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Overview

Denoising is the problem of removing noise from an image. The most commonly studied case is
with additive white Gaussian noise (AWGN), where the observed noisy image f is related to the
underlying true image u by

and η is at each point in space independently and identically distributed as a zero-mean
Gaussian random variable.

Total variation (TV) regularization  is a technique that was originally developed for AWGN
image denoising by Rudin, Osher, and Fatemi [9]. The TV regularization technique has since
been applied to a multitude of other imaging problems, see for example Chan and Shen's
book [20]. We focus here on the split Bregman algorithm of Goldstein and Osher [31] for TV-
regularized denoising.

TV Regularization

Rudin, Osher, and Fatemi [9] proposed to estimate the denoised image u as the solution of a
minimization problem,

where λ is a positive parameter. This problem is referred to as the Rudin-Osher-Fatemi or ROF
problem. Denoising is performed as an infinite-dimensional minimization problem, where the
search space is all bounded variation (BV) images. A function u is in BV(Ω) if it is integrable
and there exists a Radon measure Du such that

This measure Du is the distributional gradient of u. When u is smooth, Du(x) = ∇u(x) dx. The
total variation (TV) seminorm of u is
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When u is smooth, TV is equivalently the integral of its gradient magnitude,

The TV term in the minimization discourages the solution from having oscillations, yet it does
allow the solution to have discontinuities. The second term encourages the solution to be close
to the observed image f. By this combination, the minimization finds a denoised image. If
f ∈ L2, the minimizer of the ROF problem exists and is unique and is stable in L2 with respect
to perturbations in f [24].

From a Bayesian point of view, this formulation is a maximum a posteriori estimate using a TV
prior. From the AWGN noise model, the conditional probability density p(f|u) is

where σ is the noise variance. The maximum a posteriori estimate is

The −log p(u) term is the prior on u, an a priori assumption on the likelihood of a solution u.
With total variation regularization, the selected prior is

where μ is a positive parameter controlling the regularization strength. A larger value of μ
places more emphasis on the prior, leading to a more regular solution. The ROF problem is
equivalent to the maximum a posteriori estimate with 1/λ = μσ2,

Through this connection with maximum a posteriori estimation, TV-regularized denoising can
be extended to other noise models. Alliney [12] and Chan and Esedoḡlu [19] developed TV
denoising for Laplace noise (L1 data fidelity),

Le, Chartrand, and Asaki [25] developed TV denoising for Poisson noise,



TV denoising has been similarly extended to multiplicative noise [17],[45] and Rician
noise [42].

Furthermore, these models can be extended to use a spatially varying λ (see for example [23]) to
impose a locally adapted regularization strength at different points of space,

TV-based inpainting [20] is an interesting special case where λ is set to zero over some region
of space. For x where λ(x) = 0, the observed value f(x) is ignored and u(x) is only influenced by
the ||u||TV term.

The choice of noise model can significantly affect the denoising results. For better results, the
noise model should agree with the actual noise distribution in the image.

Algorithms

For numerical solution of the minimization problem, several approaches for implementing the
TV seminorm have been proposed in the literature. TV is most often discretized by

where ∇x and ∇y are discretizations of the horizontal and vertical derivatives. A difficulty with
TV is that it has a derivative singularity when u is locally constant. To avoid this, some
algorithms regularize TV by introducing a small parameter ε > 0 within the square root,

Let ∇x
+, ∇x

−, ∇y
+, ∇y

− denote the forward (+) and backward (−) finite differences in the x and
y directions and let m(a,b) denote the minmod operator

Several ways to discretize the derivatives are

• One-sided difference  
• Central difference  
• Geometric average  
• Minmod  
• Upwind discretization [39]  



The sampling grid.

Central differences are undesirable for TV discretization because they miss thin structures. The
central difference at (i,j) does not depend on ui,j:

Therefore, if u has a one-sample wide structure like u0,j = 1 and ui,j = 0 for all i ≠ 0, the
variation at (0,j) estimated by central differences is zero. To avoid this problem, one-sided
differences can be used, however, they are not symmetric. The geometric average, minmod, and
upwind estimates listed above regain symmetry by combining the forward and backward one-
sided differences, though at the cost that then the derivatives are nonlinear. Another concern is
whether a TV discretization is consistent, that is, whether the discrete TV converges to the true
TV as the grid resolution becomes infinitely fine, see for example Wang and Lucier [40].

