
Published in Image Processing On Line on 2013–12–20.
Submitted on 2013–04–30, accepted on 2013–11–21.
ISSN 2105–1232 c© 2013 IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
http://dx.doi.org/10.5201/ipol.2013.90

2
0
1
4
/
0
7
/
0
1

v
0
.5

IP
O
L

a
rt
ic
le

c
la
ss

Analysis and Extension of the Percentile Method,

Estimating a Noise Curve from a Single Image

Miguel Colom1, Antoni Buades2

1 Universitat de les Illes Balears, Spain and CMLA, ENS Cachan, France (miguel.colom@cmla.ens-cachan.fr)
2 Universitat de les Illes Balears, Spain and CMLA, ENS Cachan, France (toni.buades@uib.es)

Abstract

Given a white Gaussian noise signal Nσ on a sampling grid, its variance σ2 can be estimated
from a small w × w pixels sample. However, in natural images we observe Ũ = U + Nσ, the
combination of the geometry of the scene that is photographed and the added noise. In this
case, estimating directly the standard deviation of the noise from w × w samples of Ũ is not
reliable since the measured standard deviation is not explained just by the noise but also by the
geometry of U. The Percentile method tries to estimate the standard deviation σ from w × w
blocks of a high-passed version of Ũ by a small p-percentile of these standard deviations. The
idea behind is that edges and textures in a block of the image increase the observed standard
deviation but they never make it decrease. Therefore, a small percentile (0.5%, for example) in
the list of standard deviations of the blocks is less likely to be affected by the edges and textures
than a higher percentile (50%, for example). The 0.5%-percentile is empirically proven to be
adequate for most natural, medical and microscopy images. The Percentile method is adapted
to deal with signal-dependent noise, which is realistic with the Poisson noise model obtained by
a CCD device in a digital camera.

Source Code

The C++ implementation of the Percentile noise estimator has been peer reviewed and accepted
by IPOL. The source code, the code documentation, and the online demo are available in the
IPOL web page of this article1.

Keywords: noise, noise estimation, percentile, Gaussian noise, homoscedastic noise, signal-
dependent noise, DCT, noise curve

1http://dx.doi.org/10.5201/ipol.2013.90

Miguel Colom, Antoni Buades, Analysis and Extension of the Percentile Method, Estimating a Noise Curve from a Single Image, Image
Processing On Line, 3 (2013), pp. 332–359. http://dx.doi.org/10.5201/ipol.2013.90

http://dx.doi.org/10.5201/ipol
http://dx.doi.org/10.5201/ipol
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://dx.doi.org/10.5201/ipol.2013.90
http://dx.doi.org/10.5201/ipol.2013.90
http://dx.doi.org/10.5201/ipol.2013.90

Analysis and Extension of the Percentile Method, Estimating a Noise Curve from a Single Image

1 Introduction

Most digital images and movies are obtained by a CCD device and the main source of noise is the
so-called shot noise. Shot noise is inherent to photon counting. The value Ũ(i) observed by a sensor
at each pixel i is a Poisson random variable whose mean would be the ideal image. The standard
deviation of this Poisson distribution is equal to the square root of the number of incoming photons
Ũ(i) in the pixel captor i during the exposure time. This noise adds up to a thermal noise and to
an electronic noise which are approximately additive and white.

For sufficiently large values of ũ(i), (ũ(i) > 1000), the normal distributionN
(

Ũ(i),
√

Ũ(i)

)
with

mean Ũ(i) and standard deviation
√

Ũ(i) is an excellent approximation to the Poisson distribution.

If Ũ(i) is larger than 10, then the normal distribution still is a good approximation if an appropriate
continuity correction is performed, namely P(Ũ(i) ≤ a) ' P(Ũ(i) ≤ a + 0.5), where a is any non-
negative integer.

As a rule of thumb, the noise model is relatively easy to estimate when the raw image comes
directly from the imaging system, in which case the noise model is known and only a few parameters
must be estimated. For this, efficient methods are described by Foi et al. [3, 4] for Poisson and
Gaussian noise. The Percentile method [6] does not assume any model for the noise, with the
exception that the variance of the noise depends only on the intensity of the ideal image, since an
estimation that assumes that the noise is not signal-dependent is not realistic. Therefore, the output
of the Percentile method is a noise curve, that is, a function that relates the intensity of the image
to a noise standard deviation. The use of a small percentile makes the algorithm robust to the effect
of textures and edges on the estimation of the noise variance. However, it might happen that for
a certain intensity interval all the samples belong to textures and edges. In that case, the variance
measured is explained by the geometry of the image and not the by noise. In order to minimize that
effect, the noise curves are filtered as explained in section 3.2.

For a review of several noise estimation methods we refer the reader to the work of Lebrun at
al. [6] and Olsen [10].

2 Noise Estimation Method

2.1 Notation and Terminology

This section prepares the detailed description of the noise estimation algorithm given in section 2.2
by fixing its notation and terminology.

• U: the noiseless ideal image.

• Ũ: the noisy input image.

• Nx, Ny: the size of Ũ. Nx and Ny are always odd. If they are not, the leftmost column or the
bottom row are first removed from Ũ.

• Ũc: the discrete noisy image Ũ after cropping (s−1)/2 columns and rows from each of the four
sides of Ũ using the function CROP(s−1)/2, where s is odd. The details of this function are given

in algorithm 1. The size of Ũc is therefore (Nx−(s−1))×(Ny−(s−1)) = (Nx−s+1)×(Ny−s+1).

• R: the operator used to obtain the discrete filter F with support s× s, with s odd.

333

Miguel Colom, Antoni Buades

• F: the discrete filter with support s × s used to high-pass the noisy image, obtained from
operator R.

• F(x, y): the value of the discrete filter F at position (x, y), x ∈ [0, s− 1], y ∈ [0, s− 1].

• ∧: logical conjunction (and operator).

• ∨: logical disjunction (or operator).

• ¬: logical negation (not operator).

• Ũf : the cropped high-passed version of Ũ: Ũf := CROPs−1

[
(Ũ ∗ F)

]
, where ∗ is the discrete

convolution operator:

Ũf (x, y) := CROPs−1

[
(Ũ ∗ F)(x, y)

]
= CROPs−1

[
∞∑

i=−∞

∞∑
j=−∞

Fz(i, j)Ũz(x− i, y − j)

]
=

= CROPs−1

[
s−1∑
i=0

s−1∑
j=0

F(i, j)Ũz(x− i, y − j)

]
, (1)

where Fz(x, y) :=

{
F(x, y), x ∈ [0, s− 1] ∧ y ∈ [0, s− 1]

0 otherwise
extends F with zeros,

Ũz(x, y) :=

{
Ũ(x, y), x ∈ [0, Nx − 1] ∧ y ∈ [0, Ny − 1]

0 otherwise
extends Ũ with zeros,

and the CROPs−1 function removes s − 1 columns or rows at each of the four boundaries of
the filtered image to avoid boundary effects. Since the convolution (Ũ ∗ F)(x, y) is defined

for x ∈ [0, Nx + s − 2] ∧ y ∈ [0, Nx + s − 2], the cropped image Ũf (x, y) is defined for x ∈
[0, Nx − s] ∧ y ∈ [0, Ny − s]. The Fast Fourier Transform (FFT) [2] is used to speed-up the
computation of the convolution; the details are given in section 2.2.1.

• Ũc(x, y): the gray-level intensity of the pixel of Ũc at column x and row y, x ∈ [0, Nx − s],
y ∈ [0, Ny − s].

• Ũf (x, y): the gray-level intensity of the pixel of Ũf at column x and row y, x ∈ [0, Nx − s],
y ∈ [0, Ny − s].

• w: the side of the overlapping w × w pixels blocks W(x, y).

• M : the total number of overlapping blocks. M = (Nx − w − s+ 1)(Ny − w − s+ 1).

• W(x, y): a w×w pixels block in Ũc, W(x, y) = {Ũc(x+ i, y+ j) : i ∈ [0, w−1], j ∈ [0, w−1]}.

• Wf (x, y): a w×w pixels block in Ũf , Wf (x, y) = {Ũf (x+i, y+j) : i ∈ [0, w−1], j ∈ [0, w−1]}.

• Wm: a w × w pixels block in Ũc according to its index m in a list of overlapping blocks

Wm = W(x, y) where y =
⌊

m
Nx−s+1

⌋
, x = m− y(Nx − s+ 1),m ∈ [0,M − 1].

• Wf
m: a w × w pixels block in Ũf according to its index m in a list of overlapping blocks

Wf
m = Wf (x, y) where y =

⌊
m

Nx−s+1

⌋
, x = m− y(Nx − s+ 1),m ∈ [0,M − 1].

334

Analysis and Extension of the Percentile Method, Estimating a Noise Curve from a Single Image

• V: the list of M variances from the blocks {Wf
m}. V[m] corresponds to the variance of the

block Wf
m.

