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Abstract

We consider the problem of decomposing an image into a cartoon part and a textural part. The
geometric and smoothly-varying component, referred to as cartoon, is composed of object hues
and boundaries. The texture is an oscillatory component capturing details and noise. Varia-
tional models form a general framework to obtain u + v image decompositions, where cartoon
and texture are forced into different functional spaces. The TV-L1 model consists in a L1 data
fidelity term and a Total Variation (TV) regularization term. The L1 norm is particularly
well suited for the cartoon+texture decomposition since it better preserves geometric features
than the L2 norm. The TV regularization has become famous in inverse problems because it
enables to recover sharp variations. However, the nondifferentiability of TV makes the under-
lying problems challenging to solve. There exists a wide literature of variants and numerical
attempts to solve these optimization problems. In this paper, we present an implementation
of a primal dual algorithm proposed by Antonin Chambolle and Thomas Pock applied to this
image decomposition problem with the TV-L1 model. A thorough experimental comparison is
performed with a recent filter pair proposed in IPOL for the cartoon+texture decomposition.

Source Code

The source code and the online demonstration are accessible at the IPOL web part of this
article1.

Keywords: cartoon texture decomposition; total variation; image denoising

1 Introduction

In what follows, we assume that a grayscale (respectively color) image can be represented by a
function f : (x, y) ∈ Ω −→ R (respectively R3) where Ω is an open subset of R2, typically a
rectangle or a square. We assume that an image f is defined on a continuous domain of R2. We
get the continuous image by interpolating its corresponding digital image (defined on a discrete set
of pixels). We are interested in decomposing f into two components f = u + v via a variational
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Cartoon + Texture Image Decomposition by the TV-L1 Model

problem. The image u represents the cartoon or geometric (piecewise-smooth) component of f and
v the textured component that captures essentially the oscillatory patterns and the noise.

Following the formalism developed by Le and Vese [18], the general framework in order to de-
compose an image into u+ v is given by Meyer’s models [21]

inf
(u,v)∈X1×X2

{F1(u) + λF2(v) : f = u+ v} , (1)

where F1, F2 ≥ 0 are functionals and X1, X2 are spaces of functions or distributions such that
X1 = {u : F1(u) <∞} and X2 = {v : F2(v) <∞}. The constant λ > 0 is a tuning parameter. Many
problems in imaging can be represented by the model (1), by an appropriate choice of F1 and F2.
In our case, we are looking for two spaces X1 and X2, and two corresponding functionals F1 and F2,
such that if u is cartoon and v is texture, we have F1(u) << F2(u) and F1(v) >> F2(v). The texture
components must be penalized by F1 and not by F2, and vice-versa for the cartoon components.

The algorithms proposed to solve this problem differ on the choices for X1, X2, and F1, F2. A
good choice for F1 is the total variation of u, that tends to involve constant regions and permits sharp
edges, that are necessary for the cartoon part. It remains to discuss what space X2 would model the
oscillatory (textural) part. We refer to Table 1, taken from Buades et al. [4], and its legend, which
presents the main models. This table extends the model classification outlined by Aujol et al. [3],
and adopts the same terminology.

Minimized energy or filters Name Reference∫
|Du|2 +H1(Ju) +

∫
|v|2 SBV − L2 [22]∫

|Du|+
∫
|v|2 TV − L2 (ROF) [28]∫

|Du|+
∫
|v| TV − L1 here , [3, 17, 36]

∫
|Du|+ inf~g∈L∞,v=div~g ‖~g‖L∞ TV − div(L∞) [21]∫

|Du|+ ||v||H−1 TV-H−1 [26]∫
|Du|+ inf~g∈BMO,v=div~g ‖~g‖L∞ TV-div(BMO) [21, 18, 13]∫

|Du|+ ||v||Ḃ−1
∞,∞

TV-Besov [21, 14, 2]

