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Abstract

Given an image where a specified region is unknown, image inpainting or image completion is
the problem of inferring the image content in this region. Traditional retouching or inpainting is
the practice of restoring aged artwork, where damaged or missing portions are repainted based
on the surrounding content to approximate the original appearance. In the context of digital
images, inpainting is used to restore regions of an image that are corrupted by noise or where
the data is missing. Inpainting is also used to solve disocclusion, to estimate the scene behind an
obscuring foreground object. A popular use of digital inpainting is object removal, for example,
to remove a trashcan that disrupts a scene of otherwise natural beauty.
Inpainting is an interpolation problem, filling the unknown region with a condition to agree
with the known image on the boundary. A classical solution for such an interpolation is to solve
Laplace’s equation. However, Laplace’s equation is usually unsatisfactory for images since it is
overly smooth. It cannot recover a step edge passing through the region.
Total variation (TV) regularization is an effective inpainting technique which is capable of
recovering sharp edges under some conditions (these conditions will be explained). The use of
TV regularization was originally developed for image denoising by Rudin, Osher, and Fatemi [3]
and then applied to inpainting by Chan and Shen [13]. TV-regularized inpainting does not create
texture, the method is limited to inpainting the geometric structure.

Source Code

ANSI C source code to produce the same results as the demo is accessible on the article web
page http://dx.doi.org/10.5201/ipol.2012.g-tvi. Future software releases and updates
will be posted at http://dev.ipol.im/~getreuer/code.
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1 Introduction

The general problem of interpolation has a very long history and numerous works across multiple
disciplines, see for example the chronology by Meijering [15]. In the context of imaging, inpainting
is closely-related to image replacement [5], image editing [10], image zooming [11, 13], and edge
completion [4].
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The first variational approach to the image inpainting problem was Nitzberg and Mumford’s 2.1-D
sketch [2], based on a variant of the Mumford–Shah functional, and the second variational approach
was the work of Masnou and Morel [6], based on solving for level lines with minimal curvature.
Bertalmı́o, Sapiro, Caselles, and Ballester [9] introduced the term “image inpainting” in analogy to
artistic inpainting and proposed an anisotropic diffusion PDE model.

Chan and Shen [13] applied TV regularization to inpainting. Chan and Shen have also suggested
an improvement, a second order curvature-driven diffusion [12] that can connect level lines across
larger gaps.

In order to inpaint textures, the method of Igehy and Pereira [5] fills the unknown region with
texture synthesized from a second image. Efros and Leung [8] proposed a patch copy-paste method
to synthesize texture within the same image, and Criminisi, Pérez, and Toyama [17] refined the
fill-order to improve structural propagation. The methods of Bertalmı́o, Vese, Sapiro, and Osher [16]
and Elad, Starck, Querre, and Donoho [19] are attempts to mix the variational and patch-based
approaches to recover both structure and texture.

2 H1 Inpainting (Laplace’s Equation)

Laplace’s equation is a classical solution to the inpainting problem. Let f : Ω → R be a given
grayscale image and let D ⊂ Ω be an open set representing the region to be inpainted. It is supposed
that f is known in Ω\D := {x ∈ Ω : x /∈ D} and unknown in D. The inpainting solution by Laplace’s
equation satisfies {

∆u = 0 in D,
u = f in ∂D,

(1)

where ∆ denotes the Laplacian and u = f in Ω\D.
The H1(D) seminorm of u is defined as the L2(D) norm of its gradient,

|u|2H1(D) :=

∫
D

|∇u(x)|2 dx, (2)

where |∇u(x)| denotes the Euclidean magnitude of the gradient at x. The function space H1 is the
set of L2 functions with finite H1 seminorm, i.e., the Sobolev space W 1,2,

H1(D) := {u ∈ L2(D) : |u|H1(D) <∞}. (3)

Dirichlet’s principle [7, section 2.2.5] states that if the Laplace inpainting solution is in C2(D), then
it has the minimal H1 seminorm among all C2 functions satisfying the boundary condition. The
connection is through Green’s identity: if ∆u = 0, then

0 = −
∫
D

(∆u)v dx =

∫
D

∇u · ∇v dx for all v ∈ C2
0(D), (4)

and from the other direction, if u minimizes the H1 seminorm, then

0 = ∂ε|u+ εv|2H1

∣∣
ε=0

=

∫
D

∇u · ∇v dx for all v ∈ H1
0 (D). (5)

3 TV Inpainting

Total variation (TV) inpainting replaces H1 with the functions of bounded variation (BV) and the
TV seminorm. A function u is in BV (Ω) if there exists a Radon measure Du such that∫

Ω

u(x) div~g(x) dx = −
∫

Ω

〈~g,Du(x)〉 for all ~g ∈ C1
c (Ω,R2)2, (6)
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and the total variation seminorm of u is

‖u‖TV(Ω) :=

∫
Ω

|Du| := sup
{∫

Ω

u div~g dx : ~g ∈ C1
c (Ω,R2)2,

√
g2

1 + g2
2 ≤ 1

}
. (7)

When u is smooth, TV is the integral of its gradient magnitude,

‖u‖TV(Ω) =

∫
Ω

|∇u| dx. (8)

The TV inpainting method is to find the BV function u that solves the minimization problem

arg min
u∈BV (Ω)

‖u‖TV(Ω) +
λ

2

∫
Ω\D

(
f(x)− u(x)

)2
dx, (9)

where λ is a positive parameter. This minimization problem is identical to the Rudin, Osher, and
Fatemi denoising problem [3] except that here the second integral is over Ω\D instead of Ω. If
the exact solution is in BV and takes values in [0, 1], then minimizers u exist but are generally not
unique [14].

