(z) = K1(z1)K2(z2). (19)

This condition is satisfied with the Gaussian kernel used in NLM-Pa, for which we have

∀i ∈ Z, |i| ≤ ds, K1(i) = K2(i) =
e−

i2

2a2∑
{t∈Z:|t|≤ds}

e−
t2

2a2

. (20)

In such case, calculating the patch distance can use the following trick: a shift of one row (or one
column) of the two patches does not require recalculation of all pixel differences; previous differences
may be kept and new pixel differences have to be computed for the new incoming row (or column)
only. In what follows the shift on rows has been implemented, but a similar result would be obtained
with a shift on columns.

Using this trick goes through the decomposition of the weighted quadratic distance such as (9)
to a sum of lines that are invariant under a patch shift: for t ∈ [[−Ds,+Ds]]

2 a translation vector,

‖V (x)− V (x+ t)‖2
2,K =

∑
{z2∈Z:|z2|≤ds}

K2(z2)L2
K(x, t, z2) (21)

where L2
K(x, t, z2) is the weighted quadratic distance between patches V (x) and V (x+ t) at the line

index z2:
L2
K(x, t, z2) =

∑
{z1∈Z:|z1|≤ds}

K1(z1) ‖v(x+ z)− v(x+ t+ z)‖2
2 . (22)

The shift invariance property comes from the fact that, for l = (0, 1) a translation vector of one line
down (as usual in image processing, the X2-axis is assumed to point down),

∀z2 ∈ Z,−ds ≤ z2 < +ds, L
2
K(x, t, z2) = L2

K(x− l, t, z2 + 1). (23)

Therefore, (21) may be written

‖V (x)− V (x+ t)‖2
2,K = K2(ds)L

2
K(x, t, ds) +

ds−1∑
z2=−ds

K2(z2)L2
K(x− l, t, z2 + 1). (24)
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Algorithm 4: Pseudo-code for a fast NLM-Pa: FFT method

input : V, ds, Ds, h, a
output: Vd
*** INITIALIZATION ***

(N1, N2) ← image size
Nc ← number of color channels
Vsym ← symmetrized noisy image V with border Ds+ds
Vd ← all planes filled with 0
SW ← array filled with 0 Sum of Weights image

K ← kernel of Gaussian Euclidean norm, computed using (10)
FK ← FFT2D(K) Precomputation of F(K), note that K = K̃ since K = KGa

*** MAIN LOOP *** shift vector t = (t1, t2)

for t = (t1, t2) = (−Ds,−Ds) to (+Ds,+Ds) do
— Step 1 — Compute the Patch Distance image for a given t, PDt, following (18)

for x = (x1, x2) = (0, 0) to (N1− 1, N2− 1) do
Compute the Square difference image st, t being fixed, following (13)

st(x) ← 0
for c = 0 to Nc− 1 do

st(x) ← st(x) + (Vsym[c](x)− Vsym[c](x+ t))2

Fst ← FFT2D(st) Computation of F(st)

for x = (x1, x2) = (0, 0) to (N1− 1, N2− 1) do
FPDt(x)= FK(x) × Fst(x) Get the Fourier transform of the Patch Distance image

PDt ← IFFT2D(FPDt) Inverse 2D-FFT to end (18)

— Step 2 — Compute weight and estimate for patches V (x), V (y) with y = x + t

for x = (x1, x2) = (0, 0) to (N1− 1, N2− 1) do
y ← x+ t

W (x, y) = e−PDt(x)/(Nc× h2) Compute unnormalized weight w(x, y) following (5)

SW (x)← SW (x) +W (x, y) Compute sum of weights, for subsequent normalization

Compute estimate as weighted average

for c = 0 to Nc− 1 do
Vd[c](x)← Vd[c](x) +W (x, y)× Vsym[c](y)