∫
|Du|+

∫
|K ∗ v|2 TV-Hilbert [3]∫

|Du|2 + ||v||2H−1 H1-H−1 [4] and [29]

u = wLσ ∗ f + (1− w)f nonlinear filter pair [4] and [5]

Table 1: Table of all f = u + v = cartoon + texture models in approximate chronological order. These
models are divided in five groups. The first group contains the classic BV or SBV +noise models. The
second group starting with Meyer’s model introduces a key new feature: the norm of the oscillatory part
v decreases when v oscillates more. This is obtained by putting a norm on v that is actually a norm on
a primitive of v. The TV-H−1, TV-div(BMO) and TV-Besov models follow the same pattern. The third
group simplifies the panorama by pointing out that the norm of a primitive of v is much easier to compute
by convolution with a filter K (in fact the TV-H−1 model also belongs to that group). The last row is the
nonlinear filter proposed by Buades et al. [4], which takes the best of each worlds by using BV, but relying
mainly on a previous pair of linear high-pass and low-pass filters. We shall compare here our implementation
of the TV-L1 method to this fast filter, whose implementation was published in IPOL [5].
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Let us recall the decomposition obtained by the Rudin, Osher, and Fatemi (ROF) total variation
(TV) minimization model [28] for image denoising. Their functional is convex and therefore amenable
to efficient minimization. The variational model is

inf
(u,v)∈BV (Ω)×L2(Ω)

{∫
Ω

|Du|+ λ‖v‖2
L2(Ω), f = u+ v

}
, (2)

where ∫
Ω

|Du| = sup
{∫

Ω

u div~φ dx, ~φ ∈ C1
0(Ω,R2), ‖~φ‖∞ ≤ 1

}
denotes the total variation of u in Ω, also denoted by TV (u) or by |u|BV (Ω). The component u

belongs to the space of functions of bounded variation BV (Ω) =
{
u ∈ L1(Ω) :

∫
Ω
|Du| <∞

}
.

The space BV penalizes oscillations (such as noise or texture), but allows for piecewise-smooth
functions, made of homogeneous regions with smooth contrasted boundaries. Since almost all level
lines (or isolines) of a BV function have finite length, the BV space is considered adequate to model
images containing shapes.

The bibliography on algorithms minimizing the ROF functional and its multi-scale variants (Tad-
mor et al. [31], Strong et al. [30]) is rich (Aubert et al. [1], Vese et al. [33], Green [16], Osher et al. [25]).
Hybrid models with wavelets are described in the papers by Malgouyres [20] and Lintner et al. [19].

We present in this paper an implementation of the TV-L1 model, where the L2 norm is replaced
by the L1 norm. Non differentiable data like L1 terms were inaugurated by Nikolova [23], and then
studied by Chan and Esedoglu [9]. Many aspects of the TV-L1 model were covered in the literature:
applications to outliers and impulse noise removal (Nikolova [24]), study of the TV-L1 model from a
geometric point of view (Duval et al. [11], Yin et al. [37]), connection with mathematical morphology
(Darbon [10]) and cartoon-texture decomposition (Aujol et al. [3], Haddad [17], Yin et al. [36],
Chambolle and Pock [7]). The TV-L1 model is particularly well adapted to cartoon + texture
decomposition. As noted by Duval et al. [11], TV-L1 kills small details and high curvatures and
makes a thresholding on the ratio perimeter/area. The v part contains objects with fine granulometry,
whereas u contains objects with coarse granulometry, which ensures informally that TV (u)� ||u||1
and TV (v)� ||v||1.

Let us review some existing methods for solving the TV-L1 problem. The first class of methods
is based on smoothing the TV term :

TV (u) '
∫

Ω

√
|Du|2 + ε2.

We can cite the linearized gradient method proposed by Vogel and Oman [34]. It consists in solving
the Euler-Lagrangian equation via a fixed-point equation, which implies to solve a linear system in
each iteration. Another smoothing technique is the half-quadratic regularization approach [15], which
is applied to the TV-L1 problem in the paper by Chan and Liang [8].

