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Abstract

SURE (Stein’s Unbiased Risk Estimator) guided Piecewise Linear Estimation (S-PLE) is a
recently introduced patch-based state-of-the-art denoising algorithm. In this article, we focus
on its implementation and show its performance by comparing it with several other acclaimed
algorithms.

Source Code

ANSI C source code for both S-PLE and PLE is accessible on the article web page. A live demo
for S-PLE can be found at the IPOL web page of this article1.

Keywords: denoising, expectation-maximization, Stein’s unbiased risk estimator

1 Introduction

A novel patch-based image denoising algorithm, SURE guided Piecewise Linear Estimation (S-PLE),
is presented by Wang et al. [25]. It assumes that all patches found in an image are generated
independently according to a Gaussian Mixture Model (GMM) whereby each component model is
roughly responsible for a patch subset characterized by a particular observable feature. Before delving
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into a review of related research and competing algorithms, let us recall that in GMM, an image
patch P of size κ× κ is postulated to be distributed over Rκ2 according to

K−1∑
k=0

wkN (P ;µk,Σk)

for some integer K, positive scalars (wk)0≤k≤K−1 with
∑K−1

k=0 wk = 1, vectors (µk)0≤k≤K−1, and
positive semidefinite matrices (Σk)0≤k≤K−1 representing the number of Gaussian components in the
mixture, their prior probabilities, expectations, and covariance matrices.

Notational convention: deterministic parameters required to be estimated for model building are
written in bold. And those supposedly random quantities and absolute constants are in normal font.

The observation model for image denoising under GMM is

P̃ =
K−1∑
k=0

1sP=kP +N

with sP , the patch model selector, a discrete random variable distributed according to (wk)0≤k≤K−1

and independent of the noise term N . And the conditional expectation of P given P̃ , which consti-
tutes the optimal filter in the L2 sense, has a closed form

E[P |P̃ ] =
K−1∑
k=0

P(sP = k|P̃ )E[P |sP = k, P̃ ] (1)

which turns out to be a patch-dependent combination of K fixed linear filters.

The field has known significant progress in the last few decades. DCT [26] showcases the versatility
of the shrinkage [9] when combined with a good basis. BLS-GSM [17] illustrates the power of natural
image statistics modeling in the wavelet domain. Non-Local Means (NLM) [3, 4], inspired in part by
the pioneering work by Efros et al. [10] in texture synthesis, effectively exploits information redun-
dancy in natural images. Through similar patch grouping and collaborative filtering, BM3D [6, 14]
further enhanced NLM and catapulted it to one of the best performing denoising methods that define
the current state-of-the-art. Non-Local Bayes (NLBayes) [16] in turn improves BM3D by aggressively
going after flat areas in an image and largely addresses its tendency to create artifacts in strong noise.

Another promising direction of research initiated by Aharon et al. [1, 11] proposed a greedy
orthogonal matching pursuit algorithm based on the notion that image patches can be sparsely
represented with an over-complete dictionary. Then a patch orientation based dictionary learning
algorithm [5] gave rise to the K-LLD denoising algorithm. Later an algorithm called PLE [27] was
designed along a similar vein, but intended as a generic image recovery related inverse problem solver.
In a recent development Zoran et al. [28] introduced a new optimization scheme which continued the
effort started as early as in 1992 [20] of seeking an adequate description of image priors. Instead
of constructing priors for images as a whole, a prior for image patches in the form of a Gaussian
mixture was constructed and produced impressive results.

S-PLE, unlike those methods spawned by the NLM paradigm, groups image patches by assessing
patch-to-model rather than patch-to-patch distance. As discussed in Section 3, the ability of patches
to choose among filters and adapt their own forms and sizes to image content and noise level is of
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critical importance to both visual quality and accuracy of the restoration. S-PLE addresses the issue
by using SURE [22] as a decision aid which enables the desired adaptive filtering and results in a
state-of-the-art performance in terms of MSE, thereby representing a substantial improvement over
the existing algorithms such as K-LLD and PLE in the same category. In addition, thanks to SURE,
we show how to track S-PLE’s real-time performance with a simple device.

2 PLE

In this section, PLE [27] is described to highlight its difference with S-PLE. PLE starts with building
a number of directional models using synthetic samples and it retains all the eigenvectors from the
estimated covariance matrices. Then one additional model is constructed using DCT as its basis to
account for textural patches. Contrary to S-PLE, the model means and their covariance eigenvalues
are arbitrarily fixed (see algorithm 1).

Algorithm 1 PLE initialization

Parameter: Number of Gaussian models K, patch dimension κ× κ.
for k = 0 to K − 2 do

Create and sample synthetic images

1. Create a binary image B of size 100× 100 taking value in {0, 255} with two sets {(r, u) :
B(r, u) = 0} and {(r, u) : B(r, u) = 255} separated by a straight line inclined at k

K−1
π

passing through the center of the image.

2. Blur B with Gaussian kernels of different standard deviations (σb)1≤b≤4: σb = 2b for all b.

3. Draw 100κ2 κ× κ patches from these blurred images to form the patch set Pk.

Compute the statistics

1. Estimate the model mean and covariance:

µk =
1

|Pk|
∑
P∈Pk

P, Σk =
1

|Pk|
∑
P∈Pk

(P − µk)(P − µk)T .