• T: the list of M means from the blocks {Wm}. T[m] corresponds to the mean of the block
Wm.

• IV [n]: the index of the element at the position n in the list V after sorting the elements of V
in ascending order.

• p: the (small) p-percentile.

• σ̂2: biased variance at the p-percentile of V.

• σ̃2: final unbiased variance at the p-percentile of V.

2.2 The Algorithm

2.2.1 Step 1: Pre-filtering the Input Noisy Image

In order to get rid of deterministic tendencies due to signal structure, the image is first pre-filtered
with a high-pass filter F implemented as a discrete stencil with support s×s. This stencil corresponds
to a discretization of a certain operator R, typically a differential operator or a waveform. Convolving
the image with such a filter removes smooth variations inside the blocks, which increases the number
of blocks where noise dominates and on which the variance estimate will be reliable. Mastis proposed
a similar approach [8], where operator F writes as a simple subtraction of the average or median to
each 7×7 block. For the Percentile method a filter based on the DCT with support 7×7 is proposed.
Given an s× s block in the image Ũ at position (x, y), its orthonormal 2D DCT-II is

DCT
(
Ũ(x, y)

)
(i, j) := Qs(i)Qs(j)

s−1∑
nx=0

s−1∑
ny=0

Ũ(x+nx, y+ny) cos

[
π

s

(
nx +

1

2

)
i

]
cos

[
π

s

(
ny +

1

2

)
j

]
(2)

with x ∈ [0, Nx− s− 1], y ∈ [0, Ny− s− 1], i ∈ [0, s− 1], j ∈ [0, s− 1] and QN(k) is the normalization
factor

QN(k) :=


1√
N
, k = 0√
2
N
, k 6= 0.

(3)

Filter F is made by taking the normalized product of cosines that correspond to the highest frequency
[s− 1, s− 1], that is,

F(nx, ny) :=
2

s
cos

[
π

(
nx +

1

2

)
s− 1

s

]
cos

[
π

(
ny +

1

2

)
s− 1

s

]
, (nx, ny) ∈ [0, s− 1]2. (4)

The filter F presented here was empirically proven to give the best results. However, other typical
differential operators can be used, like directional derivatives, the ∆ (Laplace) operator, or its itera-
tions ∆∆, ∆∆∆, all implemented as discrete stencils. Figure 1 shows the discrete stencils associated
to these operators.

The filtered image Ũf is obtained by cropping the discrete convolution, CROPs−1

[
(Ũ ∗ F)(x, y)

]
.

Note that this cropping operation avoids the boundary effects of the convolution. To speed-up the
computation, the Fast Fourier Transform (FFT) algorithm is used:

335

Miguel Colom, Antoni Buades

0 1 0
1 −4 1
0 1 0

 ,


0 0 1 0 0
0 2 −8 2 0
1 −8 20 −8 1
0 2 −8 2 0
0 0 1 0 0

 ,


0 0 0 1 0 0 0
0 0 3 −12 3 0 0
0 3 −24 57 −24 3 0
1 −12 57 −112 57 −12 1
0 3 −24 57 −24 3 0
0 0 3 −12 3 0 0
0 0 0 1 0 0 0


Figure 1: From left to right, the discrete stencils associated with the discrete operators ∆, ∆∆ and
∆∆∆ discrete operators, respectively.

1. Consider the signal

Ũz(x, y) :=

{
Ũ(x, y), x ∈ [0, Nx − s] ∧ y ∈ [0, Ny − s]
0 otherwise.

(5)

Ũz(x, y) is defined for x ∈ [0, Nx + s− 2] ∧ y ∈ [Ny + s− 2].

2. Consider the signal

Fz(x, y) :=

{
F(x, y), (x, y) ∈ [0, s− 1]2

0 otherwise.
(6)

Fz(x, y) is defined for x ∈ [0, Nx + s− 2] ∧ y ∈ [Ny + s− 2].

3. Compute the FFT of Ũz(x, y): FFT[Ũz(x, y)].

4. Compute the FFT of Fz(x, y): FFT[Fz(x, y)].

5. Compute the point-wise product of the FFTs:

FFT[Ũz(x, y)]× FFT[Fz(x, y)].

6. Compute the inverse FFT of the point-wise product:

FFT−1(FFT[Ũz(x, y)]× FFT[Fz(x, y)]).

7. Crop (see algorithm 1) the result to get Ũf , the cropped and low-pass filtered version of the
noisy input image Ũ:

Ũf (x, y) := CROPs−1

[
FFT−1

(
FFT[Ũz(x, y)]× FFT[Fz(x, y)]

)]
. (7)

336

Analysis and Extension of the Percentile Method, Estimating a Noise Curve from a Single Image

Algorithm 1 Crops the boundary of the input image.

1: CROPb - Crops the boundary of the input image.
2: Input I: input image.
3: Input Nx: width of I.
4: Input Ny: height of I.
5: Input b: width of the boundary that will be removed at each of the four sides of I.
6: Output V: the cropped image
7: V = zeros(Nx − 2b,Ny − 2b)
8: for y = b . . . Ny − b− 1 do
9: for x = b . . . Nx − b− 1 do

10: V[x− b, y − b] = I[x, y]
11: end for
12: end for

2.2.2 Step 2: Computing the Sample Variances from Ũf and the Means from Ũ

The size of the filtered noisy image Ũf is Nx − s + 1 × Ny − s + 1 pixels. Therefore, there are
M = (Nx − w − s + 1)(Ny − w − s + 1) overlapping blocks of size w × w pixels. Each overlapping
block is referred to as {Wf

m}, where m is the index of the block, m ∈ {0, 1, . . . ,M − 1}. Many noise
estimation algorithms [5, 7, 9, 12] compute local estimates of the noise variance in small blocks that
are used for a final statistical estimation (median, average, percentile, . . .).

The empirical variance of each block Wf
m is computed as

Var
(
Wf

m

)
:=

1

w2 − 1

w−1∑
x=0

w−1∑
y=0

[Wf
m(x, y)− W̄f

m]2 (8)

where W̄f
m = 1

w2

w−1∑
x=0

w−1∑
y=0

Wf
m(x, y) is the mean of the block. Let V be the list of variances of the

blocks {Wf
m}, V[m] := Var

(
Wf

m

)
. The corresponding means from {Wm} are stored in the list

T[m] = W̄m = 1
w2

w−1∑
x=0

w−1∑
y=0

Wm(x, y), m ∈ {0, 1, . . . ,M − 1}. The mean of each patch will be needed

when extending the method to signal-dependent noise (section 3.1), and therefore is stored at this
stage of the method.

2.2.3 Step 3: Obtaining a (biased) Noise Variance Estimation from V Using p

Once the list V is built a biased noise variance estimation is obtained by the p-percentile. Set
IV [n] := SORTED (V) [n] as the function that given a list of real numbers, sorts them in ascending
order and returns the sorting indices. For example, if n = 0 then IV [0] is the index of the minimum
in the list V and therefore V[IV [0]] is that minimum. In this step, a biased estimation of the variance
is obtained by the small p-percentile and is given by

σ̂2 = V

[
IV

[⌊
p

100
M +

1

2

⌋]]
, (9)

where M is the cardinal of V. We obtain a list of variances IV [n] of V sorted in ascending order,
V[IV [n]] with n ∈ [0,M − 1]. Since in general the variance of the signal (geometry of the image) is
higher than the variance of the noise, small percentiles of V are related more to the noise than to the
signal. To illustrate it, figure 2 shows the noise-free test image computer after adding homoscedastic

337

Miguel Colom, Antoni Buades

Figure 2: Left: Noise-free test image computer (sand ee section 4.1) after adding homoscedastic
white Gaussian noise of σ = 10. Right: pure homoscedastic white Gaussian noise of σ = 10 image.
Both images have the same 704× 469 size.

0 50000 100000 150000 200000 250000 300000 350000
Sample number

0

2000

4000

6000

8000

10000

12000

14000

V
a
ri

a
n
ce

Sorted variances comparison

Image+noise
Noise

Figure 3: Values of V[IV [n]] depending on n using 21× 21 blocks without any filtering in the noise-
free test image computer after adding homoscedastic white Gaussian noise of σ = 10 (red) and for
pure homoscedastic white Gaussian noise of σ = 10 image (green). Only a part of the values is
shown. The estimation in the computer image is only reliable when the percentile of V is small.

white Gaussian noise of σ = 10, and an image of pure homoscedastic Gaussian noise of σ = 10.
Figure 3 shows the values of V[IV [n]] depending on n and using 21×21 blocks without any filtering.
We refer to section 4.1 for the details about how the noise-free images are obtained. Only for small
percentiles the estimation of the variance on the computer image is close to the estimation on pure
noise because of the effect of the image edges and textures. The Percentile method tries to avoid
the effect of edges and textures by considering the variances under a very low percentile of the block
variance histogram.