Another class of algorithms is based on the augmented Lagrangian method (ALM), which is ap-
plied to TV-L1 restoration by Zhang and Tai [35]. A variant is the alternating direction method
(ADM) [32]. The main idea of ADM is to reformulate a TV problem as a linear equality con-
strained problem where the objective function is separable and then minimize its augmented La-
grangian function. An online implementation of ADM is available at http://www.caam.rice.edu/

~optimization/L1/RecPF/. A Matlab implementation of Chambolle’s primal dual algorithm ap-
plied to image decomposition with a stationary noise assumption [12] is also available at : http:

//www.math.univ-toulouse.fr/~weiss/PageCodes.html.
The rest of the paper is organized as follows: in Section 2, we present Chambolle’s primal dual

algorithm applied to the cartoon+texture decomposition problem and discuss the role of the parame-
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Cartoon + Texture Image Decomposition by the TV-L1 Model

ters. In Section 3, we present experimental results and compare them with those obtained by Buades
et al. [5].

2 Chambolle-Pock Algorithm

2.1 The General Formulation in Finite Dimension

Total variation minimization is a convex variational method that plays an important role in imaging
as it allows for sharp discontinuities in the solution. However, it is known to be difficult to minimize
due to the non-smoothness of the objective. First, we present the general formulation of the problem
in finite dimension (we will therefore give a finite dimensional discretization of all operators in the
next section).

Let X ,Y be two finite-dimensional real vector spaces equipped with an inner product 〈·, ·〉 and

norm || · || = 〈·, ·〉 12 . Following the formalism of Chambolle and Pock [7], let F : Y −→ [0; +∞[
and G : X −→ [0; +∞[ be convex, lower-semicontinuous (l.s.c) functions. F ∗ denotes the convex
conjugate of the convex l.s.c. function F . We recall that the convex conjugate is defined by F ∗(y) =
sup
x∈Y
{〈x, y〉 − F (x)}.

Let K : X −→ Y be a linear operator with induced norm

||K|| = sup {||Kx|| : x ∈ X with ||x|| ≤ 1} . (3)

The general problem we aim at solving, which will be referred as the primal problem, is

inf
x∈X

F (Kx) +G(x). (4)

Because of Fenchel Rockafellar’s duality (see Rockafellar [27]), the corresponding dual problem is

sup
y∈Y
−G∗(−KTy)− F ∗(y), (5)

where KT denotes the transposed of K. There is no duality gap, therefore (4) = (5).
By using the fact that F (x) = (F ∗)∗(x) = sup

y
〈y, x〉 − F ∗(y), we can replace F (Kx) =

sup
y
〈y,Kx〉 − F ∗(y) in the primal problem, which yields the primal-dual problem

inf
x∈X

sup
y∈Y

G(x) + 〈y,Kx〉 − F ∗(y). (6)

We recall that by definition the subdifferential of a convex and proper function F : X → R is the
set-valued operator ∂F : X → 2X whose value at x ∈ X is

∂F (x) = {u ∈ X : ∀z, F (z) ≥ F (x) + 〈u, z − x〉} . (7)

If F is differentiable at x then ∂F (x) = {∇F (x)}. A point x∗ is a minimizer of F if and only if
0 ∈ ∂F (x∗).

We assume that the problems (4), (5) and (6) have at least a solution (x̂, ŷ) ∈ X × Y . For a
given y, we get from equation (6) that 0 ∈

(
∂G(x̂) +KTy

)
⇐⇒ −(KTy) ∈ ∂G(x̂). For a given

x, we get from equation (6) that 0 ∈ (−∂F ∗(ŷ) +Kx) ⇐⇒ Kx ∈ ∂F ∗(ŷ). With the two previous
relationships, a solution (x̂, ŷ) satisfies:

Kx̂ ∈ ∂F ∗(ŷ)

−(K∗ŷ) ∈ ∂G(x̂),
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where ∂F ∗ and ∂G are the subgradients of the convex function F ∗ and G. We also suppose that F and
G are “simple” functions in the sense that their proximal operators have a closed-form representation

ProxγG(x) := argmin
z

1

2
||x− z||2 + γG(z) = (Id + γ∂G)−1(x), (8)

where γ is a step-size and the last equality comes from the definition of the subdifferential.