Another twist is that some algorithms substitute TV with the anisotropic TV,

The usual TV is invariant to rotation of the domain, but anisotropic TV is not. However, it
allows for other approaches that do not apply with the usual TV, for example Hochbaum's exact
algorithm [16] and graph-cuts [30].

As first proposed by Rudin, Osher, and Fatemi in [9], an alternative
to discretizing the minimization problem directly is to discretize its
gradient descent PDE. Through calculus of variations, the gradient
descent PDE of the minimization is

Since the problem is convex, the steady state solution of the gradient
descent is the minimizer of the problem. Therefore, the minimizer
can be obtained numerically by evolving a finite difference approximation of this PDE. An
explicit scheme for this was developed in [9]. Let ui,j denote samples on a grid, ui,j := u(ih,jh),
i, j = 0,1,…N, Nh = 1. Gradient descent is performed by iterating

Algorithm 1.

where dt is a small positive timestep parameter. The discretization is symmetric through a
balance of forward and backward differences. In the divisions, notice that the numerator is
always smaller in magnitude than the denominator. In the special case that the denominator is



zero (where u is locally constant), the quotient is evaluated as 0/0 = 0. The second line imposes
the zero Neumann boundary condition.

Instead of evolving the gradient descent, another approach taken for example with the digital
TV filter [14] is to solve for the steady state directly:

Many other algorithms for TV denoising have been developed, especially for the Gaussian noise
model, and this continues to be an active area of research. Numerous algorithms have been
proposed to solve the TV denoising minimization, too many to list them all here. To name a
few, there are algorithms based on duality [18],[36],[44], Newton-based methods [27], graph
cuts [30], and frame shrinkage [38]. Most recent methods employ operator
splitting [6],[26],[29],[31],[33],[34],[41],[43], particularly the split Bregman algorithm
discussed in the next few sections.

Bregman Iteration

Bregman iteration [1],[22],[28],[35] is a technique for solving constrained convex minimization
problems of the form

where J and H are (possibly nondifferentiable) convex functionals on defined on a Hilbert
space. We assume there exists u minimizing H for which H(u) = 0 and J(u) < ∞. The key idea is
the Bregman distance.

The Bregman distance 

The Bregman distance is defined as

Bregman distance compares the value J(u) with the tangent plane  The figure
above illustrates the distance in one dimension. The horizontal axis denotes u, the blue curve
denotes J(u), and the black line is the tangent plane  Here, ∂J is the
subdifferential of J [10], which is defined as

Bregman distance is not a distance in the usual sense because it is not symmetric. However, it



does satisfy other distance-like properties following from the definition of the distance and the
convexity of J [22]:

Given a starting point u0 and parameter γ > 0, the Bregman iteration algorithm is formally

Algorithm 2.

Existence of the solutions uk+1 is nontrivial if the search space is infinite dimensional. This is
studied in [22], with particular attention to the case where J is total variation.

Because uk+1 minimizes ,

so the iteration has the property

s o H(uk) decreases monotonically. Some stronger convergence results under additional
assumptions will be discussed shortly.

We will consider here the case when H is differentiable. In this case the sub-differential of H is
its gradient ∇H, and the sub-differential of the Lagrangian is given by

Since uk+1 minimizes , the optimality condition is then

Therefore, pk+1 ∈ ∂J(uk+1) can be selected as pk+1 = pk − γ∇H(uk+1) . Bregman iteration with
this rule is

Algorithm 3.

Suppose that H is differentiable and that the solutions uk+1 exist and are obtained by



Algorithm 3, then the following convergence results hold [22]: for any  such that  and 

and

Particularly, (uk) is a minimizing sequence of H.

A remarkable feature of Bregman iteration is that the limiting solution satisfies the constraint
H(u) = 0 exactly for any positive value of the parameter γ. The value of γ does, however, affect
the convergence speed and numerical conditioning of the minimization problems, so γ should be
selected according to these considerations.