2.2.4 Step 4: Correcting the Biased Estimation σ̂2 to Obtain the Final σ̃2 Estimation

When a percentile different from the median (p = 0.5) is used, the estimation of the variance obtained
is biased by the percentile. Figure 4 shows the values of V[IV [n]] depending on n using 21×21 blocks
without any filtering in the image of pure white Gaussian noise (figure 2, right). If the percentile is
under the median of the distribution an underestimation of the variance of the noise is obtained; on
the other hand, if it is over the median, the result is an overestimation. The median is attained at
position n = (Nx−w+1)(Ny−w+1)

2
= (704−21+1)(469−21+1)

2
= 153558. Since only a small percentile gives a

338

Analysis and Extension of the Percentile Method, Estimating a Noise Curve from a Single Image

0 50000 100000 150000 200000 250000 300000
Sample number

0

50

100

150

200

250

Va
ria

nc
e

Variance/sample number plot

noisy_g10.png

Figure 4: values of V[IV [n]] depending on n using 21× 21 blocks without any filtering in the image
of pure white Gaussian noise (figure 2, right). If the percentile is under the median one obtains
an underestimated value; if it is above the median, an overestimation. The median is attained at
position n = (Nx−w+1)(Ny−w+1)

2
= (704−21+1)(469−21+1)

2
= 153558.

reliable biased estimation of the noise (see section 2.2.3), the estimation is lower than the real average
block variance and it has to be corrected in order to get an estimation close to the median. The
correction consists of multiplying the biased estimation σ̂ by a factor. This correction only depends
on the percentile, block size and on the chosen operator used to filter the image. Figure 5 shows the
correction Cw,R(p) = (σ̂ − σ̃)w,R vs. the direct estimation σ̂ learned with pure-noise images. The
correction is linear with the observed σ̂. As a matter of fact it can be easily proven that there exists
a constant kw,R such that σ̂ = kw,RCw,R(p) = kw,R(σ̂ − σ̃) and then (kw,R − 1)σ̂ = kw,Rσ̃. As a
consequence,

σ̃ =
kw,R − 1

kw,R
σ̂. (10)

Nevertheless, this constant kw,R is not easy to calculate explicitly, but can be learned from simula-
tions. To obtain it, a large image of 4320×3232 pixels with all pixels set to zero is used. Homoscedas-
tic Gaussian noise with standard deviation σ is simulated and added to this image. Then, the noise is
estimated from the noisy image using 200 bins, with a percentile p ∈ {0.01%, 0.1%, 0.5%, 5%, 10%, 50%},
a pre-filter operator R, which can be chosen between the following: Identity (no filtering), Directional
derivative, Laplace, Laplace (2 iterations), Laplace (3 iterations), Laplace (4 iterations), DCT with
support 7×7, DCT with support 5×5, DCT with support 3×3 or the filter of the article Fast Noise
Variance Estimation [5]. The size of the block is w × w with w ∈ {3, 7, 8, 21}. No curve filtering
iterations are used. The averaged estimation along all the bins gives σ̂.

The Fast Noise Variance Estimation method tries to avoid the influence of image structures (edges
and textures) on the image when estimating the noise. To do it, it detects these structures using an
operator based on the Laplacian and cancels them. It therefore considers two 3×3 Laplacian stencils
L1 and L2 and computes their difference to obtain the noise estimation operator L = 2(L2 − L1).

For example, with p = 0.5%, w = 21 and R = ∆∆∆, this empirical
kw,R

kw,R−1
factor learned on pure

noise is 1.208610869.

The complete algorithmic description of the Percentile method is summarized in algorithm 2.

339

Miguel Colom, Antoni Buades

0 20 40 60 80 100
Direct estimation σ̂

20

15

10

5

0

5

Co
rr

ec
tio

n
C

=
σ̂
−
σ̃

Correction curves for w=21 (Lap_Lap_Lap)

p=0.0001
p=0.0010
p=0.0050
p=0.0500
p=0.1000
p=0.5000

Figure 5: Corrections Cw,R(p) = σ̂ − σ̃ for several different percentiles, with 21× 21 blocks and the
R = ∆∆∆ operator, learnt on pure-noise patches.

Algorithm 2 Percentile noise estimation algorithm.

1: PERCENTILE - Returns the standard deviation of the image noise.
2: Input Ũ: discrete noisy image U after cropping.
3: Input Nx: (odd) width of the image before cropping.
4: Input Ny: (odd) height of the image before cropping.
5: Input F: discrete filter with support s× s.
6: Input s: support parameter of the discrete filter F.
7: Input w: side of the w × w pixels blocks.
8: Output σ̃: estimated standard deviation of the image noise.

9: Ũf = CROPs−1

[
Ũ ∗ F

]
. . Filter Ũ with the discrete filter F according to formula (1).

10: M = (Nx − w − s+ 1)(Ny − w − s+ 1). . Number of overlapping blocks.
11: for m = 0 . . .M − 1 do
12: Wf (x, y) = {Ũf (x+ i, y + j) : i ∈ [x, x+ w − 1], j ∈ [y, y + w − 1]}
13: Wf

m = Wf (x, y) where y =
⌊

m
Nx−s+1

⌋
, x = m− y(Nx − s+ 1),m ∈ [0,M − 1].

14: V[m] = Var
(
Wf

m

)
= 1

s2−1

s−1∑
x=0

s−1∑
y=0

[Wf
m(x, y)− W̄f

m]2. . Compute sample variances of the

blocks.
15: end for
16: IV [n] = SORTED (V) (n) ∀n ∈ [0,M − 1]. . Get ascending sorting indices.
17: σ̂2 = V

[
IV
[⌊

p
100
M + 1

2

⌋]]
. . Get biased variance estimation.

18: σ̂ =
√
σ̂2. . Get biased standard deviation.

19: σ̃ =
kw,R−1
kw,R

σ̂. . Obtain the final unbiased estimation by correcting σ̂.

3 Extensions

3.1 Extension to Signal-Dependent Noise

Most noise estimation methods found in the literature [4, 5, 7, 9, 10, 11, 12] assume that the noise in
the image is additive, signal-independent, and Poissonian–Gaussian. This assumption is not realistic

340

Analysis and Extension of the Percentile Method, Estimating a Noise Curve from a Single Image

because of the physical nature of light and the way a CCD responds to light. It is well-known
that the emission of photons by a body follows a Poisson distribution. This distribution can be
approximated by a Gaussian distribution when the number of photons is large enough. For very
dark regions of the image this assumption does not hold. Let us consider a pixel of the image,
Ũ(x, y), as a Poisson variable with variance and mean U(x, y). The Poisson noise has therefore a
standard deviation of

√
U(x, y). An image is nothing but a noise whose mean would be the ideal

image. This noise adds up to a thermal noise and to an electronic noise which are approximately
additive and white. On a motionless scene with constant lighting, the expected value U can be
approximated by simply accumulating photons for a long exposure time, and then by taking the
temporal average of this photon count. Any noise estimation algorithm with the assumption of
homoscedastic noise is unrealistic. Fortunately, most block-based methods can be easily adapted to
signal-dependent noise.

For a signal dependent noise, a “noise curve” must be established. This noise curve associates
with each image value U(x, y) an estimation of the standard deviation of the noise associated with
this value. Thus, for each block in the image, its mean must be computed and will give an estimation
of a value in U. The measurement of the variation of the block (for example, its variance) will also be
stored. The means are classified into a disjoint union of variable intervals or bins, in such a way that
each interval contains a large enough number of elements. For the Percentile algorithm, the chosen
minimum was 42000 elements/bin. These measurements allow for the construction of a list of block
variances whose corresponding means belong to the given bin. Therefore, it is possible to apply the
Percentile noise estimation algorithm to each set of blocks associated with a given bin. In this way,
an estimation of the noise for the intensities inside the limits of the bin is obtained. Because the
set of bins is disjoint and there is no gap between bins, it is possible to deduce by interpolation a
curve that relates the means of the blocks with their standard deviation, hence obtaining a signal-
dependent noise curve. To choose the intensity value associated with each bin, the median of the
means of all blocks inside each bin is computed. The algorithmic description of the function building
this histogram of block means can be found in algorithm 3. This algorithm works as follows:

1. It takes as input the number of bins that will be used (“bins” variable), the input data (the
variances of the blocks, “data” variable), the associated intensities of the input data (the
means of the blocks, “datal” variable) and the total number of samples (“N” variable). The
algorithm stores at the variable “samples per bin” the integer value of N/bins. In general,
samples per bin = 42000 samples/bin. Since the last bin contains the remaining samples, it
may contain less than samples per bin samples.

2. It returns for each bin b its intensity bounds (“limits begin[b]” and “limits end[b]” variables),
the list of variances that belong to bin b (“data bins[b]” variable) and the list of intensities
(block means) that belong to bin b (“datal bins[b]” variable).

3. For each bin b, the algorithm fills the data bins[b] and datal bins[b] buffers with the variances
and intensities of the blocks, sorted by their mean.