*** FINAL LOOP *** Compute final estimate at pixel x = (x1, x2)

for x = (x1, x2) = (0, 0) to (N1− 1, N2− 1) do
for c = 0 to Nc− 1 do

Vd[c](x)← min(max(Vd[c](x)/SW (x), 0), 255)

Note that, if K2 would be a constant (such as with NLM-P), one would have

‖V (x)− V (x+ t)‖2
2,K = ‖V (x− l)− V (x+ t− l)‖2

2,K +K2L
2
K(x, t, ds)−K2L

2
K(x− l, t,−ds). (25)

Nevertheless, the property (24) is sufficient to gain optimization as long as one records the array
L2
K : if we assume values of {L2

K(x− l, t, z)}z=−ds+1,...,ds saved while computing the distance between
patches V (x − l) and V (x + t − l), the computation of the distance between the one row shifted
patches V (x) and V (x+ t) requires the evaluation of the distance at the new incoming row index ds
only, given by L2

K(x, t, ds). In this way, for a fixed x and y the computation of (24) needs O(Ncd)
operations only and the overall complexity is O(NNcD

2d). Note that the initialization phase (where
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one calculates the distance between the first patches) involves computing all values of the L2
K array,

leading to a complexity of O(Ncd
2). However this situation occurs only once, or to simplify the

implementation only once per image column, so as long as N2 > d the initialization process has a
complexity bounded by O(NNcD

2d).
A pseudo-code for this fast NLM-Pa is proposed in Algorithm 5 and more detail on the imple-

mentation is given in Subsection 5.2. Note that the chosen pseudo-code and implementation result
from a compromise between efficiency and simplicity: by avoiding the initialization phase when x
moves to the next column by implementing a sum of shifted invariant columns, one would obtain a
faster code (but without changing the overall complexity of O(NNcD

2d)); by adapting the scan of
x and y pixels so that the iteration next to x and y would be x+ l and y + l, one would reduce the
memory size needed to record the L2

K array.

4 Experiments on Databases: Parameters Estimation and

Experimental Results

Having fast implementations, the NLM usability is now determined by the ability to set its 3 (NLM-
P) or 4 (NLM-Pa) parameters in order to obtain an effective denoising. Methods that propose to
automatically adjust NLM parameters according to local or global characteristics of the image will
not be considered here, insofar as they lead to algorithms that differ from the original NLM. The
reader interested in such NLM extensions may consult [15, 9] and references therein. To estimate
NLM parameters, the optimal values are calculated from a set of noise-free natural images on which
is added on each plane a Gaussian noise with mean 0 and given standard deviation, so that input
images may be deemed to satisfy the noisy image model (1) with a known σ.

4.1 Parameters Estimation Using Two Image Databases

To build the image database, the choice was to take the 21 color images proposed in the on-line
demo of the IPOL article [4]. These images are assumed to be almost free of noise, as they have been
obtained by taking a good quality photograph in broad daylight and they have been post-processed
with a low-pass filter followed by a sub-sampling of factor 8. These color images contain 3 color planes
in the RGB color model, each channel being coded using 8 bits. In the following, the corresponding
database will be called Color IPOL.

Since the patch distances (11) and (9) are computed using all color components, the estimation
of the oracle |u(x) − u(y)| will be more reliable as the number of channels Nc increases. Therefore,
parameter’s values (especially the patch side length d) should depend on the number of channels.
To assess this effect, another database made of gray-level images (one 8-bits channel) is used. Such
images are simply the grayed version of Color IPOL ones, using the Rec. 601 Luma weights3. The
resulting database will be called Gray-level IPOL.