2.2 Discrete Setting

We consider an image of size M × N : (ui,j)1≤i≤M, 1≤j≤N . Let X = RMN be a finite dimensional
vector space equipped with a standard scalar product

〈u, v〉X =
∑
i,j

uijvij.

The gradient ∇u belongs to the vector field Y = X ×X . In this section and in the rest, without
risk of ambiguity we will continue writing ∇ and div for the discrete operators associated with
gradient and divergence. For discretization of ∇ : X → Y , we use standard finite differences with
Neumann boundary conditions

(∇u)i,j =

(
(∇u)1

i,j

(∇u)2
i,j

)
,

where

(∇u)1
i,j =

{
ui+1,j − ui,j if i < M
0 if i = M

, (9)

(∇u)2
i,j =

{
ui,j+1 − ui,j if j < N
0 if j = N .

We also define a scalar product in Y , for all p = (p1, p2) and q = (q1, q2) by

〈p, q〉Y =
∑
i,j

p1
i,jq

1
i,j + p2

i,jq
2
i,j.

We define the discrete divergence operator div p : Y −→ X , as the adjoint of the gradient operator
div = −∇∗, defined through the identity

〈u, div〉X = −〈p,∇u〉Y .

It is easy to check that with this definition,

(div (p))i,j =


p1
i,j − p1

i−1,j if 1 < i < M
p1
i,j if i = 1
−p1

i−1,j if i = M
+


p2
i,j − p2

i,j−1 if 1 < j < N
p2
i,j if j = 1
−p2

i,j−1 if j = N .
(10)

2.3 Application to the TV-L1 Model

In the discrete setting, the TV-L1 model reads as:

min
u
λ||u− g||1 + ||∇u||1, (11)
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where g is the original image, and the solution of this problem u∗ will be the cartoon part. The discrete

L1 norm is defined by ||u||1 =
∑

i,j |uij| and for a vector field ||∇u||1 =
∑

i,j

√
((∇u)1

ij)
2 + ((∇u)2

ij)
2.

We rewrite the problem in the standard form min
u

F ◦ K(u) + G(u) with G(u) = λ ||u − g||1,

F (u) = ||u||1 and K = ∇.
First, let us calculate the convex conjugate of the function F (x) = ||x||1, where x ∈ Rd. By

definition,

F ∗(y) = sup
x∈Rd

{〈x, y〉Rd − ||x||1}

= sup
x∈Rd

{
d∑
i=1

xiyi − |xi|

}
.

If there exists k0 such as yk0 > 1 (respectively yk0 < −1), then we have F ∗(y) → +∞ when
xk0 → +∞ (respectively xk0 → −∞). Hence, to have a finite objective, we have the condition

|yi| ≤ 1,∀i ≤ d. Moreover, we have under this condition
d∑
i=1

xiyi − |xi| ≤
d∑
i=1

xi − |xi| ≤ 0, and the

supremum is obtained when x = 0Rd . We can thus write

F ∗(y) = ι||.||∞≤1(y), (12)

where ιC denotes the indicator function of a convex set C

ιC(x) =

{
0 if x ∈ C
∞ otherwise.

(13)

F and G being convex, l.s.c. and simple functions, the conditions of Section 2.1 are met. Therefore
we can derive the primal dual problem

min
u

max
p
{ G(u) + 〈 ∇u, p〉 − F ∗(p)} = min

u
max
p

{
λ ||u− g||1 + 〈 ∇u, p〉 − ι||.||∞≤1(p)

}
= min

u
max
p

{
λ ||u− g||1 − 〈 u, div p〉 − ι||.||∞≤1(p)

}
,

where we have used for the last equality that the adjoint operator of ∇ is −div.
Chambolle’s primal-dual algorithm solves the optimization problem with an alternate minimiza-

tion scheme, by applying at each step the two proximal operators ProxσF ∗ and ProxτG. A direct
calculation (Chambolle and Pock’s paper [7], p.28) leads to

ProxσF ∗(p̃) = (Id + σ∂F ∗)−1(p̃) =
p̃ij

max(1, |p̃ij|)
, (14)

and

ProxτG(ũ) = (Id + τ∂G)−1(ũ) =


ũij − τλ if ũij − gij > τλ
ũij + τλ if ũij − gij < −τλ
gij if |ũij − gij| ≤ τλ.