4. The lower and upper intensity bounds of the current bin b are stored into the variables lim-
its begin[b] and limits end[b]. Then, the next bin is processed.

3.2 Filtering the Noise Curve

Optionally, the noise curve obtained on real images can be filtered. Indeed, it may present peaks
when some given gray level interval contains mostly means of blocks belonging to a highly textured

341

Miguel Colom, Antoni Buades

Algorithm 3 Classifying blocks by their means.

CLASSIFY BY MEAN - Splits the input elements into disjoint bins according to the mean of
the elements trying that each bin has the same cardinality.
Input bins: number of bins.
Input data: list of input data elements.
Input N: number of elements/bin.
Input datal: list of means of the input elements.
Output limits begin[b]: the lower intensity bound for bin b.
Output limits end[b]: the upper intensity bound for bin b.
Output data bins[b]: list of elements at bin b.
Output datal bins[b]: list of means of the elements at bin b.

1: samples per bin = bN/binsc
2: limits begin = zeros(bins)
3: limits end = zeros(bins)
4: num elements = zeros(bins)
5: data bins = array(bins)
6: datal bins = zeros(bins)
7: buffer = array(N)
8: bufferl = zeros(N)
9: indices = argsort(datal, N) . Sort data by datal

10: min datal = datal[indices[0]] . Min and max
11: max datal = datal[indices[N-1]]
12: lim0 = min datal
13: elements count = 0
14: bin = 0
15: for idx = 0 . . . N do
16: if idx == N then
17: finished loading = true
18: else
19: lim1 = datal[indices[idx]]
20: finished loading = ¬ (bin == bins - 1) ∧ (elements count ≥ samples per bin)
21: end if
22: if finished loading then
23: data bins[bin] ← buffer
24: datal bins[bin] ← bufferl
25: limits begin[bin] = lim0 . Update limits and number of elements of the bin
26: limits end[bin] = lim1
27: num elements[bin] = elements count
28: lim0 = lim1 . Prepare for the next element
29: bin = bin + 1
30: elements count = 0
31: else
32: buffer[elements count] = data[indices[idx]] . Keep loading...
33: bufferl[elements count] = datal[indices[idx]]
34: elements count = elements count + 1
35: end if
36: end for
37: limits end[bins-1] = max datal

342

Analysis and Extension of the Percentile Method, Estimating a Noise Curve from a Single Image

region. In this case, the measured block variance would be caused by the signal itself and not by the
noise and the noise variance would be overestimated.

Given the i-th control point of the noise curve (µ̂i, σ̂i) a closed intensity interval of radius D
centered at this bin is considered, that is, [µ̂i −D, µ̂i + D]. For each intensity µ inside the interval
(assuming that µ starts at µ̂i −D and is incremented with a step of 0.05 while it is less or equal to
µ̂i +D), consider the interpolated standard deviation that corresponds to each intensity µ. In order
to avoid an excessive interpolation, if µ̂i −D < µ̂0 for the i-th bin, then the radius D is changed to
the value µ̂i− µ̂0. In the same way, if µ̂i +D > µ̂B−1 (where B is the number of bins), then radius D
is set to the value µ̂B−1− µ̂i. Since each µ̂i can be seen as an oscillation (given by the RMSE) around
the ideal value, averaging the noise curve inside the interval [µ̂i −D, µ̂i + D] for each control point
attenuates the oscillations and puts them closer to the ground-truth. Once the oscillations have been
attenuated, it might happen that a control point corresponds to a peak caused by a texture. In that
case, the action taken is to compute the average inside the interval [µ̂i−D, µ̂i +D] and to substitute
the standard deviation µ̂i of the i-th control point by the average only if it is lower than the average
of the intensities in the interval. In practice, this filtering procedure is iterated five times. In the
first three iterations the control points are allowed to go up and down, thus canceling the oscillations
around the ideal value. In the next two iterations the points are only allowed to go down, to attenuate
the overestimation of the noise because of textures. The simple strategy presented here performs
properly for most natural images and in general not more than five filtering iterations are needed to
get a reliable estimation of the noise. The number of iterations was obtained empirically. Applying
more than five iterations does not improve the results significantly and for certain images it could
produce noise curves that are excessively smooth. The radius D = 7 was found empirically, too. The
pseudo-code of the filtering is detailed in algorithm 6. It uses algorithm 5 to interpolate the standard
deviation corresponding to a given intensity. Algorithm 5 uses algorithm 4 to get the corresponding
standard deviation by a simple affine transformation.

Figure 6 shows the noise curve for the test image Lena. The non-filtered curve is drawn with
solid lines and the filtered curve (five iterations) with dashed lines, using D = 7, p = 0.5%, w = 8
and 6 bins. Note that the peak in the blue channel has decreased.

50 100 150 200 250
Intensity

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

St
an

da
rd

 d
ev

ia
tio

n

Noise curve, image "Lena"

Figure 6: Left: test image Lena used to compare the noise curves with and without filtering. Right:
noise curve for Lena. The red, green and blue plots correspond to the noise curves of each color
channel. The non-filtered curve is drawn with solid lines and the filtered curve (five iterations) with
dashed lines, using D = 7, p = 0.5%, w = 8 and 6 bins. The peak in the blue channel is caused by
textures of the image in that particular intensity range. After the filtering, the estimated standard
deviation is lower.

343

Miguel Colom, Antoni Buades

Algorithm 4 Obtaining a corresponding standard deviation by an affine transformation.
AFFINE.
Input (µc, σc): current control point.
Input (µe, σe): endpoint control point.
Input µ: intensity of the control points whose standard deviation is wanted.
Output σ: standard deviation attributed to the intensity µ.

1: ε = 10−6

2: if |µc − µe| < ε then
3: s = 0 . Avoid dividing by zero
4: else
5: s = σc−σe

µc−µe
6: end if
7: σ = (µ− µe)s+ σe return σ

Algorithm 5 Interpolates an affine standard deviation from of the points of the given noise curve.
INTERPOLATION.
Input (µc, σc): known control points.
Input µ: the intensity of the point whose interpolated standard deviation is wanted.
Output σ: the interpolated standard deviation of the point whose intensity is µ.

1: i = argmini (µc[i]− µ|) . Find the nearest control point
2: m = µc[i]
3: if µ < m then . on the right of µ
4: if i = 0 then
5: i = 1 . Treat boundary
6: m = µc[i]
7: end if
8: m1 = µc[i− 1]
9: m2 = m

10: s1 = σc[i− 1]
11: s2 = σc[i]
12: else . on the left of µ
13: N = len(µc)
14: if i ≥ N − 1 then . Treat boundary
15: i = N − 2
16: m = µc[i]
17: end if
18: m1 = m
19: m2 = µc[i+ 1]
20: s1 = σc[i]
21: s2 = σc[i+ 1]
22: end if

return AFFINE(m1, s1,m2, s2, µ)

344

Analysis and Extension of the Percentile Method, Estimating a Noise Curve from a Single Image

Algorithm 6 Filters a noise curve.
1: FILTER CURVE
2: Input (µc, σc): list of control points to be filtered.
3: Input D: radius.
4: Input allow up: allow the points to go up and down. Otherwise, they are only allowed to go

down.
5: Output σoc : returned list filtered standard deviations
6: B = len(µc)
7: σoc ← ∅
8: for b = 0 . . . B − 1 do
9: mu current, std current = µc[b], σc[b]

10: left = mu current−D
11: right = mu current +D
12: if left < µc[0] then . Adjust the diameter for the points near the boundary
13: dist = µc[b]− µc[0]
14: left = mu current - dist
15: right = mu current + dist
16: else
17: if right > µc[B − 1] then
18: dist = µc[B − 1]− µc[b]
19: left = mu current - dist
20: right = mu current + dist
21: end if
22: end if
23: sum window = 0 . Add the interpolated control points inside the interval [left, right]
24: L = 0
25: for µ = left . . . right (with step ∆ = 0.05) do
26: sum window += INTERPOLATION(µc, σc, µ)
27: L += 1
28: end for
29: std new = sum window / L
30: if allow up then
31: std filtered = std new
32: else
33: std filtered = std new if std new < std current else std current
34: end if
35: σoc ← std filtered
36: end for

return σoc

345

Miguel Colom, Antoni Buades

3.3 Discarding Saturated Pixels

When the number of photons measured by the CCD during the exposure time is too high, its output
may get saturated, and therefore underestimated. When the signal saturates the output of the CCD,
the measured variance in the saturated areas of the image is zero. Figure 7 shows an image with some
saturated pixels. If the saturated pixels are taken into account when measuring the noise, the noise

Figure 7: Image ”IMG 1071” with saturated pixels.

curve is not reliable anymore. Figure 8 shows a noise curve obtained from the image in figure 7 when
the saturated pixels are avoided in the noise estimation (left) and when they are used (right). In this
estimation 8 × 8 blocks and 49 bins were used. Since the intensity of the saturated pixels is much
higher than the intensity of most pixels in the image, there is usually a large intensity gap between
the values of normal non saturated pixels and those saturated (from about 600 to approximately
4000 in figure 8) since the over-exposed pixels represent usually outlier values. Even if there are few
pixels with an intensity ranging between 600 and 4000, the noise curve will interpolate the standard
deviation between the curve value at mean 600 and the noise curve value at mean 4000. Of course,
the information given by the noise curve inside this gap is not correct at all. Therefore, it is better
to detect and remove the saturated points before the noise curve estimation. In general, the strategy
used to discard saturated pixels is to avoid the blocks that contain a group of four connected exactly
equal pixels, in any of the channels. This is useful not only to discard saturated pixels, but also to
avoid processing blocks whose pixels have suffered other types of alterations that can be detected by
finding these special blocks. For example, it is well known that when encoding an image with the
JPEG standard using a high compression factor, the coefficients at the high-frequencies of the 8× 8
blocks of the image are set to zero or heavily quantized. This causes many undesired effects, like low
frequency artifacts and blocking patterns. Undue smooth zones can also be created, because of the
quantization of the high frequency coefficients.