2. Define the k-th directional basis Vk using the spectral decomposition Σk = VkΛkV
T
k .

3. Set µk = 0. Replace the first leading eigenvector in Vk by a normalized DC component
and apply Gram-Schmitt to orthogonalize the remaining vectors.2

end for
To this setup add a textural model whose basis is formed by DCT (with ascending component
frequencies). Set its model mean to zero.
Take a sequence of κ2 positive numbers of exponential decay (a working example: m ∈ [0, κ2 −
1] ∩ Z 7→ 220.5−0.5m) and make them the eigenvalues of all K Gaussian models just built.

2The implemented PLE leaves out both component substitution and basis orthogonalization because they can cause
numerical instability as it is difficult to tell whether a set of vectors are collinear with the computer’s limited precision.
With DC components removed from the directional bases, PLE could discriminate better.
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Assume that there are K models in all. For each patch to restore, PLE produces K estimates
under individual model assumption and keeps the one with the highest conditional probability to
have both the observation and its estimate. This patch is assigned in the meantime to the same model.

Finally, all the models are updated with their assigned estimates. The last two steps, called
estimation and maximization by the paper, are then repeated several times before the algorithm
terminates (see algorithm 2).

Algorithm 2 PLE

Input: A noisy gray image Ũ , its noise standard deviation σ.
Parameter: Number of PLE iterations S.
Output: Denoised image.
Run algorithm 1. Extract all κ× κ patches from Ũ to have (P̃i)1≤i≤N .
for t = 1 to S do

Estimation:

1. Maximize the conditional density given the observation and the model with (2):

∀(i, k), P̂
(k)
i = argmax

P
p(P |P̃i,µk,t−1,Σk,t−1)

= argmax
P

p(P, P̃i|µk,t−1,Σk,t−1)

= argmin
P

(‖P − P̃i‖2

σ2
+ (P − µk)TΣ−1

k,t−1(P − µk)
)
.

2. Select the model that best fits the i-th observation and its conditional estimate:

ki = argmax
0≤k≤K−1

p(P̂
(k)
i , P̃i|µk,t−1,Σk,t−1)

= argmin
0≤k≤K−1

(‖P̂ (k)
i − P̃i‖2

σ2
+ (P̂

(k)
i − µk)TΣ−1

k,t−1(P̂
(k)
i − µk) + ln det Σk,t−1

)
which leads to the estimated patch P̂i = P̂

(ki)
i and its assignment to the ki-th model.

Maximization: Denote Qk the set of estimated patches attributed to the k-th model.
for k = 0 to K − 1 do

Estimate the model mean and covariance:

µk,t =
1

|Qk|
∑
P∈Qk

P, Σk,t =
1

|Qk|
∑
P∈Qk

(P − µk,t)(P − µk,t)T + εI

where ε = 10−3 to ensure the definiteness of Σk,t.
end for

end for
Assign equal weights to all restored patches and recover the image. A typical pixel inside the
image will hence be the arithmetic average of all its κ2 estimates.

46



The Implementation of SURE Guided Piecewise Linear Image Denoising

The quadratic minimization problem

P̂ = argmin
P

(‖P − P̃‖2

σ2
+ (P − µk)TΣ−1

k (P − µk)
)

in the algorithm’s estimation step is solved by

P̂ = σ−2(σ−2I + Σ−1
k )−1(P̃ − µk) + µk

= Σk(σ
2I + Σk)

−1(P̃ − µk) + µk (2)

with I representing the identity of the same dimension as Σk and σ the noise level. Hence we find the
Wiener filter expression as expected because if signal and noise follow a joint Gaussian distribution,
the least square estimator is known to be the maximum likelihood estimator, too.

PLE is not GMM-based for it involves no concept of model priors. Moreover, no criterion in PLE
is guaranteed to converge in any sense, making it difficult to decide when to stop the algorithm.
And there is too much latitude in tuning parameters such as the model eigenvalues, which often
undermines the algorithm’s numerical stability and performance. In addition, certain choices made
in the initialization step are hard to interpret. For example, the vanishing model means and the
rectification of the first leading eigenvector in all directional bases.

3 SURE Guided PLE Denoising Algorithm

3.1 Gaussian Factor Mixture

There is reason to believe that a reduced set of vectors suffices to represent patches of a narrow range
of orientations. Therefore instead of a full-fledged Gaussian distribution, an equally flexible and yet
more appropriate candidate is a Gaussian factor model (GFM)

Pθ = F θc+ µθ

where patch variability can be restricted by limiting the number of columns l contained in the factor
loading matrix F θ ∈ Rκ2×l. With µθ deterministic and c following the Gaussian law N (0, Il), Pθ
remains Gaussian. In this implementation, 18 such oriented models together with two non-oriented
components, representing textural and flat patches respectively, were set up in the mixture.

The i-th noisy patch is assumed by S-PLE to follow:

P̃i =
K−1∑
k=0

(F kci + µk + σni)1si=k

where

1. F k ∈ Rκ2×lk : a deterministic matrix containing lk factors used by the k-th model;

2. ci ∈ Rlk : a Gaussian coefficient distributed as N (0, Ilk);

3. µk ∈ Rκ2 : a deterministic vector representing the k-th model mean;

4. σ ∈ R+: the standard deviation of some zero-mean additive Gaussian noise;

5. ni ∈ Rκ2 : a Gaussian vector following N (0, Iκ2) independent of ci;
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6. si ∈ {0, · · · , K − 1}: a discrete random variable that selects a model for the i-th patch.

When it comes to learning the hidden parameters of a mixture from an observed dataset, the
renowned Expectation Maximization [7] is arguably the algorithm of choice. A variant dedicated
to the GFM mixture inference has been developed by Tipping and Bishop [23] and adopted in this
implementation.