A case of practical importance, including our application to TV denoising, is where u is in 
with linear equality constraints. Let A be a matrix and set

then Bregman iteration simplifies [28],[31] to Algorithm 4. Furthermore, when the constraints
are linear, Bregman iteration is equivalent [28] to the augmented Lagrangian method (also
known as the method of multipliers) introduced by Hestenes [2] and Powell [3].

Algorithm 4.

The subgradients pk are represented by the auxiliary variables bk, which are added within the
quadratic penalty term. Jia, Zhao, and Zhao [35] proved that the above iteration converges to
the solution of the constrained minimization problem for TV denoising for both the isotropic or
anisotropic TV discretization.

Discrete Derivatives

We describe here a methodology for discrete derivatives and boundary handling of uniformly
sampled functions. These discrete derivatives will be used in the denoising algorithm.

In one dimension, let  denote uniformly-spaced samples of a bounded function f. We
define the discrete first derivative of f as the forward difference

In two dimensions, the discrete gradient of  is defined as applying ∂ separately
along the x and y dimensions,



In analogy to the standard notation for continuous partial derivatives, the subscript on ∂ denotes
along which dimension the difference is applied.

Note that the negative adjoint −∂∗ is the backward difference,

We define discrete divergence through the relationship div := −∇∗. For a vector field 

The discrete Laplacian follows from the relationship Δ := div ∇,

We now address the issue of boundary handling. Above, we defined discrete derivatives
assuming samples fn are available for all integer n. On a finite-length signal f0, f1, …, fN−1, the
forward differences can be computed directly for n in the interior,

However, the forward difference at the right endpoint n = N − 1 would require the unknown
sample fN. Special handling is needed on the boundaries.

Define the half-sample symmetric extension Ef,

The definition is recursive since multiple reflections may be needed to obtain an index between
0 and N − 1. We also consider the tensor product of this extension applied to an N×N image ui,j,
i = 0, …, N − 1, j = 0, …, N − 1. We define the discrete derivative of finite-length f as the
forward difference of Ef,



This discrete derivative may be viewed as an N×N matrix multiplication,

Noting that Ef is 2N-periodic, the discrete gradient may also be viewed as a cyclic convolution
of the reflected signal (f0, …, fN−1, fN−1, …, f0) with the filter h−1 = 1, h0 = −1, and h zero
otherwise.

We define the discrete gradient of an N×N image u as ∇u = (∂xu, ∂yu)T. Due to the symmetric
extension, ∂Ef is (whole-sample) anti-symmetric about the points n = N − 1 (mod N):

Let g be such an anti-symmetric signal. Then −∂∗g is

This is the negative transpose of the matrix above for ∂. To explain the endpoints, note that g−1
and gN−1 are zero by the anti-symmetric property, which implies

Similarly in two dimensions, we define the discrete divergence of an N×N vector field v =
(vx,vy)T as 

Finally, second differences are obtained as



We define the discrete Laplacian of an N×N image as  In the image interior,
this is the 5-point Laplacian −4ui,j + ui+1,j + ui−1,j + ui,j+1 + ui,j−1.

Split Bregman for Gaussian Noise

Here we focus on the split Bregman algorithm of Goldstein and Osher [31]. Split Bregman is a
flexible algorithm for solving nondifferentiable convex minimization problems, and it is
especially efficient for problems with L1 or TV regularization. Goldstein and Osher [31] discuss
in particular its application to TV-regularized Gaussian denoising. It is easy to extend to other
noise models (described in a later section) and related problems like TV-regularized deblurring
and inpainting [37],[46],[47].

Total variation is approximated by summing the vector magnitude |∇ui,j| over all pixels,

where ∇u is the discrete gradient developed in the previous section. The split Bregman idea is
to apply operator splitting and then use Bregman iteration to solve the resulting constrained
minimization problem:

By introducing d, the first and second terms are not directly interacting. The split problem is
solved using Bregman iteration as in Algorithm 4. In each iteration of the Bregman method,
following problem is solved:

where b is a variable related to the Bregman iteration algorithm and the penalty parameter γ is a
positive constant. Goldstein and Osher proposed to solve this problem by an alternating
direction method [4],[5],[7], in each step minimizing either d or u while keeping the other
variable fixed. Esser [32] showed that for linear constraints, split Bregman with this alternating
direction method is equivalent to the alternating direction method of multipliers, which was
introduced by Glowinski and Marocco [4] and Gabay and Mercier [5].



d subproblem. With u fixed, the d subproblem is

This problem decouples over space and has a closed-form solution as a vectorial shrinkage,

u subproblem. With d fixed, the u subproblem is

The optimal u satisfies a discrete screened Poisson equation,

where div := −∇∗ and Δ := div ∇ are the discrete divergence and discrete Laplacian developed
in the previous section.