In natural images that have not been deeply compressed, the probability of finding a set of four
connected pixels sharing exactly the same value is very low, because of noise and textures. The
pseudo-code and the details on how the pixels should be connected can be found in algorithm 7.

4 Evaluation of the Method

To evaluate the accuracy of the method, several kinds of tests were performed.

• Tests on simulated homoscedastic Gaussian noise using the images of figure 9. In this case

346

Analysis and Extension of the Percentile Method, Estimating a Noise Curve from a Single Image

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Intensity

0

10

20

30

40

50

St
an

da
rd

 d
ev

ia
tio

n

Noise curve for raw image IMG_1071, ch=1. Avoiding saturated pixels

(a) Noise curve estimation avoiding the saturated pixels

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Intensity

0

10

20

30

40

50

St
an

da
rd

 d
ev

ia
tio

n

Noise curve for raw image IMG_1071, ch=1. Using saturated pixels

(b) Noise curve estimation affected by the saturated pixels

Figure 8: Noise curves obtained from the image in figure 7 when the saturated pixels are avoided in
the noise estimation (a) and when they are taken into account (b). Using w = 8, p = 0.5% and 49
bins, blue channel.

Algorithm 7 Removal of equal pixels algorithm.

REMOVAL - Creates a mask of valid pixels.
Input I: input image.
Input Nx: width of I.
Input Ny: height of I.
Input w: block side.
Input num channels: number of channels of I.
Output mask: mask of VALID/INVALID pixels.

1: ε = 10−3

2: for i = 0 . . . Nx − 1 do
3: for j = 0 . . . Ny − 1 do
4: if i < Nx − w + 1 ∧ j < Ny − w + 1 then . Check if the pixel is not too close to the

image boundary
5: for c = 0 . . . num channels - 1 do
6: u = I.get channel(c)
7: pixel status = (INVALID if c == 0 else mask[x,y])
8: if |u[i, j]−u[i+1, j]| > ε∨|u[i+1, j]−u[i, j+1]| > ε∨|u[i, j+1]−u[i+1, j+1]| > ε

then . Look if the 2× 2 block is constant
9: pixel status = VALID . Try to validate pixel

10: end if
11: mask[i, j] = pixel status
12: end for
13: else
14: mask[i, j] = INVALID
15: end if
16: end for
17: end for

347

Miguel Colom, Antoni Buades

we have taken seven and also one bins to classify the blocks according to their means (see
section 3.1).

• Tests on a set of real raw images obtained by a Canon EOS 30D camera (see figure 10). The
procedure explained in section 3.1 was used to get a noise curve. The results were compared
to the ground-truth noise curve of the camera.

• Test on multiscale coherence. The standard deviation of a Gaussian white noise is divided by
two when the image is down-scaled. By down-scaling the image we mean a sub-sampling of
the image where each block of four pixels is substituted by their mean. This test checks if the
measured noise is divided by two at each image after down-scaling.

4.1 Evaluation with Simulated Homoscedastic Noise

In this experiment, homoscedastic noise was simulated and then added to a set of ten noise-free
images. Since the noise is perfectly known a priori, it can be used as a ground truth. One can
therefore compute the RMSE of the standard deviation estimations. Figure 9 shows a set of 704×469
pixels noise-free images that were used in this test. In order to get the noise-free images, we have
applied the following procedure. The pictures were taken with a Canon EOS 30D reflex camera of
scenes under good lighting conditions and with a low ISO level. To reduce further the noise level,
the average of each block of 5 × 5 pixels was computed, reducing therefore the noise by a factor of
5. Since the images are RGB, the mean of the three channels was computed, reducing the noise by
a further

√
3 factor. Therefore the noise was reduced by a 5

√
3 ' 8.66 factor. Finally, the images,

which already had a good SNR before they were processed, can be considered noise-free.

Figure 9: Set of noise-free images used to test the noise estimation algorithm with homoscedastic
noise. From left to right and from top to bottom: bag, building1, computer, dice, flowers2, hose,
lawn, leaves, stairs and traffic. Each image is 704× 469 pixels.

To measure the error made when estimating the standard deviation σ of the simulated noise in
the bin b in the image i, the RMSE along all the bins was used. This RMSE is denoted by E

(1)
i,σ and

it is defined by

E
(1)
i,σ :=

√√√√ 1

|B|

|B|∑
b=1

|σ̂i,b − σ|2, (11)

where |I| is the number of images, i is the image index (1 ≤ i ≤ |I|), |B| is the number of bins, b is
the index of the bin (1 ≤ b ≤ |B|), σ is the standard deviation of the simulated noise and σ̂i,b is the

estimated noise for the image i at the bin b. Table 1 shows the obtained E
(1)
i,σ for each image i and

348

Analysis and Extension of the Percentile Method, Estimating a Noise Curve from a Single Image

each σ of the simulated noise. A new image is added to the set of noise-free images, the flat image,
which is a constant image where all pixels have the value 127. This permits to test the response of
the algorithm to a pure white noise image. It is apparent that the highly textured images create a
significant error, particularly when little noise was added. Estimates of noise below 2 are therefore
obviously clearly unreliable. All in all, the estimate is nevertheless quite reliable for values σ > 5.
Seven bins are used. The last row is the RMSE obtained for a given σ and all the images. It is
denoted by E

(2)
σ and defined as

E(2)
σ :=

√√√√ 1

|B||I|

|I|∑
i=1

|B|∑
b=1

|σ̂i,b − σ|2 =

√√√√ 1

|I|

|I|∑
i=1

(
E

(1)
i,σ

)2
. (12)

Image / E
(1)
i,σ σ = 1 σ = 2 σ = 5 σ = 10 σ = 20 σ = 50 σ = 80

bag 0.74 0.62 0.47 0.37 0.81 0.73 2.26
building1 0.34 0.24 0.55 0.62 0.82 1.20 1.58
computer 0.35 0.36 0.55 0.64 0.86 1.25 3.10
dice 0.12 0.12 0.17 0.24 0.50 1.20 1.68
flowers2 0.15 0.13 0.15 0.27 0.81 1.54 2.82
hose 0.87 0.62 0.49 0.41 0.49 1.37 1.55
lawn 0.99 1.20 0.86 0.64 0.62 1.64 1.90
leaves 1.43 1.11 0.95 0.74 0.70 0.96 1.67
stairs 0.94 0.89 0.66 0.56 0.64 0.89 1.34
traffic 0.45 0.42 0.56 0.58 0.91 1.36 2.23
Flat image 0.02 0.04 0.15 0.10 0.20 1.25 2.63

E
(2)
σ 0.58 0.52 0.51 0.47 0.67 1.22 2.07

Table 1: This table shows the E
(1)
i,σ RMSE after adding simulated noise to the set of noise-free images

(figure 9) with several values of standard deviation σ. The last row is the E
(2)
σ RMSE using the

estimated σ̂i,b of all the images. The parameters used in the experiments are percentile p = 0.005,
block of size 15× 15, DCT filter with support 7× 7 and seven bins.

For completeness, the results corresponding to the estimation using just a single bin are shown
in table 2, although this model of signal-independent noise using a single bin is not realistic at all.

Table 3 shows the obtained E
(2)
σ RMSE depending on the number of the iterations of the noise

curve filter (see section 3.2). Using five filtering iterations seems to be safe for any image with
independence of the standard deviation of the noise, the kind of textures or the number and type of
the edges the image may contain.

4.2 Evaluation Comparing the Noise Curve of the Raw Image with the
Ground Truth

In this evaluation, the noise curve obtained by the algorithm for the raw images in figure 10 (12
bits/channel, ISO 1600, t=1/30s) was compared to the “ground truth” noise curve of the camera for
that ISO. The ground truth was obtained by computing for each pixel the standard deviation of a
large burst [1] of fixed snapshots of the same calibration pattern (figure 11).