From any of these two databases, the procedure used to get optimal parameters is as follows. The
standard deviation is quantified between 1 and 100 with a step of one. Gaussian noise with mean
0 and standard deviation σ ∈ [[1, 100]] is added to each image in the database, using the Mersenne
Twister pseudo-random number generator provided by IPOL development tools4. In order to limit
the impact of the noise realization, 10 noisy images per noise-free image are generated. This results
in 210 different noisy images per database that are used as input of the optimization process. The
function fσ to be maximized is the arithmetic mean of the Peak Signal to Noise Ratio (PSNR)

3http://en.wikipedia.org/wiki/Luma_%28video%29.
4https://tools.ipol.im/wiki/doc/tools.
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Algorithm 5: Pseudo-code for a fast NLM-Pa: sums of invariant lines (SIL) algorithm

input : V, ds, Ds, h, a
output: Vd
*** INITIALIZATION ***

(N1, N2) ← image size
Nc ← number of color channels
Vsym ← symmetrized noisy image V with border Ds+ds
if a > 0 then Kernel for NLM-Pa

K ← 1D-kernel of Gaussian Euclidean norm, computed using (20)
else Kernel for NLM-P

K ← constant kernel 1/d for d = 2× ds + 1

*** MAIN LOOP *** denoise pixel x = (x1, x2), center of the 1st patch

for x = (x1, x2) = (0, 0) to (N1− 1, N2− 1) do
— FIRST PASS — compute NLM-weights

for y = (y1, y2) = (x1−Ds, x2−Ds) to (x1 +Ds, x2 +Ds) do
y = (y1, y2) is the center of the 2d patch

Compute distance between the two patches using sums of invariant lines

t ← y − x; Dist2 ← 0
if x2 = 0 then V (x) on upper side: compute and record L2

K for all lines following (22)

for z2 = −ds to +ds do
l2 ← 0
for c = 0 to Nc− 1 do

for z1 = −ds to +ds do

l2 ← l2 + K(z1)× (Vsym[c](x+ z)− Vsym[c](y + z))2

L2(x, t, z2)← l2 See Subsection 5.2 for details on L2 array

Dist2 ← Dist2 + K(z2)× l2
else Use previously computed L2

K with a shift and compute last line following (24)

for z2 = −ds to ds− 1 do
Dist2 ← Dist2 + K(z2)× L2(x− (0, 1), t, z2 + 1) Sum of invariant lines, see 5.2

l2 ← 0
for c = 0 to Nc− 1 do

for z1 = −ds to +ds do

l2 ← l2 + K(z1)× (Vsym[c](x+ z)− Vsym[c](y + z))2

L2(x, t, z2)← l2
Dist2 ← Dist2 + K(z2)× l2

Compute unnormalized weight w(x, y) following (5) and (12)

W (x, y) = e−Dist2/(Nc× h2)

— SECOND PASS — compute denoised pixel ũ(x)

for c = 0 to Nc− 1 do
r ← 0 Sum of weighted pixel’s values, without normalization

s← 0 Sum of weights, for normalization

for y = (y1, y2) = (x1−Ds, x2−Ds) to (x1 +Ds, x2 +Ds) do
r ← r +W (x, y)× Vsym[c](y) The weighted average is done here

s← s+W (x, y) Compute sum of weights, for normalization

Final estimate based on the assumption that original planes take values in [0, 255]

Vd[c](x)← min(max(r/s, 0), 255)
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between each noisy image and its noise-free version and the optimization problem may be written,
in the case of the NLM-Pa denoising scheme and for B the image database,

fNLM-Pa,B
σ (d?s, D

?
s , h

?, a?) = max
ds,Ds,h,a

{
1

10|B|
∑
u∈B

10∑
i=1

PSNR(u, ũNLM-Pa(u, i, σ, ds, Ds, h, a))

}
, (26)

where ũNLM-Pa(u, i, σ, ds, Ds, h, a) is the denoised image computed from the noisy input u + εi (εi
between a noise realization of standard deviation σ), using NLM-Pa algorithm with parameters
ds, Ds, h, a. The same writing is obtained for fNLM-P,B

