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Abstract

Exemplar-based texture synthesis aims at creating, from an input sample, new texture images
that are visually similar to the input, but are not plain copy of it. The Efros–Leung algorithm
is one of the most celebrated approaches to this problem. It relies on a Markov assumption and
generates new textures in a non-parametric way, directly sampling new values from the input
sample.
In this paper, we provide a detailed analysis and implementation of this algorithm. The code
closely follows the algorithm description from the original paper. It also includes a PCA-based
acceleration of the method, yielding results that are generally visually indistinguishable from
the original results.
To the best of our knowledge, this is the first publicly available implementation of this algorithm
running in acceptable time. Even though numerous improvements have been proposed since
this seminal work, we believe it is of interest to provide an easy way to test the initial approach
from Efros and Leung. In particular, we provide the user with a graphical illustration of the
innovation capacity of the algorithm. Experimentation often shows that the path between
verbatim copy of the exemplar and garbage growing is somewhat narrow, and that in most
favorable cases the algorithm produces new texture images by stitching together entire regions
from the exemplar.

Source Code

The ANSI C source code, the code documentation, and the online demo are accessible from the
IPOL web page of this article here1.
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1 Introduction

Until the mid 90’s, the most successful texture synthesis algorithms relied on relatively ad hoc Markov
random field models, a well known example of which may be found in the paper by Cross and Jain [4].
In 1995, a first breakthrough occurred with the work of Heeger and Bergen [11]2, who proposed
to synthesize new textures by prescribing the marginals of the different sub-bands of a wavelet
decomposition on the one hand, and of the color content on the other hand. This approach was
followed by more elaborate ones suggesting to perform synthesis by adding scale dependencies [5] or by
enforcing other statistical constraints, notably second order dependency between wavelet coefficients
at different positions, scales and orientations [15]. An alternative approach, well suited for non
or weakly structured textures, consists in enforcing the Fourier power spectrum of images using a
random phase approach [9]3.

A second major advance was provided in 1999 by the work of Efros and Leung [8], introducing
a non-parametric approach to Markov modeling in the context of texture synthesis. As we will see
in detail in the present contribution, the basic idea of this work is to use an exemplar image as a
source from which pixel values are chosen to perform the synthesis, one pixel at a time, depending
on the agreement of their neighborhood with the already synthesized part of the output image. This
approach yields visually striking synthesis results, even on highly structured texture images. The
method may be seen as an automated way to generate new images by a copy-paste procedure. A
similar but faster approach was also independently proposed by Wei and Levoy [17]. The original
Efros–Leung algorithm has been followed by a large body of contributions. In particular, speeded-up
approaches suggest to synthesize new images by pasting patches instead of single pixels [6, 14] or
rely on parallelization procedures [13]. A complete state of the art of such copy-paste approaches
is beyond the scope of this paper. An overview may be found in the paper by Wei et al. [16]. Let
us also mention that this work by Efros and Leung has been an inspiration for many works outside
the field of texture synthesis. The most striking example of such works is the NL-means approach
to image denoising [3], that in turn has triggered the explosion of patch-based methods for image
restoration.

Despite being highly influential, the original algorithm of Efros and Leung has not been widely
tested. This is mostly due to its computational complexity, but it is somehow surprising that, to
the best of our knowledge, no correct implementation of the algorithm is available that runs within
acceptable time (at least enabling experimentation). The goal of the demo accompanying this con-
tribution is to provide such an implementation. We believe that despite the fact that this algorithm
is outdated, in particular concerning its computational complexity, such a demo is useful because
the basic principles of the algorithm are still widely used in practical and fast implementations [16].