To get the ground truth of the camera, we fixed the ISO sensitivity (in this case at ISO 1600)
and used four exposure times, t ∈ {1/30s, 1/250s, 1/400s, 1/640s}. For each exposure time about

349

Miguel Colom, Antoni Buades

Image / E
(1)
i,σ σ = 1 σ = 2 σ = 5 σ = 10 σ = 20 σ = 50 σ = 80

bag 0.71 0.60 0.43 0.32 0.65 0.29 1.22
building1 0.21 0.22 0.29 0.21 0.51 0.55 1.24
computer 0.29 0.25 0.38 0.32 0.08 0.99 0.86
dice 0.11 0.11 0.05 0.08 0.29 1.06 1.24
flowers2 0.13 0.10 0.12 0.03 0.00 0.54 2.03
hose 0.60 0.44 0.28 0.19 0.11 0.29 0.48
lawn 0.68 0.81 0.65 0.50 0.28 0.74 0.39
leaves 1.34 1.10 0.91 0.64 0.51 0.76 0.05
stairs 0.82 0.80 0.59 0.40 0.56 0.38 0.52
traffic 0.32 0.33 0.42 0.21 0.58 0.50 0.34
Flat image 0.02 0.03 0.05 0.05 0.16 0.61 1.93

E
(2)
σ 0.47 0.44 0.38 0.27 0.34 0.61 0.94

Table 2: This table shows the E
(1)
1,σ RMSE after adding simulated noise to the set of noise-free images

(figure 9) with several values of standard deviation σ. The last row is the E
(2)
σ RMSE using the

estimated σ̂1,b of all the images. The parameters used in the experiment are percentile p = 0.005,
block of size 15× 15, DCT filter with support 7× 7 and a single bin.

Image / E
(2)
σ σ = 1 σ = 2 σ = 5 σ = 10 σ = 20 σ = 50 σ = 80

No filtering 0.58 0.52 0.51 0.47 0.67 1.22 2.07
1 iteration 0.57 0.52 0.49 0.44 0.60 1.12 1.84
2 iterations 0.56 0.52 0.49 0.42 0.57 1.07 1.75
3 iterations 0.56 0.51 0.48 0.41 0.55 1.04 1.70
4 iterations 0.55 0.50 0.47 0.39 0.53 1.02 1.68
5 iterations 0.55 0.50 0.46 0.38 0.52 1.00 1.67
6 iterations 0.54 0.49 0.46 0.38 0.51 0.99 1.66
7 iterations 0.54 0.48 0.45 0.37 0.50 0.98 1.65

Table 3: This table shows the obtained E
(2)
σ RMSE values depending on the number of iterations of

the noise curve filtering and the standard deviation of the noise (see section 3.2). The parameters
used are percentile p = 0.005, block of size 15 × 15, the DCT filter with support 7 × 7 and seven
bins. Five iterations is the recommend value, since using more iterations does not improve the result
significantly and it could soften too much the noise curves for certain images.

two hundred pictures of the pattern were taken (see figure 11). After cropping the area of the image
that does not contain the calibration pattern the final size of the raw image was 1352× 1952. Since
each 2 × 2 block of the CFA2 contains one sample of the red channel, two samples of the green
channel and one sample of the blue channel, one of the green channels can be discarded to get a
single color pixel of each 2 × 2 block of the CFA, given an effective size of the color raw image of
676× 976 pixels. Since the position of the camera was fixed when taking the snapshots of the image
and assuming constant lighting, the variance along several samples coming from different images at
the same pixel position could only be explained by the presence of noise. Therefore, it was possible to
measure the mean of a block and the temporal standard deviation along all the snapshots to create
an association mean→standard deviation, that is, a ground truth for camera noise curve, given the

2Color Filter Array.

350

Analysis and Extension of the Percentile Method, Estimating a Noise Curve from a Single Image

Figure 10: Set of raw images used to test the noise estimation algorithm using 8×8 blocks, percentile
0.5%, 49 bins and without any noise curve filtering. The images are raw 12 bits/channel, taken with
a Canon EOS 30D camera, ISO 1600 and exposure time t=1/30s. From left to right and up to
bottom: images 1, 2, 3, 4, 5, 6, 7, and 8.

Figure 11: One of the pictures of the calibration pattern mire used to build the ground truth noise
curve of the camera.

ISO and exposure times. Moreover, since the exposure time only affects the photon count and not the
noise model, it was possible to overlap the noise curves for the four exposure times tested in a single
ground truth noise curve depending only on the ISO parameter (see figure 12). Figure 13 shows an
example of the noise curve obtained with the Percentile method. It matches with the ground truth
quite accurately (see figure 12).

Given an estimated noise curve A of a test image, its control points are the pairs (µ̂A,i,b, σ̂A,i,b) ∈ A
where µ̂A,i,b is the mean intensity for bin b and image i in A and σ̂A,i,b is the corresponding standard
deviation value for bin b and image i in A. In the same way, given a ground truth noise curve G,
its control points are the pairs (µG,v, σG,v) ∈ G. Unfortunately the means of the noise curve A and
those in G do not necessarily coincide; that is, µ̂A,i,b 6= µG,v for most (b, v) pairs. To solve this
problem, instead of using G, a new ground truth curve G̃i is used. This G̃i curve has the same
means µ̂A,i,b as A (and therefore the same number of bins), and its standard deviation values are
obtained by a simple proportionality rule. Therefore, the control points in the new curve G̃i are

(µ̂A,i,b, σ̃Gi,i,b) =
(
µ̂A,i,b,

σG,v+1−σG,v

µG,v+1−µG,v
(µ̂A,i,b − µG,v+1) + σG,v

)
where v is the index of the bin in the

curve G such that µG,v ≤ µ̂A,i,b < µG,v+1 (see figure 14).

The error between the ground truth noise curve G and the test noise curve A for the image i and

351

Miguel Colom, Antoni Buades

0 500 1000 1500 2000 2500
Mean

0

10

20

30

40

50

60

St
an

da
rd

 d
ev

ia
tio

n

Mean noise curve, canon, ISO=1600
R

G1

G2

B

Figure 12: Ground truth of the Canon EOS 30D camera with ISO=1600.

0 500 1000 1500 2000 2500
Mean

0

10

20

30

40

50

60

St
an

da
rd

 d
ev

ia
tio

n

Estimation of raw image #1, ISO 1600, t=1/30s
R

G1

G2

B

Figure 13: Noise curve obtained for the test image #1. Compare it with the ground truth noise
curve in figure 12. Both curves match with small error.

bin b is defined as

E
(3)
G,A,i,b := |σ̃Gi,i,b − σ̂A,i,b| =

∣∣∣∣(σG,v+1 − σG,v)(µ̂A,i,b − µG,v+1)

µG,v+1 − µG,v
+ σG,v − σ̂A,i,b

∣∣∣∣ . (13)

Img. 1 Img. 2 Img. 3 Img. 4 Img. 5 Img. 6 Img. 7 Img. 8
0.910 0.680 0.836 0.850 0.871 0.867 0.779 0.669

Table 4: Values of E
(3)
G,A,i,b measuring the error between the noise curve A obtained for each test

image i (figure 10) and the ground truth curve G for the Canon EOS 30D with ISO 1600. Note that
the values of the intensities in a raw image are expressed in 12 bits and not with the usual 8 bits.
Therefore, these errors should be divided by 16 in order to be compared with those obtained using
8 bits.

To test the average behavior of the algorithm in all the bins of any test image, we define a mean
error function E

(4)
G,A,b as the mean of the E

(3)
G,A,i,b values over the |I| images for each of the |B| bins,

352

Analysis and Extension of the Percentile Method, Estimating a Noise Curve from a Single Image

0 1 2 3 4 5 6
Intensity

0

2

4

6

8

10

12

14

St
an

da
rd

 d
ev

ia
tio

n

(
µ̂A,i,b,σ̂A,i,b

)

(
µ̂A,i,b,σ̃Gi ,i,b

)
(µG,v,σG,v)

(µG,v+1,σG,v+1)

Comparing a noise curve (red) with the ground truth (green)

Ground truth
Tested curve

Figure 14: Checking a noise curve A (red) against the ground truth G (green), where i is the index
of the image, b is the index of the bin, (µ̂A,i,b, σ̂A,i,b) are the control points of the noise curve A,
(µG,v, σG,v) are the control points of G, and σ̃Gi,i,b is the standard deviation value projected from A
into G.

that is,

E
(4)
G,A,b :=

1

|I|

|I|−1∑
i=0

E
(3)
G,A,i,b. (14)

Figure 15 shows the error E
(4)
G,A,b for all the 49 bins of the test images in figure 10 for the first green

channel.

0 10 20 30 40 50
Bin (0...48)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

E
(4

)

G
,A
,b
 e

rr
or

Mean error E (4)

G,A,b
 in all the bins for the 8 test images

Figure 15: Mean error E
(4)
G,A,b for the 49 bins of all the eight tests images in figure 10.