The optimality equation may be solved for u in the Fourier or DCT domain or by iterative
matrix techniques. In this work, we follow Goldstein and Osher's suggestion [31] to
approximate the solution to this equation with one sweep of Gauss-Seidel per Bregman
iteration. The subproblem is solved once for each Bregman iteration, so the combined effect of
the sweeps over multiple iterations solves the subproblem accurately.

Updating b.

We enforce the constraint d = ∇u by applying Algorithm 4 with H(u) = ½||∇u − d||2. The
auxiliary variable b is initialized to zero and updated after each Bregman iteration as

Selecting the penalty parameter γ.

As we discussed previously, Bregman iteration ensures that the limiting solution satisfies the
constraint H(u) = 0 exactly for any positive value γ. Therefore, a good choice of γ is where both
d and u subproblems converge quickly and are numerically well-conditioned.

In the d subproblem, the solution d is equal to (∇u + b) after shrinking its vector magnitude by
1/γ. This effect is more dramatic when γ is small.

The u subproblem behaves oppositely. The updated u is found by solving

The effect of the subproblem increases when γ is larger because the Δu term creates stronger
spatial interaction and d has more influence on the solution. However, the conditioning also



worsens as γ increases and is ill-conditioned in the limit γ → ∞.

Therefore, γ should be neither extremely larger nor small for good convergence. In the
examples, we fix γ = 5. We have found that the algorithm is fairly insensitive to the exact value
of γ.

The overall algorithm is

Algorithm 5.

Initialize u = 0, d = 0, b = 0
while ||u_cur - u_prev||_2 > Tol 
   Solve the d subproblem
   Solve the u subproblem
   b = b + ∇u - d

where the solutions of the subproblems are as developed above. In the xth subproblem (x = d or
u), the solution is computed using the current values of the other variables and overwrites the
previous value for x. Convergence is tested by the mean square difference between the current
and previous iterate of u. In the implementation, the default parameter values are Tol =
||f||2/1000 and γ = 5.

A similar algorithm to split Bregman is the FTVd algorithm by Wang, Yang, Yin, and
Zhang [29]. In FTVd, operator splitting and alternating direction minimization is applied in the
same way as in split Bregman. But instead of using Bregman iteration, FTVd enforces the
constraint by gradually increasing the penalty parameter γ in a continuation scheme. The
downside of continuation schemes is that penalty parameter may need to become very large to
satisfy the constraint accurately, which degrades the numerical conditioning and convergence
speed. Bregman iteration avoids these problems because γ stays fixed. On the other hand, FTVd
is advantageous in TV-regularized deconvolution, where it requires one fewer FFT transform
per iteration than split Bregman.

For color images, the vectorial TV (VTV) is used in place of TV,

The grayscale algorithm extends directly to VTV-regularized denoising.

Tuning λ

The choice of the parameter λ affects how much the image is regularized, balancing between
removing the noise and preserving the signal content. Parameter tuning can generally be
approached as a meta-optimization where λ is selected to optimize some criterion of the
denoising result. A straightforward method for parameter tuning is the discrepancy principle: λ
is selected to match the noise variance σ2. For TV denoising, the discrepancy principle suggests
to solve a constrained form of the ROF problem



Red: optimal λ values for three images. Blue: empirical estimate.

The discrepancy principle has an observed tendency to overestimate the mean squared error
optimal choice of λ and slightly over-smoothing the solution, see for example [8]. We
nevertheless follow it here as a simple automatic selection of the parameter.

Let  denote the mean value of f. We assume that the variance of f is at least as large as the
noise level

which is likely to be true since f is supposed to have additive noise of variance σ2. Under this
condition, the problem is equivalent to the unconstrained minimization

with λ as the Lagrangian multiplier for the constraint. There exists a unique value of λ for which
the minimizers of the two problems are the same. Unfortunately, the relationship between σ and
λ is indirect; there is no closed-form formula to obtain the value of λ corresponding to a
particular σ.