3.2 GFM Mixture Initialization

For EM to succeed at its task, a good starting point is key in that the algorithm can be trapped at
local maxima and consequently fail to reach global maxima. Synthetic image sampling suggested by
Yu et al. [27], though interesting, does not allow the construction of an appropriate prior for lack of
information to estimate the mixing weights. A more reasonable solution is to draw samples directly
from natural images with the help of the so-called “tensor structure” orientation detector [12] (im-
plemented in sample images()): given a square patch P , the discrete gradient ∇P (r, u) is computed
at all pixel sites in its domain Dom(P ). Then the patch’s orientation v∗ is found by

v∗ = argmin
‖v‖=1

∑
(r,u)∈Dom(P )

‖∇P (r, u)−
〈
v,∇P (r, u)

〉
v‖2

= argmin
‖v‖=1

∑
(r,u)∈Dom(P )

‖∇P (r, u)‖2 −
〈
v,∇P (r, u)

〉2

= argmax
‖v‖=1

vT
( ∑

(r,u)∈Dom(P )

∇P (r, u)(∇P (r, u))T
)
v

where
〈
·, ·
〉

denotes the scalar product between two 2× 1 column vectors valued in R2, The problem
is easily solved by computing the first leading eigenvector of the positive semidefinite matrix enclosed
in the parentheses, denoted henceforth by MP . Because of the equality∑

(r,u)∈Dom(P )

‖∇P (r, u)‖2 = tr(MP ) = λs + λb,

it seems natural to declare P oriented if the criterion∑
(r,u)∈Dom(P ) ‖∇P (r, u)−

〈
v∗,∇P (r, u)

〉
v∗‖2∑

(r,u)∈Dom(P ) ‖∇P (r, u)‖2
=

λs
λs + λb

is small, where λb and λs (λb ≥ λs ≥ 0) are the two eigenvalues of MP . Thus a threshold torient = 5
was tuned according to our subjective view so that a patch satisfying λ−1

s λb ≥ torient is likely to
be seen as oriented. Its orientation θ∗ can then be set to ψ(arctan y∗

x∗
) with v∗ = (x∗, y∗)

T and
ψ(a) = a1a≥0 + (π + a)1a<0, the latter of which ensures the positivity of θ∗.

To distinguish between two categories of non-oriented patches, one applies the following rule

λb ≥ tflat and λ−1
s λb < torient

as an empirical definition of multi-oriented (or textural) patches (tflat = 104). The remaining set of
patches satisfying

λb < tflat and λ−1
s λb < torient
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are seen as essentially flat.

The previous definitions split the first quadrant (λs, λb) ∈ R2
+ into three regions, among which

the one characterized by λ−1
s λb ≥ torient will be further divided into K − 2 sub-areas by angle

quantification to form a K-zone partition. The way to achieve this is to assign a patch P to the k-th
mono-oriented model if and only if it satisfies

λ−1
s (P )λb(P ) ≥ torient and θ∗(P ) ∈ [

k

K − 2
π,

k + 1

K − 2
π)

where the notations λs(P ), λb(P ) and θ∗(P ) are meant to emphasize their dependences on P .

We collected for each model a minimum of 5000 8 × 8 patches by randomly sampling 493 gray
natural images from the Berkeley Segmentation Dataset. Shown in figure 1 are three resulting
covariance matrices. Several observations are in order:

1. first, leading eigenvectors in the oriented models preserve their model feature orientation and
suggest that low frequency patterns tend to appear more often in natural scenes.

2. second, due to the imprecise nature of orientation definition and measurement, the obtained
oriented models’ eigenvalues do not go to zero as projected by GFM. However, their still rapid
decay in value does not deviate far from what is expected of the model either. Hence it seems
reasonable to keep the first few (e.g., 32) factors and reject the rest;

3. third, to prevent over-fitting, the first leading eigenvector was made the sole factor representing
the flat model. As a reflection of the richness of textural content, the number of components in
the textural model was set to 63: a DCT-like isotropic basis thus breaks up into two to handle
two radically different patch categories.

Since ultimately a GFM mixture will be used to fit the observation, it can be argued that we do
the same at this stage. We thus look for an element in C = {FF T + σ2I,F ∈ Rκ2×l,σ ∈ R+} that
achieves the highest empirical likelihood for the i.i.d. samples:

(F ∗,σ∗) = argmax
F∈Rκ2×l,σ∈R+

log
N∏
i=1

1√
(2π)κ2 det(FF T + σ2I)

exp
(
− 1

2
(Pi − µ)T (FF T + σ2I)−1(Pi − µ)

)

= argmin
F∈Rκ2×l,σ∈R+

N

2

[
log det(F TF + σ2I) +

1

N

N∑
i=1

tr
(

(FF T + σ2I)−1(Pi − µ)(Pi − µ)T
)]

= argmin
F∈Rκ2×l,σ∈R+

log det(FF T + σ2I) + tr
(

(FF T + σ2I)−1Σ
)
. (3)

The problem has been dealt with and lead to probabilistic PCA [23, 24, 19].