353

Miguel Colom, Antoni Buades

4.3 Evaluation of the Multiscale Coherence of the Result

Consider the down-scaling operator S that tessellates the image into 2×2 pixels blocks, and replaces
each block by a pixel having the mean of the four previous pixels as new value. If Ũ is a discrete
pure Gaussian noise image with standard deviation σ, then S(Ũ) has standard deviation σ

2
. Indeed,

if a block W contains the pixels {u1, u2, u3, u4} each one with variance σ2, the variance of the mean
of W is Var

(
W̄
)

= Var
(
u1+u2+u3+u4

4

)
= 1

16
[Var (u1) + Var (u2) + Var (u3) + Var (u4)] = 1

16
[4σ2] = σ2

4
.

Therefore, the standard deviation is Std(W̄) = σ
2
; the noise has been divided by two. The objective

of this test is to check if the noise estimation algorithm indeed divides the noise by two when the
image is down-scaled several times.

Set: E
(5)
A0,Ak,i,b

=

∣∣∣∣ σ̃A0,i,b

σ̂Ak,i,b

− 2k
∣∣∣∣ =

∣∣∣∣(σ̂A0,i,v+1 − σ̂A0,i,v)(µ̂Ak,i,b − µ̂A0,i,v+1)

σ̂Ak,i,b(µ̂A0,i,v+1 − µ̂A0,i,v)
+
σ̂A0,i,v

σ̂Ak,i,b

− 2k
∣∣∣∣ , (15)

where

• Ak is the noise curve corresponding to the input image i after applying the down-scaling
operator k times. For example, if k = 2 then A corresponds to the curve of the noise estimation
of SS(Ũ).

• i is the image index, for the raw images in figure 10, 1 ≤ i ≤ |I|, where |I| is the number of
images. |I| = 8 images were used.

• b is the bin index, 1 ≤ b ≤ |Bk| where |Bk| is the number of bins of the noise curve at scale k.
For the test images |B0| = 49, |B1| = 12 and |B2| = 3 bins are used.

• v is the index of the bin in the curve A0 such that µ̂A0,i,v ≤ µ̂Ak,i,b < µ̂A0,i,v+1 (see figure 16).

0 1 2 3 4 5 6
Intensity

0

2

4

6

8

10

12

14

St
an

da
rd

 d
ev

ia
tio

n

(
µ̂Ak ,i,b,σ̂Ak ,i,b

)

(
µ̂Ak ,i,b,σ̃A0 ,i,b

)
(
µ̂A0 ,i,v

,σ̂A0 ,i,v

) (
µ̂A0 ,i,v+1,σ̂A0 ,i,v+1

)

Comparing the n.c. at scale k (red) with the same curve at scale 0 (green)

Ground truth
Tested curve

Figure 16: Checking a noise curve Ak at scale k (red) against the noise curve A0 of the same image
at scale 0 (green), where i is the index of the image, b is the index of the bin, (µ̂Ak,i,b, σ̂Ak,i,b) are the
control points of the noise curve of the sub-scaled image, (µ̂A0,i,v, σ̂A0,i,v) are the control points of the
noise curve of the image at scale 0, and σ̃A0,i,b is the standard deviation value projected from Ak into
A0.

354

Analysis and Extension of the Percentile Method, Estimating a Noise Curve from a Single Image

Remark: since the noise should be divided by two when operator S is applied and an ideal noise

estimator is used, the relation
σ̃A0,i,b

σ̂Ak,i,b
between the standard deviation estimations at scale 0 and scale

k (applying k times D) should be equal to 2k. The error E
(5)
A0,Ak,i,b

measures, for the tested noise

estimator, the absolute deviation from the ideal value 2k at each bin. To get a mean estimation of
the error E

(5)
A0,Ak,i,b

along all the test images and bins in figure 10, we define another error function
as

E
(6)
A0,Ak,b

:=
1

|I||Bk|

|I|∑
i=1

|Bk|∑
b=1

E
(5)
A0,Ak,i,b

(16)

Table 5 shows the obtained mean down-scale error E
(6)
A0,Ak,b

for the raw images in figure 10 depending
on the scale k. The measurements are done for one of the green channels of the raw images.

k 1 2 3

E
(6)
A0,Ak

0.158 0.922 3.416

Table 5: Evaluation E
(6)
A0,Ak,b

for the raw images in figure 10 depending on the scale k. The measure-
ments are done for one of the green channels of the raw images.

5 Optimal Parameters

The optimal parameter choice depends on the size of the image. Three possible sizes were fixed:
S0 = 6M , S1 = S0

4
= 6M

4
, S2 = S1

4
= 6M

16
, S3 = S2

4
= 6M

32
and S4 = S3

4
= 6M

128
, where M stands for

megapixels. Table 6 shows the choice of the parameters values according to the size of the image.

Image size Percentile p Block size w × w Pre-filter operator R
S0 0.005 21× 21 DCT supp. 7× 7
S1 0.005 15× 15 DCT supp. 7× 7
S2 0.005 15× 15 DCT supp. 7× 7
S3 0.005 15× 15 DCT supp. 7× 7
S4 0.005 5× 5 ∆∆∆

Table 6: Best percentile p, block size w × w, and pre-filter operator R for the Percentile method
according to the size of the image.

6 Complexity Analysis of the Algorithms

Algorithm 1 creates a matrix of (Nx−2b×Ny−2b) elements and then fills matrix V with Ny−b−1×
Nx−b−1 values. Therefore, the complexity is linear, O(N) with N ∼ Nx×Ny. The noise estimation
procedure (algorithm 2) computes the convolution Ũ ∗ F in the Fourier domain using the FFT
algorithm and then crops the result using algorithm 1, that has linear complexity. The complexity
of computing the convolution is O(N logN), where N ∼ (Nx− s+ 1)× (Ny − s+ 1). Therefore, the
complexity of cropping the convolution is O(N logN). Then, algorithm 1 iterates M times through
a loop that reads the blocks Wf

m and computes its variance. Since s is fixed, the complexity of the
loop is linear with the number of iterations, O(M), where M = (Nx − w − s + 1) × (Ny − w −

355

Miguel Colom, Antoni Buades

s + 1) is the number of overlapping blocks. After the execution of this loop, the SORTED function
(implemented with the Quicksort algorithm) is called. Thus, the sorting operation has complexity
O(M logM). Therefore, algorithm 2 has complexity O(M logM). Algorithm 3 first executes the
argsort (implemented with the Quicksort algorithm) operation with complexity O(N logN). The
loop that iterates through idx = 0 . . . N just copies data in linear time O(N). Therefore, algorithm 3
is executed with complexity O(N). Algorithm 4 is simply a conditional comparison and then simple
arithmetic operations. Therefore, algorithm 4 is executed in constant time O(1). Algorithm 6 loops
over the number of bins of the noise curve and inside the loop algorithm 4 is called. Since algorithm 4
is executed in constant time O(1), algorithm 6 has a linear complexity O(B), where B is the number
of bins. Algorithm 7 loops over all possible pixels in the image (with the exception of the boundary
of the image). The loop iterates through all the channels of the image and looks for groups of four
connected pixels. Therefore, the inner loop is executed in linear time with the number of channels,
O(num channels). Since the number of channels is small, it can actually be considered executed in
constant time O(1) once the number of channels has been fixed. The complexity of algorithm 7 is
given by its main loop, that is executed in linear time with complexity O(M).

7 Online Demo

An online demo is available for this algorithm in the IPOL web page of this article3. The users can
upload any image to measure its noise. The demo also offers several types of pre-uploaded images to
test the algorithm:

• Raw images obtained by splitting the raw channels R,G1, G2, B and leaving out the G2 channel.
Then, an RGB image is formed by using the R,G1, B channels. Since in the raw image no
gamma correction has been done yet, the values of the image are multiplied by 32 to increase
their dynamics and screen visibility. The colors of these images are not quite adapted to human
visualization, because no white balance has been applied to them.

• The JPEG versions of the same raw images, as they are encoded by the camera.

• Various JPEG images.

• High SNR raw images, down-scaled by eight with their color channels averaged, so that they
are nearly noiseless. In the demo they are referred to as “no noise” images.

Once an image has been chosen, the following parameters can be configured:

Percentile. The possible values are 0.01%, 0.1%, 0.5% (default), 5%, 10% and 50%.

Pre-filter operators. Operator R whose stencil F is used to convolve the image with. The pos-
sible operators are: Identity (no filter), Directional derivative, Laplace, Laplace (2 iterations),
Laplace (3 iterations), Laplace (4 iterations), DCT with support 7 × 7 (default), DCT with
support 5 × 5, DCT with support 3 × 3 and the filter of the article Fast Noise Variance Esti-
mation [5].

Block size. The size of the block. The possible choices are 3× 3, 7× 7, 8× 8, 15× 21 and 21× 21
(default).

Curve filter iterations. It indicates the number of filtering iterations that are applied to filter the
noise curve (see section 3.2). Default: five iterations.