While there are some algorithms that can solve the constrained problem directly with σ, most
algorithms solve the unconstrained version with λ. To find a value of λ so that ||f − u||22 is
approximately σ2, an effective algorithm proposed by Chambolle [18] is

Algorithm 6.

Iterate
   u = argmin_u ||u||_TV + λ/2 ||f - u||_2^2
   λ = λ ||f - u||_2/σ

The sequence of λ produced by this iteration is proven to converge monotonically to the unique
λ such that ||f − u||22 = σ2. We initialize the iteration with the following empirical estimate of λ,

where σ is the noise standard deviation relative to the intensity range [0,255]. The iteration
solves the unconstrained problem with the current estimate of λ and then updates λ according to
||f − u||2. To speed up the minimizations, note that the u computed in one iteration can be used



as the initial guess in the following iteration.

The iteration converges quickly for most images and noise levels. We perform five iterations to
tune λ, which is sufficiently accurate so that ||f − u||2 is usually within 10% of σ.

Split Bregman for Laplace and Poisson Noise

For a general noise model, TV-regularized denoising takes the form

where F specifies the noise model,

The split Bregman algorithm may be applied if the problem is convex, which is the case with
the Laplace and Poisson noise models. As developed in [37], a splitting with two auxiliary
variables can be used to separate F from the derivative terms,

In each iteration of the Bregman method, following problem is solved:

where b1 and b2 are variables related to the Bregman iteration. As in the Gaussian case, this
problem is solved by minimizing one variable at a time with the other two fixed.

d subproblem. With z and u fixed, the d subproblem is the same as before

z subproblem. With d and u fixed, the z subproblem is

The solution decouples over i,j and the optimal z satisfies

For the Laplace noise model with F(z,f) = |z − f|, the solution is



For the Poisson noise model with F(z,f) = z − f log z, the solution is

u subproblem. With d and z fixed, the u subproblem is

The optimal u satisfies

which as before is approximated by one sweep of Gauss-Seidel iteration.

The overall algorithm is

Algorithm 7.

Initialize u = 0, z = 0, b2 = 0, d = 0, b1 = 0
while ||u_cur - u_prev||_2 > Tol
   Solve the d subproblem
   Solve the u subproblem
   Solve the z subproblem
   b1 = b1 + ∇u - d
   b2 = b2 + u - z

In the implementation, the default parameter values are Tol = ||f||2/1000, γ1 = 5, γ2 = 8.

As with Gaussian denoising, λ can be selected according to the discrepancy principle to match
the noise standard deviation. While there is no theoretical guarantee of convergence in this case,
we find that iterations similar to Algorithm 6 also work with Laplace and Poisson noise.

λ tuning for Laplace noise

λ = (-270.5 σ + 21572) / (σ^3 - 52.07 σ^2 + 1063 σ + 9677)
Iterate
   u = argmin_u ||u||_TV + λ ||f - u||_1
   λ = λ sqrt(||f - u||_2/σ)

λ tuning for Poisson noise

λ = 72.39/σ + 97.67/σ^2
Iterate
   u = argmin_u ||u||_TV + λ ∫ ((u - f)log u)
   λ = λ ||f - u||_2/σ



Empirical estimates are used to initialize λ. For Laplace noise, the sequence of λ tends to
oscillate, so a square root is included in the update formula to dampen the oscillations.

Laplace Poisson

Red: optimal λ values for three images. Blue: empirical estimates.

Implementation

This software is distributed under the terms of the simplified BSD license.

source code zip tar.gz
online documentation

Please see the readme.txt file inside or the online documentation for details.

Future software releases and updates will be posted at http://dev.ipol.im/~getreuer/code.