Experiments show that, even though it often produces visually impressive results, the Efros–Leung
method suffers from two important drawbacks:

1. It often yields verbatim copy of the input exemplar.

2. It may grow garbage, that is, produce inconsistent results from which it cannot recover.

These two points are mentioned (in the same terms) in the original paper [8] as possible failure
cases. They are in fact very common in experiments. In many cases, it is actually difficult or
impossible to tune the tolerance parameter (that we will detail below) to avoid both drawbacks 1
and 2 above. In particular, verbatim copying happens very frequently, as it may be seen by looking
at experiments from the original paper. Notable exceptions are binary and small scale textures, for

2An online demo for the Heeger–Bergen method is available here [1]
3An online demo for the Galerne et al. method is available here [10]
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which real innovation is permitted by the algorithm. In order to allow for a direct investigation of
the verbatim copying tendency of the algorithm, we provide in the demo a graphical illustration of
the synthesis process enabling one to identify parts (groups of pixels) of the sample image that have
been copied. Often, the resulting synthesized image is a patchwork of regions from the exemplar.
This somehow justifies approaches in which the synthesis is explicitly performed by stitching pieces
from the sample image [18, 12].

2 Algorithm

2.1 Informal Description

Informally, the original Efros–Leung algorithm works as follows. We consider an original image A
and an image B to be synthesized. We assume that a tiny portion of the image, thereafter called a
seed, is already known. The synthesis then proceeds iteratively, one pixel at a time, growing layers
outwards from this initial seed. Given a pixel p to be synthesized, we consider a n × n squared
neighborhood around it, thereafter called a patch. The portion of this patch made of pixels with
known values (pixels that have already been synthesized in previous steps or pixels from the initial
seed) is called known patch. We then look for all pixels in the original image A having a similar
known patch as the pixel p and draw one of them at random. Eventually, we affect the color value
of the central pixel of this randomly chosen patch to p.

2.2 Detailed Description

We now describe the synthesis algorithm in more detail. Again, A is the sample image and B the
one to be synthesized. Images are defined in a rectangular subset of Z2 and pixels are defined as
elements of these subsets (spatial positions). For a pixel p in either image, we write N (p) for the
n× n patch around p (that is, the set of all pixel values in the n× n neighborhood of p), where n is
an odd integer.

Patch distance For two pixels p′ in A and p in B, we define a Gaussian-weighted distance between
the corresponding neighborhood as

d(N (p),N (p′)) =
1∑

i∈N0
Gσ(i)

∑
i∈N0

(A(p′ + i)−B(p+ i))
2
Gσ(i), (1)

where Gσ is a Gaussian with standard deviation σ and N0 is an n× n squared window centered on
the origin.

Single pixel synthesis Let us assume for the moment that for a given pixel p in the image B, all
the values in N (p) are known. We then compute:

• The minimum distance from N (p) to all the patches in A,

dm(p) = min
p′∈A

d(N (p),N (p′)). (2)

• The set of pixels similar to p, for a given tolerance parameter ε:

Sε(p) = {p′ ∈ A : d(N (p),N (p′)) ≤ (1 + ε)dm(p)} . (3)

In order to synthesize the value at p, we then draw at random a pixel from Sε, with equal weights
for all the pixels.
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Sequential synthesis It is not feasible to assume that all the neighbors of a given pixel are known,
and the previous single-pixel procedure is modified as follows. First, the distances d(N (p),N (p′))
are computed only for the known neighbors of p (and the normalization factor is adapted to the
number of known pixels). Second, the synthesis is performed iteratively, in layers, starting from an
initial k×k region that is assumed to be known, called seed. In the original algorithm and from now
on, this seed is assumed to be a 3× 3 excerpt from the original image A. For the first pixel, the only
known region on which d is computed is the seed. Then, iteratively, synthesized pixels are added to
the known region and used to compute d.

2.3 Pseudo-code

A pseudo-code for the implementation of the Efros–Leung algorithm used in the present demo is given
in algorithm 1. This implementation follows closely the presentation of the original paper [8] and
the pseudo-code given at the authors website [7]. Let us mention, however, that both presentations
differ in one point which will be commented below. We have chosen to follow the original method [8].
Also, some of the steps of this pseudo-code are not unambiguously described in the original paper [8]
and will be specified.