(15)

Each step uses a fixed-point iteration. If G a “simple” function (namely we know its proximal
operator), then we have the fixed point equation

x∗ ∈ argmin
x

F (x) +G(x)⇐⇒ 0 ∈ ∂F (x∗) + ∂G(x∗)

⇐⇒ (x∗ − γ∂F (x∗)) ∈ x∗ + γ∂G(x∗)

⇐⇒ x∗ = ProxγG (x∗ − γ∂F (x∗)) .
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We therefore have the iteration

xk+1 = ProxγG (xk − γ∂F (xk)) . (16)

The primal-dual algorithm (Chambolle and Pock [7]) is summarized below. We alternatively
minimize over the two variables p and u with a fixed-point iteration. We refer to their paper [7] for
results of convergence of this algorithm.

Algorithm 1: Cartoon + texture by the TV-L1 model

1: Choose τ, σ > 0, θ ∈ [0, 1]
2: u0 ←− f ∈ X(input image)
3: p0 ←− 0Y
4: ū0 ←− u0

5: for n = 0, . . . , nb iterations do
6: pn+1 = ProxσF ∗(pn + σ∇ūn) applying (14) and (9)
7: un+1 = ProxτG(un + τ div pn+1) applying (15) and (10)
8: ūn+1 = un+1 + θ(un+1 − un)
9: end for

Color images can be handled by processing each channel independently with Algorithm 1.

2.4 The Parameters

The parameters σ and τ are the steps in the iterative scheme. The parameter θ defines the extrap-
olation step. Chambolle and Pock [7] give a proof of convergence under the conditions θ = 1 and
τσL2 ≤ 1, where L2 = ||∇||2 ≤ 8 (for a proof of the last inequality, see Chambolle’s paper [6]). In
the source code, we use the scheme θ = 1 and the parameters τ = σ = 0.35 to satisfy the constraint.
The parameter λ controls the tradeoff between the fidelity term (closeness to the original image) and
the regularization term. The lower λ, the smoother the image. All other parameters being fixed, we
found experimentally that the range [0.01; 2] gives very convincing results. So λ = 0.01 corresponds
to a very strong cartoon regularization and λ = 2 to almost no regularization.

In Figure 1, we display the results for several values of λ. For example, we remark that the tiles
on the tablecloth progressively vanish when λ decreases (i.e. when there is more regularization): this
is exactly what we wanted.

To adjust the number of iterations, we use a stopping criterion with the threshold 10−3 on the
decreasing normalized energy

1

NM
(λ||u− g||1 + ||∇u||1) .

It enables a greater number of iterations for small λ. For example, for the fingerprint image
(Figure 3), 90 iterations are needed for λ = 1 and 220 iterations for λ = 0.1.

3 Experimental Results

We present in this section examples of decomposition and compare them with those obtained by
Buades et al. [4]. We will refer to this algorithm as the nonlinear low pass-high pass filter (NLHF).
And we will refer to the TV-L1 decomposition algorithm by TV-L1. For the definition of the scale
parameter, we refer to their paper [4].
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Figure 1: Influence of λ. First row: original image. Second row: λ = 0.7. Third row: λ = 0.4.
Fourth row: λ = 0.1.
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3.1 A Brief Description of NLHF

The nonlinear low pass-high pass filter (NLHF) for cartoon+texture decomposition proceeds as fol-
lows: for each image point x, a decision is made of whether it belongs to the cartoon part or to the
textural part. This decision is made by computing a local total variation of the image around the
point

LTVσ(x)(u) := Gσ ∗ |∇f |(u), (17)

where Gσ is a Gaussian kernel with standard deviation sigma. This is compared to the local total
variation after a low pass filter has been applied to the image, resulting in an indicator of the relative
reduction rate of LTV.