σ , without the last parameter a.
Since the complexity of fσ does not allow the use of conventional optimization algorithms, the only

safe method is to discretize the parameters and try as many combinations as possible. Fortunately,
parameters ds and Ds are integers and they can reasonably be limited to small bounds. As mentioned
in the literature (see e.g. [1, 4]), the parameter h that controls the decay of the weights should be
proportional to the value of σ and in practice, a value of h slightly greater than σ seems to be the
best. The literature provides little guidance on the choice of the parameter a. In [11] (nlmeans
module), the default value a = ds/2 is proposed. Based on these considerations, Table 2 gives the
quantized values and their bounds that have been used for the parameter exploration. Exploring
all of these parameters would require 329120 calls to the NLM-Pa code for a given input image and
standard deviation, so the parameters estimation for the Color or the Gray-level IPOL database
would need more than 6.9 × 109 calls. Knowing that a call typically lasts a few seconds, it would
not be possible to explore all the 329120 parameters combination. To reduce the dimensionality of
the problem, a local optimum is sought with the following coordinate ascent algorithm where one
cyclically iterates through each parameter direction:

dk+1
s = arg max

ds
fNLM-Pa,B
σ (ds, D

k
s , h

k, ak)

Dk+1
s = arg max

Ds
fNLM-Pa,B
σ (dk+1

s , Ds, h
k, ak)

hk+1 = arg max
h

fNLM-Pa,B
σ (dk+1

s , Dk+1
s , h, ak)

ak+1 = arg max
a
fNLM-Pa,B
σ (dk+1

s , Dk+1
s , hk+1, a),

(27)

where k is the current iteration. The algorithm stops when a stationary point is reached, i.e. when
there is no improvement in the last cycle. In practice it appears that a stationary point is reached
very rapidly, typically in 3 to 5 iterations. The results are given in Table 3 (NLMP-a) and Table 4
(NLM-P), where optimal values are piecewise-constant interpolated for non-integer values of σ (when
the expression does not show the σ term).

Parameter Meaning Quantized as integer Range
ds patch side half-length ds ds ∈ [[1, 11]]
Ds search window side half-length Ds Ds ∈ [[1, 17]]
h = σhQ/10 filtering parameter, see (5) and (12) hQ hQ ∈ [[5, 20]]
a = aQ/10 decay of the Gaussian kernel (10) aQ aQ ∈ [[1, 110]]

Table 2: Range of the NLM-P and NLM-Pa parameter exploration for the optimization process.

4.2 Experimental Results and ComparisonWith Blockwise NLM (NLM-
B)

This subsection presents experimental results on NLM-P and NLM-Pa with previously computed
optimal parameters, together with results obtained with the blockwise NLM (NLM-B) [1] (Section
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Color IPOL database
σ d?s D?

s h? a?

]0, 3] 1 5 1.6σ (σ + 2)/10
]3, 4] 1 5 1.6σ (σ + 1)/10
]4, 5] 1 5 1.5σ (σ + 1)/10
]5, 6] 1 5 1.4σ (σ + 1)/10
]6, 9] 1 5 1.4σ 0.7
]9, 13] 1 6 1.2σ 1.0
]13, 19] 1 6 1.2σ 1.1
]19, 24] 1 6 1.1σ σ/10
]24, 45] 1 8 1.0σ σ/10
]45, 46] 1 9 1.0σ σ/10
]46, 79] 2 9 0.9σ σ/10
]79, 100] 2 10 0.9σ σ/10

Gray-level IPOL database
σ d?s D?

s h? a?

]0, 1] 3 3 1.7σ 0.7
[1, 3[ 3 3 1.7σ 0.8
[3, 4] 3 3 1.7σ 0.9
]4, 5] 3 3 1.7σ 1.0
]5, 7] 3 4 1.6σ 1.1
]7, 9] 3 4 1.4σ 1.3
]9, 13] 3 5 1.3σ 1.4
]13, 18] 3 5 1.3σ 1.6
]18, 19] 3 5 1.3σ 1.7
]19, 20] 3 5 1.2σ σ/10
]20, 28] 3 6 1.1σ σ/10
]28, 67] 3 7 1.0σ σ/10
]67, 83] 3 8 1.0σ σ/10
]83, 100] 4 8 1.0σ σ/10

Table 3: Optimal parameters for NLM-Pa on Color and Gray-level IPOL databases.