Algorithm 1: Pseudo-code of the Efros–Leung algorithm.

function GrowImage( SampleImage, Image, WindowSize )1

while Image not filled do2

PixelList = GetUnfilledNeighbors( Image )3

for Pixel in PixelList do4

Template = GetNeighborhoodWindow( Pixel )5

BestMatches = FindMatches( Template, SampleImage)6

BestMatch = RandomPick( BestMatches )7

Pixel.value = BestMatch.value8

end9

end10

Return Image11

Algorithm 2: Pseudo-code of the FindMatches function.

function FindMatches( Template, SampleImage )1

ValidMask = 1s where Template is filled, 0s otherwise2

GaussMask = Gaussian2D( WindowSize, Sigma )3

TotWeight = sum i,j GaussMask(i,j)*ValidMask(i,j)4

for i,j do5

for ii,jj do6

dist = ( Template(ii,jj) - SampleImage(i-ii,j-jj) )27

SSD(i,j) = SSD(i,j) + dist*ValidMask(ii,jj)*GaussMask(ii,jj)8

end9

SSD(i,j) = SSD(i,j) / TotWeight10

end11

PixelList = all pixels (i,j) where SSD(i,j) ≤ min(SSD)*(1+ErrThreshold)12

Return PixelList13
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Figure 1: Since the synthesis is performed in outwards layers starting from an initial seed, most
patches soon have half their pixel values known, either on the left, right, top or bottom side.

The function GetUnfilledNeighbors returns a list of all unfilled pixels that have filled pixels
as their neighbors (the image is subtracted from its morphological dilation). The list is randomly
permuted and then sorted by decreasing number of filled neighbor pixels. GetNeigborhoodWindow

returns a window of size WindowSize around a given pixel. RandomPick picks an element randomly
from the list. The function FindMatches is presented in algorithm 2.

The function Gaussian2D generates a two-dimensional Gaussian in a window of given size centered
at the origin and with a given standard deviation (in pixels). In the original implementation the
constants were set as follows: ErrThreshold = 0.1, Sigma = WindowSize/6.4.

This pseudo-code follows the original description from Efros and Leung [8]. In the pseudo-
code given at the web site [7], one additional step is added. After the call to the RandomPick

function, the value BestMatch.value is affected to Pixel.value only if the computed distance between
the corresponding neighborhoods is small enough. This may improve synthesis results in some cases.
However, it adds new parameters to the algorithm and can also be very time consuming. We therefore
decided to implement the original algorithm [8], as described above.

3 Speed-up using PCA

General idea The original algorithm is very time-consuming: generating M pixels from a sample
image of N pixels, using windows containing K pixels, requires O(MNK) operations.

Most of the computing time is spent in computing inter-patches distances. A first easy way
to accelerate this computation is as follows. For a given pixel p in the synthesized image B, the
computation of d(N (p),N (p′)) is stopped as soon as the threshold (1 + ε)dm is reached, i.e. as soon
as we know that the patch from the original image we are looking at is not in Sε, as defined by (3).

Next, we observe that using patch coordinates in which the first coefficients are likely to be the
largest, the previous threshold can be reached much faster. A principal component analysis (PCA)
basis is used for this purpose.

Implementation Recall that the synthesis is performed in outwards layers, starting from an initial
seed. As can be seen in figure 1, most patches soon have half their pixel values known, either on the
left, right, top or bottom side.

We exploit this fact by using four PCA basis. Each basis is computed from all the top, bottom, left
or right halves of the patches in the sample image. Then the distance between patches is computed,
for a given pixel p, as

d(p, q) = d(ppca, qpca) + dextrapix , (4)

where ppca is the projection of the known half of the patch containing p onto the corresponding PCA
basis and qpca is an element of the corresponding PCA dictionary. Four dictionaries are created at
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Generate 
left PCA 
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Project
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For each pixel on right side:

input image

output image

Figure 2: The left PCA basis is created from all the left-halves of patches in the sample image. Then
the left dictionary is created, containing the projections of all the left-halves of patches in the sample
image onto the left PCA basis. To fill a pixel for which the left half has already been synthesized,
the known half of the corresponding patch is projected onto the left PCA basis and the distance to
all elements of the left dictionary are computed. The algorithm continues as for the classical case.
The same procedure is performed for the right, top and bottom side cases.

the beginning of the algorithm. For instance, the left PCA dictionary contains the projections of
all the left-halves of patches in the sample image onto the left PCA basis (see figure 2). If some
extra pixels are also known (those not belonging to the known half), the squared difference to the
remaining known pixels dextra is added to the distance computation.