In addition to individual model configurations, the patch sampling revealed yet another valu-
able piece of information regarding the initial mixture structure, namely (wk)0≤k≤K−1, the prior
probability of having a randomly selected patch belonging to a particular model. It was estimated
by

wk =
Nk∑K−1
j=0 Nj
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(a) (b)

(c) (d)

(e) (f)

Figure 1: Examples of the eigenvectors and eigenvalues obtained by sampling 493 gray images from
the Berkeley Segmentation Dataset with K = 20: a patch view of the eigenvectors of the (a) 0-th
(mono-oriented), (c) 18-th (multi-oriented), (e) 19-th (flat) cluster and their eigenvalues displayed in
the logarithmic scale: the (b) 0-th, (d) 18-th and (f) 19-th cluster.
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with Nk the total number of patches collected for the k-th model satisfying min0≤k≤K−1Nk = 5000.
As shown in figure 2(c), the mixing weights can be configured in such a way that non-oriented patches
are much more likely to appear than their mono-oriented counterparts. Moreover, within the non-
oriented category, the essentially flat patches were made to have a slightly higher probability to show
up. This setup conveys our prior belief on the patch composition of a typical natural image and is
not image specific: the same mixture prior was used in all our experiments.

The complete algorithm for GFM initialization of S-PLE is described in algorithm 3.

3.3 Patch Classification with EM

Here we present a concrete example in the hope of better illustrating EM’s effectiveness at classify-
ing noisy patches. To this end, we took the color image dice from the IPOL website and added to
its color channels some simulated i.i.d. zero-mean Gaussian noise with standard deviation equal to 10.

To the three color components (uR, uG, uB), we applied the next luminance-chrominance trans-
formation intended to increase the first transformed channel’s signal-to-noise (SNR) ratio:

ũ1 =
uR + uG + uB

3

ũ2 =
uR − uB√

2

ũ3 =
uR − 2uG + uB√

6
.

To be consistent with the origin (gray images) of the collected statistics, the denominator in the first
transformation was set to 3 instead of noise normalizing

√
3 because these components are believed

to be highly correlated.

20 models, each containing 32 factors except for the two non-oriented ones, were read in to help
set up the initial prior. With noise standard deviation set to 10/

√
3, we ran EM on ũ1. At the

end of each iteration, there was for every observed noisy patch P̃ a set of newly calculated posterior
probabilities {P(sP = k | P̃ ), 0 ≤ k ≤ 19}, which allowed us to determine the most suitable model
for P̃ simply by comparing its likelihoods under different model assumptions:

k∗ = argmax
0≤k≤19

P(sP = k | P̃ ) = argmax
0≤k≤19

P(P̃ | sP = k)P(sP = k).

It should be clear by now that updating the mixing weights at the same time as the model parameters
is not only required to keep the overall likelihood increasing as the algorithm iterates on, it also helps
reduce the misclassification risk and artifacts: for instance, in an image with predominant presence
of flat patches, a patch should be assigned to a mono-oriented model only if there is a compelling
enough indication to justify the action.

A patch-to-model mapping, henceforth referred to as the patch map, can be formed by associating
to each patch its most probable model. In the present example, the patch map (figure 2) shows that
by the time the first EM iteration ended, pretty much as expected, an overwhelming majority (87.4%)
of patches identified with the flat model, thereby preparing the ground for the denoising algorithm’s
next stage: adaptive filtering.
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Algorithm 3 GMM initialization of S-PLE

Input: Z noiseless natural gray images.
Parameter: Number of mixture components K, patch dimension κ× κ.
Output: K Gaussian mixture components and their mixing weights.
For all 0 ≤ k ≤ K − 1, set Nk, the number of samples obtained for the k-th model, to 0.
Collect samples:
while min0≤k≤K−1Nk < 5000 do

Randomly picks one among Z images and sample a κ× κ patch P from it.
Calculate the eigenvalues (λb, λs) of

∑
(r,u)∈Dom(P )∇P (r, u)(∇P (r, u))T together with its eigen-

vector v associated with λb (λb ≥ λs) where ∇P (r, u) represents the discrete gradient of P at
(r, u).
if λb/λs < torient then

if λb < tflat then
Assign P to the flat model: NK−1 ← NK−1 + 1.

else
Assign P to the multi-oriented model: NK−2 ← NK−2 + 1.

end if
else

Determine the orientation θ = ψ(arctan y
x
) with v = (x, y)T and ψ(a) = a1a≥0 + (π+ a)1a<0.

Assign P to the k-th mono-oriented model if θ ∈ [ k
K−2

π, k+1
K−2

π): Nk ← Nk + 1.
end if

end while
Compute the statistics:
for k = 0 to K − 1 do

Estimate the model prior: wk = Nk∑K−1
j=0 Nj

.

Estimate the model mean and covariance: denote Pk the set of patches attributed to the k-th
model

µk =
1

|Pk|
∑
P∈Pk

P, Σk =
1

|Pk|
∑
P∈Pk

(P − µk)(P − µk)T .

Estimate the factor loading matrix: denote lk the number of factors required by the k-th model.
The spectral decomposition Σk = V ΛV T with V = [φ1, · · · , φκ2 ] and Λ = diag(λ1, · · · , λκ2)
gives

F k = [ (λ1 − σ2)1/2φ1, · · · , (λlk − σ2)1/2φlk ]

where σ2 =
1

κ2 − lk

κ2∑
m=lk+1

λm

which is the solution to the optimization problem (3).
end for
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(a) (b)

(c) (d)

(e) (f)

Figure 2: (a) original image (b) noisy image (σ = 10) (c) initial model priors (d) updated model
priors after the first EM iteration on the first transformed channel (e) pixel-wise arithmetic mean
of the noisy image’s three color channels (f) patch map formed after the first EM iteration. White
color highlights the patches classified as essentially flat.

53



Yi-Qing Wang

3.4 SURE-Aided Adaptive Filtering

EM, as we have seen, turns out to be a convenient tool at building and selecting the best basis among
20 alternatives for patch representation and thus denoising. For example, if a noisy patch P̃ is found
to be best described by the k-th model

P̃ = F kc+ µk + σN

a reasonable basis for its representation will be the one formed by the eigenvectors of F kF
T
k .