Color IPOL database
σ d?s D?

s h?

]0, 3] 1 2 1.5σ
]3, 8] 1 3 1.4σ
]8, 9] 1 4 1.3σ
]9, 17] 1 5 1.2σ
]17, 24] 1 6 1.1σ
]24, 46] 1 8 1.0σ
]46, 75] 2 9 0.9σ
]75, 100] 2 10 0.9σ

Gray-level IPOL database
σ d?s D?

s h?

]0, 7] 1 3 1.5σ
]7, 9] 1 4 1.4σ
]9, 19] 1 5 1.3σ
]20, 28] 2 6 1.1σ
]28, 47] 3 6 1.0σ
]47, 70] 3 7 1.0σ
]70, 87] 3 8 1.0σ
]87, 100] 4 8 1.0σ

Table 4: Optimal parameters for NLM-P on Color and Gray-level IPOL databases.

5.5.2), also called patchwise NLM in the IPOL article [4]. The code used for NLM-B is the one
published in [4] with the given parameters (see Gray and Color tables). The article does not mention
how these parameters have been set. In NLM-B, the denoising process is performed by blocks using
a vectorial NLM. From these restored overlapping blocks, the final estimate is computed by an
aggregation formula. To know what to expect about comparison between pixelwise and blockwise
NLM, let us quote [4]: “The main difference of both versions is the gain on PSNR by the patchwise
implementation, due to the larger noise reduction of the final aggregation process. Spurious noise
oscillations near edges are also reduced by the final aggregation process. However, the overall quality
in terms of preservation of details is not improved by the patchwise version.”

All experiments were carried out by considering, as in Subsection 4.1, 10 noise realizations per
noise-free image. Thus, results on Color and Gray-level databases are averages on 210 different
denoised images. Figure 1 displays the corresponding curves for the Color IPOL database while
Figure 2 is for the Gray-level IPOL database. In order to get a fair comparison, it is also necessary
to run the NLM-P and NLM-Pa algorithms on another database containing a set of images disjoint
to the IPOL set, on which parameters estimation has been performed. The Volume 3: Miscellaneous
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set from the USC-SIPI Image Database [26] has been chosen because it includes some standard test
images, such as House (record ID 4.1.05), Mandrill (4.2.03) and Lena (4.2.04). In what follows, the
Miscellaneous Volume of the USC-SIPI Image Database is shortened by USC-SIPI. It contains 44
images (16 color and 28 monochrome) of very different nature and far away from the IPOL set, such
as old photographs and test patterns. The PSNR curves (average on 440 denoised images) for the
USC-SIPI database is given in Figure 3.

It is remarkable that PSNR curves on the USC-SIPI database are very similar to the ones with
IPOL databases. This indicates that the computed optimal parameters are robust to image variation.
Another indication confirming the relevance of these optimal parameters is in the convex and regular
shape of the NLM-P and NLM-Pa curves. In contrast, the few irregularities that can be noted in
NLM-B curves suggest that the parameters given in [4] are suboptimal in some standard deviation
intervals, with respect to the PSNR criterion. One reason of the curves regularity is in the large
PSNR averaging done on images of the database. However the curves regularity remains quite good
on a single image, see Figure 4 where are plotted PSNR curves for the standard Lena image (record
# 4.2.04 in the USC-SIPI database; remember that this image is not in the database used to compute
optimal NLM-P and NLM-Pa parameters).
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Figure 1: Average PSNR vs noise standard deviation for Color IPOL database.