Moreover, it was also observed that for most textures, the information needed for synthesis is
carried by luminance and not by the color channels. Thus, another important reduction in computa-
tion time is obtained by converting the input RGB image to a gray level image. For this purpose, we
perform a preliminary PCA over the RGB tridimensional space and keep only the first component.
Observe that for a gray level image, the PCA speed-up is actually yielding the exact same result as
the original algorithm. For color images, results are most of the time visually identical, except in
rare cases (see section 6).

Finally, the computation of distances between a given patch and all the candidates is parallelized
straightforwardly by splitting the dictionary into sub-parts.

Pseudo-code A pseudo-code for the implementation of the accelerated version of the Efros–Leung
algorithm previously described is presented in algorithm 3.

The function CreatePCADictionaries returns four lists containing the PCA projections of all
the half patches in the sample image, e.g. DictTop is the list of projections of all the top halves. The
function GetNeighborhoodCentral returns the pixels of the current patch with the same column
(for the case of right or left known halves) or row (for the case of top or bottom known halves) as the
current pixel. Those pixels are the extra known pixels which do not belong to the known half. The
functions GetUnfilledNeighbors, GetNeighborhoodWindow, FindMatches and RandomPick match
those already introduced in the previous pseudo-code. The function FindMatchesPCA is summarized
in algorithm 4.

The function GetKnownHalf returns the pixels corresponding to the known half of the current
patch. The function PCAProjection returns the PCA projection of the input, in this case the current
known patch half. The function Gaussian2D was already introduced in the previous pseudo-code.
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Algorithm 3: Pseudo-code of the PCA based accelerated version of the Efros–Leung algorithm.

function GrowImageSpeedUp( SampleImage, WindowSize, dimsPCA )1

[ DictTop, DictBottom, DictRight, DictLeft ] = CreatePCADictionaries( SampleImage,2

WindowSize, dimsPCA )
while Image not filled do3

PixelList = GetUnfilledNeighbors( Image )4

for Pixel in PixelList do5

if Half patch already known then6

// Use PCA

switch Known Half do7

// Choose the dictionary

case Top8

DictPCA = DictTop9

end10

case Bottom11

DictPCA = DictBottom12

end13

case Right14

DictPCA = DictRight15

end16

case Left17

DictPCA = DictLeft18

end19

end20

ExtraKnown = GetNeighborhoodCentral( Pixel )21

BestMatches = FindMatchesPCA( ExtraKnown, SampleImage, DictPCA )22

BestMatch = RandomPick( BestMatches )23

Pixel.value = BestMatch.value24

else25

// Follow classical approach

Template = GetNeighborhoodWindow( Pixel )26

BestMatches = FindMatches( Template, SampleImage )27

BestMatch = RandomPick( BestMatches )28

Pixel.value = BestMatch.value29

end30

end31

end32

Return Image33
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Algorithm 4: Pseudo-code of the FindMatchesPCA function.

function FindMatchesPCA( ExtraKnown, SampleImage, DictPCA )1

GaussMaskPCA = sqrt( Gaussian2D( KnownHalf, Sigma ) )2

KnownPatchHalf = GetKnownHalf( Pixel )*GaussMaskPCA3

PatchPCA = PCAProjection( KnownPatchHalf, DictPCA )4

ValidMask = 1s where ExtraKnown is filled, 0s otherwise5

GaussMaskCentral = Gaussian2D( WindowCentral, Sigma )6

for i,j do7

// For all patches

distLimit = infinite8

while (ii,jj in central) AND (SSDCentral < distLimit) do9

// Compute distance between central coordinates only AND stop if

SSDCentral is above the current distance limit

distCentral = ( ExtraKnown(ii,jj) - SampleImage(i-ii,j-jj) )210

SSDCentral = SSDCentral + distCentral*ValidMask(ii,jj)*GaussMaskCentral(ii,jj)11

end12

if SSDCentral < distLimit then13

while (k = 1 to dimsPCA) AND (SSDCentral + SSD PCA < distLimit) do14

distPCA = ( PatchPCA(k) - DictPCA(i,j,k) )215

SSD PCA(i,j) = SSD PCA(i,j) + distPCA16

end17

end18

SSD(i,j) = SSDCentral + SDD PCA19

distLimit = min(SSD)*(1+ErrThreshold)20

end21

PixelList = all pixels (i,j) where SSD(i,j) ≤ min(SSD)*(1+ErrThreshold)22

Return PixelList23
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Time (s)