Inpainting may be viewed as denoising with a spatially-varying regularization strength λ(x),

arg min
u
‖u‖TV(Ω) +

1

2

∫
Ω

λ(x)
(
f(x)− u(x)

)2
dx, (10)

where in the case of inpainting λ(x) is set to zero in D and λ(x) > 0 outside of D. For x ∈ D where
λ(x) = 0, the value f(x) is unused and u(x) is only influenced by the ‖u‖TV term. Outside of D, the
model performs TV-regularized denoising and λ|Ω\D specifies the denoising strength. This denoising
behavior may be desirable when it is difficult to specify the inpainting domain accurately. By setting
λ to a very large value, the denoising effect is limited so that the image remains nearly unchanged
outside of D.

4 Split Bregman

We describe the split Bregman algorithm of Goldstein and Osher [21] applied to inpainting as devel-
oped in tvreg [22]. Due to the similarity between TV denoising and TV inpainting, the split Bregman
algorithm for denoising [23] is readily adapted to inpainting. This inpainting algorithm is identical
to the denoising algorithm aside from the spatially-varying λ in the u subproblem.

Our approach to discrete derivatives is to use one-sided differences and half-sample symmetric
extension at points near the boundaries. In one dimension, we define the discrete derivative ∂ of a
uniformly-sampled signal f0, f1, . . . , fN−1 as its forward difference,

∂f0

∂f1
...

∂fN−2

∂fN−1

 =


−1 1

−1 1
. . . . . .

−1 1
0




f0

f1
...

fN−2

fN−1

 . (11)

Since the half-sample symmetric extension is 2N -periodic, the discrete gradient may also be viewed
as a cyclic convolution of the reflected signal (f0, . . . , fN−1, fN−1, . . . , f0) with the filter h−1 = 1,
h0 = −1, and h equal to zero otherwise.

In two dimensions, we define the discrete gradient of an N × N image u using the discrete
derivative as ∇u = (∂xu, ∂yu)T , where the subscript on ∂ denotes the dimension along which the
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difference is applied. We define discrete divergence through the relationship div := −∇∗ = −∂∗x−∂∗y ,
where ∗ denotes adjoint, and the discrete Laplacian as ∆ := div∇. In the image interior, the discrete
divergence is div v = vxi,j − vxi−1,j + vyi,j − vyi,j−1 and the discrete Laplacian is the 5-point formula
∆u = −4ui,j + ui+1,j + ui−1,j + ui,j+1 + ui,j−1. Please refer to the section on discrete derivatives in
the denoising article [23] for details.

Many different discretizations of the TV seminorm have been proposed, see the denoising arti-
cle [23] for discussion. Here, TV is approximated by summing the vector magnitude |∇ui,j| over all
pixels,

‖u‖TV(Ω) ≈
N−1∑
i=0

N−1∑
j=0

|∇ui,j|, (12)

where ∇u is the discrete gradient developed above. The split Bregman algorithm is applied to solve
the constrained minimization problem

arg min
d,u

∑
i,j

|di,j|+
1

2

∑
i,j

λi,j(fi,j − ui,j)2

subject to d = ∇u.
(13)

The auxiliary variable d is a vector field which is constrained to equal ∇u. The Bregman iteration [1]
method is applied to solve the constrained problem. In each iteration of the Bregman method, the
following problem is solved:

arg min
d,u

∑
i,j

|di,j|+
1

2

∑
i,j

λi,j(fi,j − ui,j)2 +
γ

2

∑
i,j

|di,j −∇ui,j − bi,j|2 (14)

where b is a variable related to the Bregman iteration algorithm and the parameter γ may be set
to any positive constant. The joint minimization over d and u is solved by an alternating direction
method, in each step minimizing either d or u while keeping the other variable fixed.

d subproblem With u fixed, the d subproblem is

arg min
d

∑
i,j

|di,j|+
γ

2

∑
i,j

|di,j −∇ui,j − bi,j|2. (15)

This problem is solved as in [23]:

di,j =
∇ui,j + bi,j
|∇ui,j + bi,j|

max
{
|∇ui,j + bi,j| − 1/γ, 0

}
. (16)

u subproblem With d fixed, the u subproblem is

arg min
u

1

2

∑
i,j

λi,j(fi,j − ui,j)2 +
γ

2

∑
i,j

|di,j −∇ui,j − bi,j|2. (17)

The optimal u satisfies
1
γ
λu−∆u = 1

γ
λf − div(d− b), (18)

where div and ∆ are the discrete divergence and Laplacian defined above. Analogous to Goldstein
and Osher’s approach for denoising, we approximate the solution to this equation using one sweep
of Gauss–Seidel per Bregman iteration. The subproblem is solved once for each Bregman iteration,
so the combined effect of the sweeps over multiple iterations solves the subproblem accurately.
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The auxiliary variable b is initialized to zero and updated according to

bk+1 = bk +∇u− d. (19)

The penalty parameter γ may be selected as any positive constant. The limiting solution exactly
satisfies the constraint d = ∇u for any γ > 0. As discussed in the denoising article [23], γ should be
a moderate value for good convergence speed.