Our strategy is to retain a noisy image and keep on updating the GFM mixture as well as the
ensuing adaptive filters for individual patches. Consequently the blurring is less an issue than in
K-LLD [5]. On the other hand, although the constantly increasing overall likelihood is an attractive
property of the EM algorithm, it does not guarantee monotone convergence of the estimates, except
in some special cases [13]. As a matter of fact, despite the observed tendency for a higher overall
likelihood to go with a lower MSE, no causal relationship between the two can be established em-
pirically. Zoran and Weiss [28] attempted to reconcile these two concerns by tying them together
to form a single cost function. We address the problem with the help of SURE [22] by evaluating a
statistic indicative of the adaptive filter’s real-time performance. Let us state a specialized version
of Stein’s theorem in anticipation of its application in this context.

Definition 1 Let P̃ be the sum of a fixed vector P ∈ Rκ2 and a Gaussian random vector σN ∈ Rκ2

with N distributed as N (0, Iκ2) and σ a scalar. Let f be a filter of one of the following three forms:

1. linear: f(P̃ ) =
∑κ2

j=1 cj
〈
P̃ − µ, bj

〉
bj + µ

2. soft shrinkage: f(P̃ ) =
∑κ2

j=1 cjγ
soft
t

(〈
P̃ − µ, bj

〉)
bj + µ with γsoftt (ω) = sgn(ω)(|ω| − t)+

3. hard shrinkage: f(P̃ ) =
∑κ2

j=1 cjγ
hard
t

(〈
P̃ − µ, bj

〉)
bj + µ with γhardt (ω) = ω1|ω|>t

where µ, (cj)1≤j≤κ2 , (bj)1≤j≤κ2, and t denote the filter-specific mean, filtering coefficients, basis, and
threshold. And their weak derivatives are defined to be

1. linear: ∇ · f(P̃ ) =
∑κ2

j=1 cj

2. soft shrinkage: ∇ · f(P̃ ) =
∑κ2

j=1 cj1[t,+∞)

(∣∣〈P̃ − µ, bj〉∣∣)
3. hard shrinkage: ∇ · f(P̃ ) =

∑κ2

j=1 cj
(
1[t,+∞)

(∣∣〈P̃ − µ, bj〉∣∣)+ tE
[
(δt − δ−t)

(〈
P̃ − µ, bj

〉)
| P
])

where δx(·) represents a Dirac distribution centered on x ∈ R.

Theorem 1 Under the assumptions in Definition 1, SURE given the observation P̃

SUREf (P̃ ) :=
1

κ2
‖P̃ − f(P̃ )‖2 − σ2 +

2σ2

κ2
∇ · f(P̃ )

is unbiased

E
[
SUREf (P̃ ) | P

]
= E

[ 1

κ2
‖P − f(P̃ )‖2 | P

]
.
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SURE is valuable because it is a function of only the observable P̃ . However, in case of f being
a hard shrinkage operator, the expectation evaluating the density difference at t and −t

E
[
(δt − δ−t)

(〈
P̃ − µ, bj

〉)
| P
]

is a function of the unknown P . To circumvent the issue, one only needs to replace the expectation
with an approximatively unbiased estimator

1

2ε

(
1[t−ε,t+ε] − 1[−t−ε,−t+ε]

)(〈
P̃ − µ, bj

〉)
for a small enough ε > 0.

If the filtering coefficients (cj)1≤j≤κ2 also depend on P̃ , like those in (1), SURE’s expression
generally becomes rather unwieldy. In this case, we treat them as constants as an expedient approx-
imation.

3.4.1 Performance Measurement of Adaptive Filters

A useful statistic, the SURE empirical mean, can be constructed to measure how effective filters
are at denoising. Note that in a conventional filtering scheme, neighboring patches are allowed to
overlap one another to help reduce artifacts in restored images. Hence our i.i.d. assumption does not
apply (though it does not prevent us from using EM for inference). However, given their restricted
supports, it is plausible that patches in a natural image, seen as a two-dimensional stochastic process,
satisfy the wide-sense stationarity [2], a weaker condition required to prove the next corollary.

Corollary 1 Under the assumptions of Theorem 1 and some mild stationary conditions on image
patches (Pi)1≤i≤N , the SURE empirical mean

1

N

N∑
i=1

SUREf (P̃i) :=
1

N

N∑
i=1

( 1

κ2
‖P̃i − f(P̃i)‖2 − σ2 +

2σ2

κ2
∇ · f(P̃i)

)
is an unbiased estimator of the expected patch MSE κ−2E[‖P − f(P̃ )‖2] and it converges

lim
N→∞

1

N

N∑
i=1

SUREf (P̃i) =
1

κ2
E[‖P − f(P̃ )‖2]

almost surely and in L2 sense.

Due to its dependence on f , the estimator can be seen as a performance measurement of the
adaptive filter. Thus one can terminate S-PLE when this estimator goes up in value because it
signals that the algorithm takes a turn for the worse in terms of the produced filtering bases. More
importantly, this device provides us with a criterion for switching among filters. In our context, we
can let both Wiener (1) and shrinkage filters [9, 8] process the noisy patches and then decide the
optimal filter for each mixture component by comparing their respective model-wide SURE empirical
mean. Our experiments confirmed that with the hard shrinkage and Wiener filter to choose from,
the restored image improves in MSE. Nonetheless, it should be emphasized that this rule is not well
founded if applied on a patch-by-patch basis because SURE, after all, is a random variable.