Examples

The first example demonstrates how for TV-regularized Gaussian denoising the value of λ
influences the result. A smaller value of λ implies stronger denoising. When λ is very small, the
image becomes cartoon-like with sharp jumps between nearly flat regions. The λ parameter
needs to be balanced to remove noise without losing too much signal content.

http://www.ipol.im/pub/algo/g_tv_denoising/tvdenoise_20120516.zip
http://www.ipol.im/pub/algo/g_tv_denoising/tvdenoise_20120516.tar.gz
http://www.ipol.im/pub/algo/g_tv_denoising/doc/index.html
http://dev.ipol.im/~getreuer/code


Input f (PSNR 20.15) λ = 5 (PSNR 26.00) λ = 10 (PSNR 27.87)

 λ = 20 (PSNR 27.34) λ = 40 (PSNR 24.01)

 

TV-regularized denoising with increasing values of λ.

The plot shows the PSNR vs. λ for the previous example. The optimal λ in this case is about
13.4.

PSNR vs. λ for the previous example.

To illustrate the importance of the noise model, the image in this example has been corrupted
with impulsive noise. The Gaussian noise model works poorly on impulsive noise: λ must be
very small to remove all the noise, but this also removes much of the signal content. Better
results are obtained with the Laplace noise model, which better approximates the distribution of
impulsive noise.

http://www.ipol.im/pub/algo/g_tv_denoising/k19-f.png
http://www.ipol.im/pub/algo/g_tv_denoising/k19-l5.png
http://www.ipol.im/pub/algo/g_tv_denoising/k19-l10.png
http://www.ipol.im/pub/algo/g_tv_denoising/k19-l20.png
http://www.ipol.im/pub/algo/g_tv_denoising/k19-l40.png
http://www.ipol.im/pub/algo/g_tv_denoising/k19-curve.png


Input f
(PSNR 13.26)

Gaussian, λ = 4
(PSNR 20.28)

Gaussian, λ = 8
(PSNR 19.70)

Laplace, λ = 1.25
(PSNR 25.85)

The Laplace model is more effective for removing impulsive noise.

The next example demonstrates VTV-regularized Gaussian denoising on a color image.

Exact

Input f (PSNR 18.57) Denoised u with λ = 7 (PSNR 28.24)

A problem with TV regularization is a loss of contrast. Suppose that f has value h within a disk
or radius r and is 0 outside,

Then if  Meyer [15] showed that TV-regularized Gaussian denoising decreases the value
within the disk by 2/(λr),

http://www.ipol.im/pub/algo/g_tv_denoising/imp-f.png
http://www.ipol.im/pub/algo/g_tv_denoising/imp-g-l4.png
http://www.ipol.im/pub/algo/g_tv_denoising/imp-g-l8.png
http://www.ipol.im/pub/algo/g_tv_denoising/imp-l.png
http://www.ipol.im/pub/algo/g_tv_denoising/hummingbird.jpg
http://www.ipol.im/pub/algo/g_tv_denoising/hummingbird-f.jpg
http://www.ipol.im/pub/algo/g_tv_denoising/hummingbird-u.jpg


Note that although the contrast is diminished, the edge of the circle is maintained exactly.
Strong and Chan [11] made a similar analytic investigation under the assumption that the edges
do not move, and showed that the behavior is similar when Ω is compact and for shapes other
than disks.

The figure below verifies the diminishing contrast numerically. The image contains three disks
of radius 0.11 with different heights, one large disk of radius 0.2, and a small disk of radius
0.04. The solution shows the decrease in value of each disk. For the three disks of radius 0.11,
the decrease is almost the same, despite their differing heights, and the decrease is smaller for
the large disk and larger for the small disk.

f u

Noted by Nikolova [13], another problem with TV regularization is the “staircase artifact,” a
tendency to produce small flat regions with artificial edges. This effect is demonstrated below.
The exact image has one jump along the center and is otherwise smooth. The plot shows a cross
section of the images to visualize the stair steps. The loss of contrast effect is also visible in the
peak of the dome.

f u

Chan et al. [21] discuss solutions that have been developed to reduce the loss of contrast and

http://www.ipol.im/pub/algo/g_tv_denoising/circles-f.png
http://www.ipol.im/pub/algo/g_tv_denoising/circles-u.png
http://www.ipol.im/pub/algo/g_tv_denoising/stair-f.png
http://www.ipol.im/pub/algo/g_tv_denoising/stair-u.png
http://www.ipol.im/pub/algo/g_tv_denoising/stair-cross.png


staircasing artifacts.
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