In the d subproblem, the solution d is the vector shrinkage of (∇u + b) by 1/γ. The shrinkage
has the greatest effect when γ is small. In the u subproblem, however, the solution u satisfies

λu− γ∆u = λf − γ div(d− b), (20)

where the spatial interaction is stronger for larger γ. Therefore, γ should be neither extremely large
nor small for good convergence in both subproblems.

The overall algorithm is

Initialize u = 0, d = 0, b = 0
while ‖ucur − uprev‖2 > Tol do

Solve the d subproblem
Solve the u subproblem
b = b+∇u− d

Algorithm 1

The iteration continues until the L2 difference between the current and previous iterate of u
is below a threshold Tol or a maximum iteration limit is reached. The maximum iterations limit
should be large enough so that convergence within Tol is usually reached, but not too large to prevent
impractical runtimes.

For color images, the vectorial TV (VTV) is used in place of TV,

‖u‖VTV(Ω) :=

∫
Ω

( ∑
i∈channels

|∇ui(x)|2
)1/2

dx. (21)

The grayscale algorithm extends directly to VTV-regularized inpainting.

5 Examples

In the examples and online demo, we fix γ = 5, Tol = ‖f‖2/105, and the maximum number of
iterations is 250. In the online demo, the inpainting region may be randomly generated or specified
manually by clicking on the image. For visualization, the mask color may be set to yellow, blue, or
black. The mask color has no effect on the inpainting result.
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Online demo interface

5.1 Text removal

TV inpainting (and inpainting in general) is most successful when the inpainting domain is thin.
Excellent results are obtained in removing text overprinted on an image (λ = 104).

Input D TV Inpainting

A good feature of TV inpainting is that it reconstructs edges rather than smoothing them. The
following figure shows the detail where the edge of the mountain is inpainted:

Input TV Inpainting

Some other well-suited applications having thin inpainting domains are

• removing wires, e.g., utility lines, fences, cages;

• restoring photographs with scratches or folding creases;

• removing impulsive noise, provided that the set D of corrupt pixels is already determined.
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5.2 Effect of λ

Outside of the inpainting region D, the TV inpainting model denoises the image. The denoising
strength is controlled by the value of λ, where a smaller value implies stronger denoising. In the
figure below, the previous experiment is repeated with three different values of λ.

λ = 10 λ = 40 λ = 104

5.3 Comparison with H1 Inpainting

The following example compares H1 and TV inpainting where the inpainting domain D consists of
4 × 4-pixel and 32 × 32-pixel squares (λ = 104). The inpainting domain covers about 26% of the
image.

Exact Input (RMSE 51.4, MSSIM 0.589)

H1 Inpainting (RMSE 11.7, MSSIM 0.933) TV Inpainting (RMSE 12.5, MSSIM 0.935)

Notice that for both methods, the inpainting is usually better in the 4 × 4 squares than in the
larger 32 × 32 squares. The H1 inpainting is unable to recover sharp edges: in squares containing
an edge, it produces a smooth gradient. TV inpainting can create sharp edges, so it inpaints object
boundaries more convincingly.

According to the root mean squared errors (RMSE), H1 inpainting is a little better. However, it
is well known that RMSE may disagree with perception. We also compare using the mean structure
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similarity (MSSIM) index of Wang et al. [18], which is more sensitive to the quality of edges and
yields a maximum value of 1 for perfect agreement. The MSSIM suggests that the TV inpainting
result is slightly better than H1.

Input H1 Inpainting TV Inpainting

TV inpainting prefers straight contours as they have minimal TV, but this is less successful for
recovering curved boundaries. The closeups below show the car’s tail light. TV inpainting connects
the tail light boundary with a straight edge, producing sharp corners at the inpainting boundary.
The result is also poor in 32× 32 square containing the corner of the window frame.

Input H1 Inpainting TV Inpainting

TV inpainting can reconstruct a stripe passing through the inpainting domain, but only if the
length to be bridged is less than the stripe thickness. TV inpainting breaks the stripe if the length
is greater. TV inpainting always prefers to interpolate the level lines using the shortest possible
connection. Chan and Kang [20] investigate this effect theoretically in their error analysis of TV
inpainting. Here, this effect is most prominent where a rub strip is broken by a 32× 32 square and
can also be seen on the bottom edge of the door.

Input TV Inpainting
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5.4 Object Removal

In this example, TV inpainting is used to attempt to remove a lamppost from an image (λ = 250).

Input D TV Inpainting

The result is reasonable over the pole where D is thin, but is poor over the signal where it is thicker.
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