Perhaps more interestingly, this SURE empirical mean can be shown as an asymptotic upper
bound on the MSE of the restored image. Hence we have one more reason to monitor it and let
S-PLE run as long as it continues to decrease in value. Although in theory this approach cannot
ensure a strict decline of the true MSE, it turned out to be quite reliable in our experiments (figure 3).
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(a) (b)

Figure 3: (a) σ = 20: the MSE of the restored traffic image and their corresponding SURE empirical
mean at each S-PLE iteration (b) σ = 20: the MSE of the restored valldemossa image and their
SURE empirical mean at each S-PLE iteration. These two statistics are indeed quite close. The
observed deviation from the expected asymptotic behavior could be explained by the calculated
SURE being biased because of the explained approximation used in dealing with non-linear Wiener
filtering coefficients.

3.4.2 Self-adjusting Flat Patches

We settled for the patch size 8× 8. Yet, for noisier images, it is necessary to increase the patch size
in order to denoise more aggressively, especially in slow varying areas depicting, for example, sky
or building facades. When denoising a flat patch P , we focus on its non-overlapping neighboring
patches which do not intersect with P . One such patch Q is deemed similar to P only if the following
two conditions hold simultaneously:

1. both patches belong to the same flat region;

2. the hypothesis that the true states of both patches are the same shall be upheld statistically;

The first condition can be easily checked thanks to the patch map and the connected component
labeling algorithm 3 [21] while the second one simply boils down to a chi-square test: under the
null hypothesis, the squared sum of the pixels in P−Q√

2σ
should follow a chi-square distribution with

κ2 = 64 degrees, whose law is denoted by Ptest. To take into account this possibly overly simplified
null hypothesis and ensure a high likelihood for retaining at least one additional patch to help denoise
P , the chi-square test threshold t = 65 is thus set to verify

Ptest
(‖P −Q‖2

2σ2
≤ t
)

= 0.5.

Once these supposedly flat and similar patches are identified, they are merged to form a new
patch. The fact that they do not overlap amounts to little more than an expansion of the patch P
itself. By taking the arithmetic mean of noisy pixels contained in it, one can get a new estimate for
the expanded patch. It ought to be mentioned that when noise is strong, EM can mistake weak bor-
ders for noise and cause some patch orientation to be not properly recognized, which usually happens
in the areas of subtle and gradual color transition (figure 4). It is the chi-square test that provides
a remedy by favoring the locality of patch blending and thus enhances the algorithm’s robustness.

3We obtained a version from http://alumni.media.mit.edu/~rahimi/connected/.
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(a) (b)

(c) (d)

Figure 4: The two images in the first row are dice degraded by Gaussian noise with (a) σ = 10 and
(b) σ = 30 respectively. EM iterated twice on the first transformed channel as explained in figure 2
to produce the patch map for (c) σ = 10 and (d) σ = 30. Notice that the oriented edge on the top
side of the dice failed to be recognized at σ = 30.
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Nonetheless, this adjustment can be problematic when noise level is low. It should be kept in mind
that the patch expansion is only justified if it represents a better balance between noise removal and
signal preservation. Once again, SURE is the decision aid which we can fall back on (algorithm 4):
we identify the pixels which only belong to flat patches and put them into a vector p̃. Regardless of
whether flat patches expand or not, these pixels are restored by simple linear operations. The patch
size increase can thus be validated or invalidated by comparing the SURE estimates resulting from
these two filters operating on p̃. This device enabling automatic patch size selection in relatively flat
areas of an image improves dramatically the visual quality as well as the overall MSE of restored
images especially when noise is strong.

Algorithm 4 Flat Patch Expansion

Input: Patch map M, noise level σ and noisy patches (P̃i)1≤i≤N .
Parameters: Patch dimension κ× κ, search window size w and similarity threshold t.
Output: Potentially updated flat patches estimated with an expanded support.
Run a connected component labeling algorithm on the patch map to locate flat areas.
Identify the pixels which only belong to flat patches and put them into a column vector p̃ ∈ Rnf .
for i = 1 to N do

if P̃i belongs to the flat model then
Find, within the search window centered on P̃i, non-overlapping similar patches sitting in the
same flat area as P̃i.
Merge them with P̃i to have the expanded noisy patch P̃ e

i .

Estimate all pixels in P̃ e
i by their arithmetic average which results in P̂ e

i .

Record in a nf × nf matrix Fei the filter used in the previous step so that Fei p̃ and P̂ e
i coincide

on those pixels they share.
end if

end for
Assign all the filtered patches P̂ e

i the same weight and restore noisy flat patches. Find the coef-
ficients αi to have Fe =

∑
i αiFi and p̂e = Fep̃ where p̂e denotes the restored pixels on the same

sites as those in p̃.
Calculate the resulting SURE Se.
Repeat the same steps without expanding flat patches and denote the SURE estimate S.
if Se < S then

Take the estimates with patch expansion.
else

Take the estimates without patch expansion.
end if

4 Algorithm Outline and a Comparative Study

The complete S-PLE algorithm is described in algorithm 5.