Experiment patch width 11, sample size 128 patch width 15, sample size 512

classical 8.7 665
partial dist. comp. 5.9 360
partial dist. comp. + PCA (all dims) 6.5 160
partial dist. comp. + PCA (20% dims) 5.9 145

Table 1: Computation times for each of the different algorithmic options. Two cases are tested: patch
size 11×11, input sample size 128×128, output size 128×128 and patch size 15×15, input sample
size 512×512, output size 128×128. For a small enough input sample and patch size, the gain in
performance of the accelerated versions with respect to the classical approach is not very significant.
Recall that in the classical approach, the computation of distances between a given patch and all
the candidates is parallelized straightforwardly by splitting the dictionary into sub-parts. On the
other hand, the computation time for the accelerated versions is considerably reduced for larger input
samples and patch sizes.

Computing distances using a fixed number of dimensions We observed that limiting the
computation of distances on a fixed number of dimensions n generally yields results that are visually
identical to the original results, for values of n in the order of 20% of the dimensionality of the
patch space. This provides a further speed-up of the algorithm. In the online demo accompanying
this paper, the user has two options. Either running the original algorithm (with partial distance
computations) or running the computation of distances using a fixed and chosen number n of PCA
dimensions. In table 1, we display computation times for the different algorithmic options presented
in this section and for different sample image and patch sizes.

4 Graphical Innovation Monitoring

In order to evaluate the innovation capacity of the method and to know the exact regions where
verbatim copy occurs, we use a map of pixel positions which we call synthesis map. Each pixel
position p in the sample image A is associated to a different color from a continuous colormap, as
illustrated in figure 3, second image from the left. We call the resulting image a position map. The
synthesis map of the synthesized image B is then obtained by mapping each position p to the color
value of the position p′ (in A) of the pixel used for the synthesis. This way, regions of the synthesis
map corresponding to verbatim copy are extracts from the position map and can be easily visualized.

Figure 3: Left to right: sample image, position map, synthesized image, synthesis map. The
verbatim copied regions of the sample image can be identified in the synthesis map as extracts from
the position map.
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5 Numerical Experiments and Parameter Setting

In this section, we perform texture synthesis experiments using the previously described method. We
pay attention to both the visual aspect of the results and the way they differ from the exemplar (the
innovation capacity of the method). In sections 5.2 and 5.3 we comment these aspects with respect
to parameter choices. These are the patch size n and the tolerance parameter ε. In section 5.1 we
briefly illustrate the relationship between the scale of the texture to be synthesized and the patch
size.

Images are generated using our implementation of the classical Efros–Leung algorithm (not the
accelerated implementation). For all experiments, the standard deviation of the Gaussian used for
patch distances is set to σ = n/6.4 as in the Efros–Leung web page [7] and the initial seed is a
randomly chosen 3× 3 excerpt from the sample image. Unless specified, the tolerance parameter is
set to 0.1.

5.1 Texture Scale and Patch Size

Figure 4: Texture scale. From left to right: sample image, results obtained with patch widths
5, 11, 15, and 23. The original image is from the Efros-Leung paper [8] and results are obtained with
our implementation. A patch size of 5 is too small to recreate the circles of diameter 10. A patch
size of 11 can represent the circles but not their spatial pattern. Increasing the patch size to 23 gives
a correct result.

As illustrated in the original article [8], setting the patch size is critical in order to correctly
synthesize a texture. Patches must be large enough to contain the texture patterns to be synthesized.
The example presented in figure 4 clearly illustrates this idea. This example is taken from the original
work by Efros and Leung but the presented images are generated with our implementation of the
method. This synthesis algorithm is actually very well suited to such binary textures.