3http://dx.doi.org/10.5201/ipol.2013.90

356

http://dx.doi.org/10.5201/ipol.2013.90
http://dx.doi.org/10.5201/ipol.2013.90

Analysis and Extension of the Percentile Method, Estimating a Noise Curve from a Single Image

Treatment of groups (2× 2) of equal pixels. It allows to choose between ignoring the blocks
that contain a group of four equal pixels in any channel (default), or using all the blocks
unconditionally (see section 3.3).

Number of bins. It is the number of bins in the noise curve (see section 3.1). The number of bins
that are used depends on the size of the image when “automatic selection” is chosen. First, a
nearest compatible size of the image is considered (see section 5). For images whose size is S0,
S1 or S2, the number of bins is given by dividing the total number of pixels of the image by
42000. If the image is compatible with the size S3, 4 bins are used. If the image is compatible
with the size S4 or if it is smaller, a single bin is used. Default: automatic selection.

A and B noise parameters. Add a simulated noise with variance A+BŨ to the input image. If
A = B = 0 no noise will be added. If B = 0 homoscedastic noise with variance A will be
added. Default: A = B = 0.

7.1 Subtraction of the Quantization Noise

In the online demo, all the images are encoded using 8 bits/pixel/channel. This adds a quantization
error over the estimated noise that must be subtracted. Indeed, the variance of a uniform random
variable in [−1/2, 1/2] is

σ2
q =

1
2∫

− 1
2

(x− x̄)2 dx =

1
2∫

− 1
2

x2 dx =

[
x3

3

] 1
2

− 1
2

=
1

12
.

This is the variance of the quantization error that must be subtracted at each scale. The standard
deviation of the noise is computed at each bin as the square root of the noise variance computed
directly by the algorithm minus the variance of the variance of the (independent) quantization error.
At each scale k the variance is divided by 4k and thus the corrected standard deviation of the noise
given by the demo is

σ̃k =

√
σ̂2
k −

σ2
q

4k
=

√
σ̂2
k −

1

4k12
. (17)

7.2 Example: traffic Image

The results of this example can be reproduced by adding noise with parameters A = 0 and B = 0.5
to the traffic image. The rest of the parameters are the default parameters of the demo. Figure 17
shows the input noiseless image traffic before adding signal dependent noise with variance σ2 = 0.5U.
Figure 18 shows the noise estimated for the three first scales of the signal-dependent noise with
variance σ2 = 0.5U added to the traffic image. Because the noise was added to a noise-free image,
we can compute the RMSE for the different scales S0, S1 and S2, and the corresponding errors are
0.15, 0.18 and 0.16, respectively. Note that, as expected, the noise standard deviation is divided by
approximately two when down-scaling the image by the same ratio.

Acknowledgements

Research partially financed by the MISS project of Centre National d’Etudes Spatiales, the Office of
Naval Research under grant N00014-97-1-0839, by the European Research Council, advanced grant
”Twelve labours” and the Spanish government under TIN2011-27539.

357

Miguel Colom, Antoni Buades

Figure 17: Noise free input image traffic before adding noise with variance σ2 = 0.5U.

0 20 40 60 80 100 120 140 160 180
Intensity

0

2

4

6

8

10

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n

Noise curve, scale #0

0 20 40 60 80 100 120 140 160 180
Intensity

0

2

4

6

8

10

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n

Noise curve, scale #1

0 20 40 60 80 100 120 140 160 180
Intensity

0

2

4

6

8

10

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n

Noise curve, scale #2

Figure 18: The noise estimated for the three first scales of the signal-dependent noise with variance
σ2 = 0.5U added to the traffic image. From left to right: scales S0 (original), S1 and S2.

Image Credits

Miguel Colom, CC-BY

The USC-SIPI Image Database [13].

References

[1] A. Buades, Y. Lou, J.M. Morel, and Z. Tang. A note on multi-image denoising. In International
Workshop on Local and Non-Local Approximation in Image Processing, pages 1–15. IEEE, 2009,
http://dx.doi.org/10.1109/LNLA.2009.5278408.

[2] J.W. Cooley and J.W. Tukey. An algorithm for the machine calculation of complex Fourier
series. Mathematics of Computation, pages 297–301, 1965, http://dx.doi.org/10.2307/2003354.

[3] A. Foi, S. Alenius, and K. Katkovnik, V.and Egiazarian. Noise measurement for raw-data
of digital imaging sensors by automatic segmentation of non-uniform targets. IEEE Sensors
Journal, 7(10):1456–1461, 2007, http://dx.doi.org/10.1109/JSEN.2007.904864.

358

http://dx.doi.org/10.1109/LNLA.2009.5278408
http://dx.doi.org/10.2307/2003354
http://dx.doi.org/10.1109/JSEN.2007.904864

Analysis and Extension of the Percentile Method, Estimating a Noise Curve from a Single Image

[4] A. Foi, M. Trimeche, V. Katkovnik, and K. Egiazarian. Practical Poissonian-Gaussian noise
modeling and fitting for single-image raw-data. IEEE Transactions on Image Processing,
17(10):1737–1754, 2008, http://dx.doi.org/10.1109/TIP.2008.2001399.

[5] J. Immerkaer. Fast noise variance estimation. Computer Vision and Image Understanding,
64(2):300–302, 1996, http://dx.doi.org/10.1006/cviu.1996.0060.

[6] M. Lebrun, M. Colom, A. Buades, and J.M. Morel. Secrets of image denoising cuisine. Acta
Numerica, 21:475–576, 2012, http://dx.doi.org/10.1017/S0962492912000062.

[7] J.S. Lee and K. Hoppel. Noise modelling and estimation of remotely-sensed images. Pro-
ceedings of the International Geoscience and Remote Sensing Symposium, 2:1005–1008, 1989,
http://dx.doi.org/10.1109/IGARSS.1989.579061.

[8] G.A. Mastin. Adaptive filters for digital image noise smoothing: an evaluation. Computer
Vision, Graphics, and Image Processing, 31(1):103–121, 1985, http://dx.doi.org/10.1016/S0734-
189X(85)80078-5.

[9] P. Meer, J.M. Jolion, and A. Rosenfeld. A fast parallel algorithm for blind estimation of noise
variance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(2):216–223,
1990, http://dx.doi.org/10.1109/34.44408.

[10] S.I. Olsen. Estimation of noise in images: an evaluation. Computer Vision, Graphics,
and Image Processing: Graphical Models and Image Processing, 55(4):319–323, July 1993.
http://dx.doi.org/10.1006/cgip.1993.1022.

[11] N.N. Ponomarenko, V.V. Lukin, M.S. Zriakhov, A. Kaarna, and J.T. Astola. An
automatic approach to lossy compression of AVIRIS images. In International Geo-
science and Remote Sensing Symposium, pages 472–475. IEEE International, 2007,
http://dx.doi.org/10.1109/IGARSS.2007.4422833.

[12] K. Rank, M. Lendl, and R. Unbehauen. Estimation of image noise variance. In Vi-
sion, Image and Signal Processing, IEEE Proceedings, volume 146, pages 80–84. IET, 1999,
http://dx.doi.org/10.1049/ip-vis:19990238.

[13] Allan G Weber. The USC-SIPI image database version 5. USC-SIPI Report, 315:1–24, 1997.
http://sipi.usc.edu/database/.

359

http://dx.doi.org/10.1109/TIP.2008.2001399
http://dx.doi.org/10.1006/cviu.1996.0060
http://dx.doi.org/10.1017/S0962492912000062
http://dx.doi.org/10.1109/IGARSS.1989.579061
http://dx.doi.org/10.1016/S0734-189X(85)80078-5
http://dx.doi.org/10.1016/S0734-189X(85)80078-5
http://dx.doi.org/10.1109/34.44408
http://dx.doi.org/10.1006/cgip.1993.1022
http://dx.doi.org/10.1109/IGARSS.2007.4422833
http://dx.doi.org/10.1049/ip-vis:19990238
http://sipi.usc.edu/database/

	Introduction
	Noise Estimation Method
	Notation and Terminology
	The Algorithm
	Step 1: Pre-filtering the Input Noisy Image
	Step 2: Computing the Sample Variances from Uf and the Means from U
	Step 3: Obtaining a (biased) Noise Variance Estimation from V Using p
	Step 4: Correcting the Biased Estimation hatsigma2 to Obtain the Final tildesigma2 Estimation

	Extensions
	Extension to Signal-Dependent Noise
	Filtering the Noise Curve
	Discarding Saturated Pixels

	Evaluation of the Method
	Evaluation with Simulated Homoscedastic Noise
	Evaluation Comparing the Noise Curve of the Raw Image with the Ground Truth
	Evaluation of the Multiscale Coherence of the Result

	Optimal Parameters
	Complexity Analysis of the Algorithms
	Online Demo
	Subtraction of the Quantization Noise
	Example: traffic Image