Let us now compare the performance of the three denoising methods. The experiments confirm
that the Gaussian Euclidean patch distance (9) does not bring much compared to the Euclidean
one (11), see Figure 5 where average PSNR differences between NLM-Pa and NLM-P are drawn.
The difference between NLM-B and NLM-Pa is plotted in Figure 6. In agreement with the text
from [4] quoted above, NLM-B presents better PSNR than NLM-P/NLM-Pa when the noise standard
deviation is greater than 3 (USC-SIPI), 5 (Color IPOL) or 15 (Gray-level IPOL). As expected the
visual quality of the images is so similar that it is hard to notice any difference, see Figure 7 where the
noise standard deviation is 20. At most we can remark that the NLM-P/NLM-Pa restored images
appear a little bit more blurry that the NLM-B. By cons, a bit of plum on the back of the hat
disappeared on the NLM-B denoised image while it is still discernible on NLM-P/NLM-Pa ones.
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Figure 2: Average PSNR vs noise standard deviation for Gray-level IPOL database.
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Figure 3: Average PSNR vs noise standard deviation for USC-SIPI database.
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Figure 4: Average PSNR (over 10 noise realizations) vs noise standard deviation for the Lena image
(record # 4.2.04 in USC-SIPI database).

Even for very high noise, where the PSNR difference between NLM-B and NLM-P/NLM-Pa is the
largest, it remains difficult to notice any difference in visual quality, see Figure 8.
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Figure 5: Average PSNR difference (NLMPa - NLMP) vs noise standard deviation.
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Figure 6: Average PSNR difference (NLM-B - NLMPa) vs noise standard deviation.

In order to compare the speed of NLM-B, NLM-P and NLM-Pa, we consider the total amount
of CPU-time5 spent by the denoising process alone (therefore excluding input/output to read and
write images on disk as well as the generation of the noisy image). Note that this CPU-time does
not represent the elapsed real time (wall clock) taken from the start of the process until the end: as
all algorithms are implemented using parallel processing, on a multi-core computer the elapsed real
time would be approximately the CPU-time divided by the number of used CPU (provided that no
other program is running at the same time). Figure 9 gives the CPU-time spent on average on the
Color IPOL database while Figure 10 is for the Gray-level IPOL database. Figure 11 displays the
ratio of the CPU-time between NLM-B and NLM-Pa with the SIL algorithm. We first remark that
on the Color IPOL database, the SIL algorithm is faster than the basic one in case of high noise only.
The reason is simply in the optimum value of d?s = 1 for σ ≤ 46: for such a tiny patch it is useless
to develop fast patch distance computation. The situation differs for NLM-Pa with grayscale images
where d?s ≥ 3. Nevertheless, the increase in speed of the SIL algorithm compared to the basic one
never exceeds the factor 4.5. However it should be noted that the speed increase may be much more
important for NLM variants where the recommended patch size is greater than the maximum value of
d?s = 4 obtained here, see for example [14]. In the experiments the NLM-B algorithm appears much
slower than NLM-P/NLM-Pa, with a CPU-time ratio between 6 (Color IPOL database, σ = 25)
and 49 (Gray-level IPOL database, σ = 83). This may seem surprising in view of [1] (Section 5.5.2)
where the blockwise NLM version is presented as a way to reduce the complexity of the pixelwise
NLM. The reason is in the block overlapping that is not lowered in the NLM-B implementation [4]:
using fewer blocks in the aggregation procedure would reduce the computation time, but probably
also the denoising performance. Another element to explain the difference in speed between NLM-B
and NLM-P/NLM-Pa is in the search window size, given by the parameter Ds. In the textbook case

5See http://www.gnu.org/software/libc/manual/html_node/CPU-Time.html. Processors used to perform the
experiments were Intel Xeon L5640. All programs were compiled with OpenMP multithreading and all compiler
optimizations turned on.
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Figure 7: Visual comparison of parameter-free denoising algorithms applied on Lena image (σ = 20;
zoom on a part but PSNRs are computed on the whole image; in this experiment the noise realization
is the same for all of the three denoising algorithms). From left to right and top to bottom: original
u; NLM-B (PSNR=31.90); NLM-P (PSNR=31.61); NLM-Pa (PSNR=31.61).