Edge points in an image tend to have a slowly varying local total variation when the image is
convolved by a low pass filter, whereas there is a strong decay for textural points. According to
this decision for each pixel, the cartoon part keeps a weighted average of the filtered value and the
original value. The texture part simply is the difference between the original image and its cartoon
part.

3.2 Methodology

In order to compare the decomposition results obtained by the NLHF and the TV-L1 algorithms, the
BV-norms of the cartoon parts were equated. We recall that in the discrete setting, the BV-norm of
an image u is defined by

||u||BV = ||∇u||1 =
∑
i,j

√
((∇u)1

ij)
2 + ((∇u)2

ij)
2. (18)

More precisely, the NLHF algorithm was run with the same value of σ as in Buades et al.’s IPOL
implementation [5]. Then the chosen λ for the TV-L1 algorithm was the one giving approximately
the same BV norm for the cartoon part. This choice was performed by dichotomy. In the NLHF
algorithm, the higher σ, the smoother the image and thus the smaller the BV norm of the cartoon
part. So, the BV norm of the cartoon is an decreasing function of σ. On the contrary, for the TV-L1
algorithm, the BV norm of the cartoon is an increasing function of λ.

3.3 Results

In the dolphin image (Figure 2), we see almost no difference in the cartoon part since the original
image is already cartoon-like. In the fingerprint image (Figure 3), the finger edges are better recovered
with the TV-L1 algorithm. We see the same phenomenon with the cactus image (Figure 4), with the
texture square (Figure 8) and the noisy square (Figure 9). So TV-L1 performs better than NLHF
near edges.

The choice of λ depends on the application. For the dolphin image (Figure 2) which is already an
almost perfect cartoon, a small regularization is needed and thus we can choose a large value for λ.
On the contrary for the fingerprint (Figure 3), a large regularization is needed to remove the whole
texture and thus we choose a small λ (for example 0.1).

Image Credits

Barbara standard test image
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Figure 2: Dolphin. First row: original image, cartoon and texture with NLHF (σ = 4). Second row:
TV-L1 algorithm (λ = 1.6).

Figure 3: Fingerprint. First row: original image, cartoon and texture with NLHF (σ = 5). Second
row: TV-L1 algorithm (λ = 0.5). Notice the obviously better separation of cartoon and texture with
TV-L1.
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Figure 4: Cactus. First row: original image, cartoon and texture with NLHF (σ = 5). Second row:
TV-L1 algorithm (λ = 0.6).

Figure 5: Waves. First row: original image, cartoon and texture with NLHF (σ = 4). Second row:
TV-L1 algorithm (λ = 0.7).
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Figure 6: Church. First row: original image, cartoon and texture with NLHF (σ = 5). Second row:
TV-L1 algorithm (λ = 0.7). The cartoon-texture separation is clearly sharper with TV-L1.

Figure 7: Ultrasound image. First row: original image, cartoon and texture with NLHF (σ = 5).
Second row: TV-L1 algorithm (λ = 0.7).
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Figure 8: Texture square. First row: original image, cartoon and texture with NLHF (σ = 3).
Second row: TV-L1 algorithm (λ = 0.8). Remark that the cartoon part is sharper with TV-L1 and
the texture separation better.

Figure 9: Noisy square. First row: original image, cartoon and texture with NLHF (σ = 3). Second
row: TV-L1 algorithm (λ = 0.8). We remark that the TV-L1 gives significantly better results near
edges.
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fazen (Flickr), CC-BY-NC-SA2

djfrank (Flickr), CC-BY-NC-SA3

Cartoon+texture image decomposition (IPOL) [5]
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