5.2 Innovation Capacity and Patch Size

When the patch size increases, it becomes more difficult to find “good” candidates. More precisely,
for a given ε, the size of Sε(p) decreases as n increases. Hence, increasing the patch size results in
increased verbatim copy. This section graphically illustrates this fact, while the next one shows that
increasing ε does not solve the problem.

The sample image for the first test case is displayed in the first column of figure 5. Columns two
to five show results4 with patch sizes of 3, 5, 9 and 17, respectively. The sample image is of size
79 × 79 pixels and the synthesized images are of size 128 × 128 pixels. Good results are obtained

4For all the examples, results obtained in one run of the algorithm are presented. Nevertheless, the tests were
repeated several times and the presented results are representative of the obtained results.
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Figure 5: Patch size variation. First row (from left to right): sample image, results obtained
with patch sizes 3, 5, 9, and 17. Second row: Corresponding synthesis maps. Good results are
obtained in all cases. The innovation capacity decreases with increasing n, as can be verified in the
decreasingly noisy aspect of the synthesis maps.

Figure 6: Patch size variation. First row (from left to right): sample image, results obtained
with patch sizes 5, 9, and 17. Second row: Corresponding synthesis maps. Unlike the previous
example (figure 5), the regions of the output images which are not verbatim copied do not faithfully
represent the sample image.
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in all cases, with a slight improvement when increasing n. Regarding the innovation capacity of the
algorithm, it decreases with increasing n. The synthesis maps shown in the second row of figure 5
are much noisier for the n values 3 and 5 than for values 9 and 17, illustrating the fact that larger
regions are verbatim copied for larger n values.

A second test case is displayed with the same layout in figure 6. Once again, it can be verified
that results improve with increasing n, at the price of a decrease of the innovation capacity of the
algorithm. Unlike the previous example, the regions of the output images that are not verbatim
copied do not faithfully represent the sample image. Good results are obtained for n = 17, but most
of the synthesized image is composed of verbatim copied regions. For such a large patch size, the
set of good candidates is very restricted and copy is almost the only choice. In order to have a good
result with less copied regions a much larger sample image would be needed.

Figure 7 shows the results obtained with other test examples. Conclusions are similar as for the
first example. The innovation capacity of the algorithm is quite restricted on these examples.

5.3 Influence of the Tolerance Parameter

The tolerance parameter ε controls the quality of the patch candidates in Sε(p). The larger ε is, more
patch candidates can differ from the best patch candidate. On the one hand, large tolerance values
are prone to grow garbage, that is, produce inconsistent results from which the algorithm cannot
recover. On the other hand, small tolerance values are prone to reduce the innovation capacity of
the method.

The sample image for the first test case is displayed in the first column of figure 8. Columns two
to five show examples of the obtained results with the tolerance parameter set to 0.05, 0.1, 0.3, and
0.5 respectively. The sample image is of size 99 × 99 pixels and the synthesized images are of size
128× 128 pixels. The patch size is set to 9, the minimum tested value yielding reasonable results for
this example. We are interested in the minimum patch size capable of synthesizing the texture, in
order to limit verbatim copy as much as possible (see section 5.2) and in order to evaluate the copy
level caused by the variation of the tolerance parameter.

As expected, the innovation capacity of the method increases with ε. This can be verified in the
increasingly noisy aspect of the synthesis maps. For small ε values, results are visually good but
essentially made of pieces from the sample image stitched together. Results are very noisy for large
ε. The maximum tested value that gives good results is ε = 0.3. Nevertheless, the proportion of
copied regions is not negligible and it can be seen that most of the regions that give the realistic
aspect to the synthesized texture (darker zones) correspond to verbatim copied regions of the sample
image (see figure 8). For this example, the best compromise between innovation and quality of the
results is obtained for a patch size of 9 and a tolerance parameter of 0.1.