To reduce execution time when denoising color images, instead of running the computationally
intensive EM algorithm on the three transformed channels, the first transformed channel, supposedly
with the highest SNR, should be given priority so that EM only operates on this channel and thus can
iterate more rounds than otherwise. The other two channels are then restored using the same patch
map and filters resulting from these iterations. This expedient solution is backed by the observation
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Algorithm 5 S-PLE

Input: A noisy gray image Ũ .
Parameter: Number of EM iteration S, noise level σ.
Output: Denoised image.
Read in the GMM setup Θ0 and set the initial SURE empirical mean to E0 = (σ + 1)2 to reflect
its interpretation as an asymptotic MSE upper bound. Extract all 8 × 8 patches from Ũ to form
the noisy patch set P and compute their posterior probabilities ∀P̃ ∈ P , ∀0 ≤ k ≤ 19, PΘ0(sP =
k | P̃ ).
for t = 1 to S do

Update model priors:

∀0 ≤ k ≤ 19, wk,t =
1

|P|
∑
P̃∈P

PΘt−1(sP = k | P̃ ).

Update model means:

∀0 ≤ k ≤ 19, µk,t =

∑
P̃∈P P̃PΘt−1(sP = k | P̃ )∑
P̃∈P PΘt−1(sP = k | P̃ )

.

Update factor loadings:

∀0 ≤ k ≤ 19, F k,t = Σ̃
∗
k,t−1F k,t−1(M−1

k,t−1F
T
k,t−1Σ̃

∗
k,t−1F k,t−1 + σ2Ilk)

−1.

with lk = 32 for all k except for the last two: l18 = 63 and l19 = 1 where

∀0 ≤ k ≤ 19, Mk,t−1 = F T
k,t−1F k,t−1 + σ2Ilk and

Σ̃
∗
k,t−1 =

∑
P̃∈P(P̃ − µk,t)(P̃ − µk,t)TPΘt−1(sP = k | P̃ )∑

P̃∈P PΘt−1(sP = k | P̃ )
.

For all k, apply the spectral decomposition to F k,tF
T
k,t to have its lk orthonormal leading eigen-

vectors.
Create the patch map with the updated parameter set Θt:

M : P̃ ∈ P 7→ argmax
0≤k≤19

PΘt(sP = k | P̃ ).

For all k, denoise the patches assigned to the k-th model with both Wiener and the hard shrinkage
filter and pick the better filtered patches according to their achieved model-wide SURE empirical
mean.
Record the SURE empirical mean Et.
Try patch expansion in flat areas.
if Et > Et−1 then

Break (Or continue iterating to see if the SURE empirical mean will eventually go below Et−1).
end if

end for
Assign equal weights to all restored patches and recover the image.
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that more iterations on the first transformed channel generally bring about better results in terms
of MSE.

Table 1 compares S-PLE with several other acclaimed algorithms [14, 15, 16, 4, 26, 18] also avail-
able on IPOL. Since noise is random, what we really wish to compare is the mean RMSEs various
algorithms can achieve given the same noiseless image. But as an algorithm operating on a big image
usually produces a quite stable RMSE (whose empirical standard deviation rarely exceeds 0.05), we
thus feed independently generated noisy images to each algorithm just once before compiling the
results.

Concluding remarks: figure 5 displays the images used in the algorithm comparison. Figure 6
makes clear that for portraits, BM3D cannot produce a relatively flat background. It is this obser-
vation that leads to the inclusion of the flat model in the mixture in the first place. And S-PLE’s
approach to identifying flat areas is less brutal than that of NLBayes, which explains its being able
to preserve more details than NLBayes. This is amply illustrated for example on the building fa-
cade in figure 7. However, the same example also shows that that because of its intrinsically local
approach to orientation detection, structure only observable on a larger scale cannot be kept in a
really satisfactory manner. In addition, relative to BM3D and NLBayes, a tendency for S-PLE to
overlook structural information amid strong noise is also demonstrated by the image computer in
table 1. But given its generally superior performance and relatively low computational cost, S-PLE
clearly should be counted as another state-of-the-art image denoising algorithm.

(a) (b) (c)

(d) (e) (f)

Figure 5: gray images used in the algorithm comparison (a) computer (704×469) (b) dice (704×469)
(c) flowers (704× 469) (d) girl (704× 469) (e) traffic (704× 469) (f) valldemossa (769× 338)

A About the Filters

In this section, we briefly explain the two types of filters deployed in the algorithm. Suppose that
a random signal S ∼ N (µS,ΣS) is corrupted by some Gaussian noise following N (0, σ2I). Wiener
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Table 1: Algorithm Comparison1

3σ = 2 PLE5 DCT GSM4 KSVD NLM EPLL6 S-PLE2 BM3D NLBayes
computer 2.40 1.65 1.64 1.55 1.64 1.57 1.54 1.52 1.85
dice 0.96 0.91 0.92 0.96 0.97 0.89 0.86 0.84 1.31
flowers 1.25 1.08 1.09 1.09 1.29 1.09 1.02 1.04 1.44
girl 1.24 1.13 1.12 1.14 1.17 1.09 1.09 1.05 1.50
traffic 2.82 1.73 1.77 1.65 1.72 1.64 1.67 1.62 1.97
valldemossa 3.65 1.75 1.79 1.73 1.76 1.69 1.78 1.68 2.12
average 2.05 1.37 1.38 1.35 1.42 1.32 1.32 1.29 1.69

σ = 5 PLE DCT GSM KSVD NLM EPLL S-PLE BM3D NLBayes
computer 4.25 3.40 3.28 3.08 3.19 3.05 2.97 2.94 2.95
dice 1.45 1.44 1.51 1.89 1.70 1.32 1.29 1.27 1.72
flowers 2.16 1.97 1.97 2.11 2.42 1.87 1.79 1.81 2.18
girl 1.92 1.85 1.89 2.11 2.01 1.74 1.69 1.69 1.93
traffic 4.84 3.76 3.69 3.49 3.70 3.38 3.38 3.40 3.63
valldemossa 6.48 4.04 3.98 3.90 4.15 3.75 3.81 3.77 3.85
average 3.51 2.74 2.72 2.76 2.86 2.51 2.48 2.48 2.71