where σ = 20 and for the Gray-level IPOL database, the speed ratio reaches almost 18 while the patch
size is larger for NLM-Pa (d?s = 3 corresponds to a patch size of 7× 7) than for NLM-B (patch size
of 3× 3). On the other hand, the search window size is only 11× 11 for NLM-Pa where it is 21× 21
for NLM-B. In fact, whatever the database and the noise standard deviation, the optimal search
window size for NLM-P and NLM-Pa is always less than or equal to the one of NLM-B. Though one
can not compare them precisely (the algorithms being slightly different), this small optimal size is
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Figure 8: Visual comparison of parameter-free denoising algorithms applied on Lena image (σ = 60;
zoom on a part but PSNRs are computed on the whole image; in this experiment the noise realization
is the same for all of the three denoising algorithms). From left to right and top to bottom: original
u; NLM-B (PSNR=27.18); NLM-P (PSNR=26.43); NLM-Pa (PSNR=26.43).

consistent with that given in [19] and the study confirms the common overestimation of the search
window size. One may hope that the proposed fast pixelwise NLM implementation combined with
optimal parameters giving a reasonable search window size will contribute to reconsider the original
NLM scheme, usually considered as a slow denoising method.
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Figure 9: Total amount of CPU-time used by the denoising processes vs noise standard deviation:
average over the Color IPOL database.
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Figure 10: Total amount of CPU-time used by the denoising processes vs noise standard deviation:
average over the Gray-level IPOL database.
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Figure 11: CPU-time ratio NLM-B/NLM-Pa (SIL algorithm) vs noise standard deviation for Color
IPOL and Gray-level IPOL databases.

5 Source Code

The source code associated to this publication is available at the IPOL webpage6. It corresponds to
an ANSI C (C89) implementation of Algorithm 1 and Algorithm 5. If available it uses the OpenMP
3.0 API to allow parallel computation. The main difference between the pseudo-code and the source
code is in the way tables and in particular images are addressed. Indeed, the computer memory is a
one-dimensional array of words and multidimensional arrays have to be addressed as one-dimensional
ones. This is a very common constraint in image processing and the reader should not be confused
by the necessary adaptation, including pointer manipulation to speed up array indexing. In the
following is detailed the way the L2 array is addressed in the SIL algorithm, since it raises the
question of which sum of lines has to be recorded.

5.1 Patent Warning

As the NLM denoising scheme may be covered by the European patent [2], part of the source code
may use algorithms possibly linked to the patent. This source code is made available for the exclusive
aim of serving as scientific tool to verify the soundness and completeness of the algorithm description.
Compilation, execution and redistribution of the source code may violate exclusive patents rights in
certain countries. The situation being different for every country and changing over time, it is the
responsibility of the reader to determine which patent rights restrictions apply before compiling,
using, modifying, or redistributing source code files.

6https://doi.org/10.5201/ipol.2014.120
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5.2 Implementation of Fast NLM-Pa Using Sums of Invariant Lines

The pseudo-code of Algorithm 5 does not show how is managed the L2 array that records weighted
quadratic distances between patches V (x) and V (x + t), denoted by L2

K(x, t, z2). Two points are
important to understand the chosen implementation: which samples are recorded in L2 and how the
shift is performed along the line axis.