Another example showing a similar behavior can be seen in figure 9. A third example is shown in
figure 10. For this case, the patch size is set to 5, again the minimum tested value yielding reasonable
but not copied results. The patch size being small, the copy level of the results is low. This can
be verified in the noisy aspect of the synthesis maps. Results remain visually satisfying for large
ε values. This contrasts with the previous examples and is mostly due to the noisy nature of the
texture.

6 Reproducibility of the Original Results

In the present section we show a comparison of some of the results obtained by Efros et Leung [8] and
those obtained using our implementations of the algorithm, both the classical and the accelerated
version. Figures 11 and 12 present these examples. Note that the results obtained using the accel-
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Figure 7: Patch size variation. First/Second row (from left to right): sample image, results
obtained with patch sizes 9, 17, 25, and 33 and the corresponding synthesis maps. Third/Fourth
row: same layout (sizes 9, 13, 17, and 25). Fifth/Sixth row: same layout (sizes 5, 9, 17, and 25).
The innovation capacity of the algorithm is quite restricted on these textures.
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Figure 8: Tolerance parameter variation. First row (from left to right): sample image,
results obtained with ε taking values 0.05, 0.1, 0.3, and 0.5. The patch size is set to 9. Second row:
Corresponding synthesis maps. The innovation capacity of the method increases with ε, as can be
verified in the increasingly noisy aspect of the synthesis maps. Results are good for small ε values,
but are essentially made of small regions from the exemplar that are stitched together. Results are
very noisy for large ε.

Figure 9: Tolerance parameter variation. First row (from left to right): sample image,
results obtained with ε taking values 0.05, 0.1, 0.3, and 0.5. The patch size is set to 9. Second row:
Corresponding synthesis maps. As in the previous example, the innovation capacity of the method
increases with ε.
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Figure 10: Tolerance parameter variation. First row (from left to right): sample image,
results obtained with ε taking values 0.05, 0.1, 0.3, and 0.5. Patch size set to 5. Second row:
Corresponding synthesis maps. The results are good for all the tested ε values. Results are still
good for large values (0.3, 0.5), in contrast to the previous examples. This is mostly due to the noisy
nature of the texture.

erated version are mostly indistinguishable from those obtained using the classical implementation.
Both these results are visually very similar to the ones from the original paper.

For some particular color textures, where the color information is part of the texture, the accel-
erated version may produce incorrect results. This is caused by the dimension reduction performed
to reduce the three RGB components to an unique luminance component. Most color textures can
be correctly represented in gray levels (as all the color textures shown in this article so far) and are
therefore correctly synthesized by the accelerated version. In some rare cases, the color content of
images is not correctly captured by the first component of the PCA, so that the accelerated version
yields artifacts. Such a case is displayed in figure 13.

7 Conclusions

In the present study, we have conducted a detailed analysis of the texture synthesis algorithm from
Efros and Leung [8]. Extensive numerical experiments have been conducted. The main conclusion
is that, except for some small scale textures, it is often hardly possible to set parameters in order
to avoid both garbage growing and verbatim copy. Actually, we claim that most methods deriving
from this original algorithm will synthesize textures by stitching together pieces from an exemplar.
It therefore makes sense, since it is more efficient, to perform copy-pasting explicitly [18, 12].

We also provide a parallelized ANSI C code for both the classical and the accelerated version
of the algorithm. Last, the accompanying online demo enables the user to synthesize images in
reasonable time.
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Figure 11: Reproducibility of results. Each row presents synthesis results on a texture from [8].
From left to right: sample image, result by Efros and Leung taken from [8], result obtained using our
implementation of the method, result obtained using our accelerated version. Each time, all three results
are visually very similar.
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Figure 12: Reproducibility of results. Each row presents synthesis results on a texture from [8].
From left to right: sample image, result by Efros and Leung taken from [8], result obtained using our
implementation of the method, result obtained using our accelerated version. Each time, all three results
are visually very similar.
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Figure 13: Reproducibility of results. From left to right: sample image, gray level version,
result obtained using the classical implementation of [8], result obtained using the accelerated im-
plementation. Some candies having different colors in the sample image are merged in the gray level
version corresponding to the first component of the PCA. Color artifacts appear when using the
accelerated implementation. This case is quite uncommon.
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from Brodatz collection [2].
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