σ = 10 PLE DCT GSM KSVD NLM EPLL S-PLE BM3D NLBayes
computer 6.12 5.66 5.36 5.14 5.16 4.89 4.77 4.65 4.51
dice 2.08 2.08 2.24 3.42 2.80 1.90 1.80 1.82 2.15
flowers 3.26 3.14 3.19 3.70 4.01 2.92 2.85 2.86 3.07
girl 2.65 2.61 2.82 3.60 3.21 2.44 2.35 2.35 2.56
traffic 7.18 6.51 6.21 5.99 6.05 5.61 5.68 5.67 5.57
valldemossa 9.24 7.45 7.04 6.94 7.02 6.58 6.65 6.66 6.51
average 5.08 4.57 4.47 4.79 4.70 4.05 4.00 4.00 4.06

σ = 20 PLE DCT GSM KSVD NLM EPLL S-PLE BM3D NLBayes
computer 8.86 8.82 8.37 8.56 7.90 7.54 7.41 7.18 7.07
dice 3.20 3.05 3.19 6.74 3.55 2.95 2.66 2.67 2.76
flowers 4.97 4.88 5.02 6.60 5.66 4.57 4.55 4.48 4.67
girl 3.84 3.65 4.33 6.55 4.18 3.55 3.35 3.28 3.40
traffic 10.37 10.08 9.82 9.71 9.40 8.70 8.80 8.83 8.74
valldemossa 13.26 12.26 11.55 11.47 11.19 10.60 10.73 10.77 10.53
average 7.41 7.12 7.04 8.27 6.98 6.31 6.25 6.20 6.19
1 The algorithms are ordered to reflect their global performance. Marked in bold is the lowest RMSE in each row.
2 S-PLE was allowed to iterate 50 times.
3 noise standard deviation
4 BLS-GSM [17]
5 PLE, with no observable convergence available, iterated four times
6 EPLL [28]
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Table 2: Algorithm Comparison (Continuation)1

3σ = 30 PLE5 DCT GSM4 KSVD NLM EPLL6 S-PLE2 BM3D NLBayes
computer 10.97 11.13 10.83 10.22 10.43 9.51 9.39 9.09 9.12
dice 4.43 3.88 4.18 6.09 4.87 3.94 3.37 3.44 3.35
flowers 6.44 6.37 6.15 6.95 7.45 6.00 5.92 5.80 5.89
girl 4.85 4.46 4.64 6.24 5.45 4.51 4.11 4.04 4.10
traffic 12.23 12.38 12.35 11.58 12.11 10.85 11.08 10.97 10.99
valldemossa 15.80 15.32 14.74 14.20 14.37 13.33 13.58 13.64 13.43
average 9.12 8.92 8.81 9.21 9.11 8.02 7.90 7.83 7.81

σ = 40 PLE DCT GSM KSVD NLM EPLL S-PLE BM3D NLBayes
computer 12.61 12.92 12.85 12.20 12.41 11.13 11.24 10.72 10.85
dice 5.85 4.64 4.96 7.91 5.20 4.80 4.49 4.14 3.95
flowers 7.68 7.59 7.32 8.55 8.96 7.12 7.14 6.94 6.98
girl 6.07 5.23 6.01 7.86 5.84 5.30 5.17 4.67 4.60
traffic 13.87 14.17 14.70 13.61 14.24 12.53 12.86 12.70 12.90
valldemossa 17.71 17.48 17.22 16.52 16.90 15.57 15.83 15.73 15.62
average 10.63 10.33 10.51 11.10 10.59 9.40 9.45 9.15 9.15
1 The algorithms are ordered to reflect their global performance. Marked in bold is the lowest RMSE in each row.
2 S-PLE was allowed to iterate 50 times.
3 noise standard deviation
4 BLS-GSM [17]
5 PLE, with no observable convergence available, iterated four times
6 EPLL [28]
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(a) (b)

(c) (d)

(e) (f)

Figure 6: (a) original girl image (b) noisy image σ = 20 (c) EPLL RMSE = 3.55 (d) S-PLE
RMSE = 3.35 (e) BM3D RMSE = 3.28 (f) NLBayes RMSE = 3.40
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(a) (b)

(c) (d)

(e) (f)

Figure 7: (a) original valldemossa image (b) noisy image σ = 20 (c) EPLL RMSE = 10.60 (d) S-PLE
RMSE = 10.73 (e) BM3D RMSE = 10.77 (f) NLBayes RMSE = 10.53
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filtering minimizes

min
L,b

E‖LS̃ + b− S‖2
2 = min

L,b
E‖L(S +N) + b− S‖2

2

which yields the optimal linear estimate (with ΣS’s eigenvalues denoted by (λ1, · · · , λn))

Ŝ = ΣS(ΣS + σ2I)−1(S̃ − µS) + µS =
n∑
i=1

λi
λi + σ2

〈
S̃ − µS, bi

〉
bi + µS.

On the other hand, shrinkage uses another thresholding strategy with γt(·) given in definition 1

Ŝ =
m∑
i=1

γt(
〈
S̃ − µS, bi

〉
)bi + µS with t = σ

√
2 lnm

where (bi)1≤i≤n denotes a certain basis and m satisfies m ≤ n [9, 8].
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