• The main loop is on pixels x = (x1, x2) ∈ Ω to be denoised and these pixels are scanned from
top to bottom and left to right, so that the inner loop on line x2 is done after the inner loop
on column x1. Thus, except when the pixel x is on the first line of the image (x2 = 0 case), its
predecessor in the scan is x − (0, 1). Inside the main loop, values of {L2

K(x, t, z2)} have to be
recorded for y = x + t ∈ Ωx and z2 ∈ [[−ds,+ds]] and one gets D2d samples. Computation of
these values requires knowledge of {L2

K(x − (0, 1), t, z2)} for y = x − (0, 1) + t ∈ Ωx−(0,1) and
z2 ∈ [[−ds,+ds]] and they were those that were calculated at the previous iteration x − (0, 1).
Thus, only the parity of x2 has to be indexed and the size of the L2 array is then of 2D2d
samples. The correspondence between L2 values and L2

K function values is the following:
L2
K(x, t, z2) = L2[(x2%2)×D2 × d+ (y2 − x2 +Ds)×D × d+ (y1 − x1 +Ds)× d+ z2] where

% is the integer modulo operator. Note that y is not indexed by its absolute position in the
plane Ω but by its relative position t+ (Ds, Ds) with respect to x.

• Looking more closely at how previously computed values of L2 at x−(0, 1) are used to compute
values at x, equations (23) and (24) tell us that a shift of one z2-line down has to be performed
on the L2 array when one goes from a pixel x to the next, for the same relative position of y.
This can be easily done during the sum of invariant lines by updating the L2 array following
Equation (23) that can be written in pseudo-code

L2
K(x, t, z2)← L2

K(x− l, t, z2 + 1). (28)

5.3 Lookup Table for Fast Computation of Exponential Function

Calculation of NLM-weights (12) and (5) from patches distance uses the computationally intensive
exponential function x ∈ R+ 7→ e−x. As it is not essential to get the NLM-weights with a high
accuracy, one may accelerate the code using a Look-Up-Table (LUT). This LUT is an array that
holds a set of precomputed values (e−xn)n, where the (xn)n are uniformly sampled. When a particular
value of e−x is wanted, the two closest values e−xn and e−xn+1 (xn ≤ x ≤ xn+1) recorded in the LUT
are read to estimate e−x, using a linear interpolation. Such a LUT is part of the C++ code published
in [4] to implement NLM-B and it is also used in the present C code to implement NLM-P/NLM-Pa.
The precision of the estimation is given by the sampling period (that is, by the interval between two
adjacent samples) and it has been tuned so that denoised images in the PNG output format (see
below) would be identical, when using the original exponential function or the estimation with the
LUT.

5.4 How Experiments Were Performed

The experiments reported in Section 4 were conducted using the reviewed C code as well as the
C++ code published in [4], without any modification but the inclusion of functions needed to get
and print the CPU-time. The optimization process and the presentation of results have required
some additional code, written in Bash scripts7 that are not included into this publication. As

7http://en.wikipedia.org/wiki/Bash_%28Unix_shell%29.
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the input/output images of the C and C++ codes are in PNG format8, PSNR are computed on
images with channel’s values being integers (between 0 and 255) even though the denoising algorithm
produces images with floating-point values. Therefore, results may slightly differ if simulations are
redone by bypassing the PNG format. The alternative of a PSNR computation done before channel’s
values thresholding would have led to a result that does not accurately reflects the observed images.

6 Online Demo

An online demo running the source code is available at the IPOL webpage9, with an interface similar
to that of the NLM-B demo [4].

Inputs are the noise-free image u (a grayscale or a 3-planes color image) and the standard deviation
σ of the added noise. The user may upload its own image or may choose any of the available images
on the demo page. The algorithm may be applied on a subpart of the image, by clicking on two
opposite corners in the displayed image. In order to keep a simple interface, the demo does not allow
to pass options to the program. Therefore, the applied algorithm is always NLM-Pa with the SIL
implementation (Algorithm 5). Outputs are the noisy image v and the denoised one ũ. The PSNR
as well as the RMSE (Root-Mean-Square Error) between u and ũ are displayed.

The user who wishes to select options, for example to run NLM-P or the basic implementation
(Algorithm 1), should compile the source code (see Section 5) and run the program from its own
computer.
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