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Abstract
Demosaicking (or demosaicing) is the problem of interpolating full color information on an
image where only one color component is known at each pixel. Most demosaicking methods
involve some kind of estimation of the underlying image structure, for example, choosing adap-
tively between interpolating in the horizontal or vertical direction. This article discusses the
implementation details of the method introduced in Getreuer, “Color Demosaicing with Con-
tour Stencils,” 2011. Mosaicked contour stencils first estimate the image contour orientations
directly from the mosaicked data. The mosaicked contour stencils are then used to guide a
simple demosaicking method based on graph regularization.

Source Code
ANSI C source code to produce the same results as the demo is accessible on the article web page
https://doi.org/10.5201/ipol.2012.g-dwcs. Future software releases and updates will be
posted at http://dev.ipol.im/~getreuer/code.

Keywords: image demosaicking, image level-line analysis

1 The Bayer Pattern

Most digital cameras use only a single sensor at each pixel location. A color filter array (CFA) is
placed in front of the sensor to allow light of one color, usually red, green, or blue, to pass through
to each pixel. Therefore, the camera observes a mosaicked image.

The Bayer pattern [1] is the most commonly used pattern for the CFA.
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Red row

Green pixel locations are arranged in a quincunx lattice and cover half the array. The red and
blue pixel locations are spaced uniformly every two pixels and each cover a quarter of the array. The
pattern alternates between “red rows” and “blue rows.” In a red row the pattern is R,G,R,G, . . .,
and in a blue row it is G,B,G,B, . . ..
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Image Demosaicking with Contour Stencils

2 Mosaicked Contour Stencils

Contour stencils [7, 8, 12] are a method for estimating the contours of a uniformly sampled grayscale
or color image. The structure of a grayscale image is determined by computing variations of the form

(S ? [v]) :=
∑

m,n∈Z2

S(m,n)|vm − vn|, (1)

where S : Z2 × Z2 → R+” is the contour stencil, a function describing weighted edges between the
pixels of v. The image contours are estimated by finding the best-fitting stencil

S? = arg min
S∈Σ

(S ? [v]) (2)

where Σ is a set of candidate stencils.
Mosaicked contour stencils [13] are a modification of contour stencils for the Bayer pattern. To

extend contour stencils to mosaicked data, the key difference from the case with grayscale images is
that absolute differences are only meaningful between pixels of the same color channel. Therefore,
the stencil should be selected according to the CFA so that S(m,n) is nonzero only where m and n
sample the same channel.

For developing stencils on the Bayer pattern, there are two distinct cases: stencils centered on
a green location and stencils centered on a non-green location. The proposed stencils for stencils
centered on a green location are illustrated below.

Published in Image Processing On Line on 2012–03–24.
ISSN 2105–1232 c© 2012 IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
http://dx.doi.org/10.5201/ipol.2012.g-dwcs

Total Variation Inpainting using Split Bregman

Pascal Getreuer

Yale University (pascal.getreuer@yale.edu)

S0 S π
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Stencils centered on a green location.

These stencils are the result of a design optimization described in [13]. The edge weights are
nonzero where an edge is drawn, indicating that an absolute difference is to be computed between
the two linked pixels. For the horizontally-oriented stencil S0, the nonzero edge weights S(m,n) are
1/22. For the diagonally-oriented stencil S π

4 , the nonzero edge weights are 21/2/28. The stencil at
orientation π/8 is formed as a linear combination of the other two,

S π
8 =

S0 + S π
4

1 + 1√
2
(cot π

16
− 1)

. (3)

For example, the horizontal variation with S0, is computed as

(S0 ? [v])(i, j) =
∑

m,n∈Z2

S0(m,n)|vm − vn|

= 1
22

(
|vi−1,j+2 − vi+1,j+2|

+ |vi−2,j+1 − vi,j+1| + |vi−1,j+1 − vi+1,j+1| + |vi,j+1 − vi+2,j+1|
+ |vi−2,j − vi,j | + |vi−1,j − vi+1,j | + |vi,j − vi+2,j |
+ |vi−2,j−1 − vi,j−1| + |vi−1,j−1 − vi+1,j−1| + |vi,j−1 − vi+2,j−1|

+ |vi−1,j−2 − vi+1,j−2|
)
.

(4)
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The notation vi,j denotes the value of image v at pixel location (i, j), where the horizontal index i
increases to the right and the vertical index j increases upwards.

By rotations of these stencils, we define eight stencils Sk π8 at orientations kπ/8, k = 0, . . . , 7.
The values of the edge weights are such that the mosaicked contour stencils satisfy an approximate
rotational invariance: let f(x) = x1 sin θ − x2 cos θ, then

|θ − π
16
j| < π

16
⇒ S π

8
j = arg min

S∈Σ
(S ? [f ]). (5)

The following figure shows the stencils centered on a red location. The nonzero edge weights are
determined in the same way.
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8

Stencils centered on a red location (similarly for blue).

For every pixel in the mosaicked image, mosaicked contour stencils are applied to compute the
variation in eight orientations. The stencil yielding the smallest variation is selected as the best-fitting
stencil S?. The orientation modeled by S? is an effective estimate of the true contour orientation.

Hamilton–Adams [2], Chung–Chan [6], and some other existing methods for demosaicking use
sums of absolute differences for orientation detection as well. Compared to contour stencils, they are
more limited in the number of possible orientations, many of them only considering horizontal vs.
vertical.

3 Demosaicking

As a proof of concept that the improved angular resolution of contour stencils is useful for demo-
saicking, we introduced [13] a demosaicking method based on minimization. The objective function
is a graph regularization, which imposes weighted penalties on the differences between neighboring
pixels according to the edge weights of the graph. The orientations estimated by the contour stencils
are used to construction the graph. Additionally, the minimization is constrained such that the
result agrees with the input mosaic. A similar graph regularization approach was applied to image
interpolation in [8].

Demosaicking is performed by solving the constrained minimization
arg min

u

∑
m

(∑
n

(
wm,n‖um − un‖L

)2
)1/2

+ α
∑
m

(∑
n

(
wm,n‖um − un‖C

)2
)1/2

subject to ukm = fm, m ∈ Ωk, k ∈ {R,G,B},
(6)

where

• f denotes the observed mosaicked image,

• u is the demosaicked image that is found by the minimization,

• Ωk denotes the set of pixel locations where color component k is known, k ∈ {R,G,B},
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• α is a positive parameter,

• ‖·‖L and ‖·‖C are seminorms in the color space proposed by Condat [9],

‖x‖L := 1√
3
|xR + xG + xB|, (7)

‖x‖C :=
√

1
2
(xR − xB)2 + 1

6
(xR − 2xG + xB)2, (8)

and wm,n are graph weights selected according to the estimated contour orientations.
The first term of the objective function regularizes the luminance to suppress zipper artifacts

while the second term regularizes the chrominance to suppress color artifacts. The parameter α
balances between the two regularizers. If α is close to 1, then the result has no noticeable zipper
artifacts but has color artifacts. Increasing α reduces color artifacts but increases zipper artifacts.

The weights wm,n are created in an ad-hoc manner through several steps. The intent is that the
weights should encourage the result to have contours with the same orientations as what the contour
stencils detected. First, the best-fitting mosaicked contour stencils are determined to estimate the
contour orientation at each pixel. The orientation estimates are used to assign initial weights winit

between a pixel and its eight adjacent neighbors.
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Weights winit assigned according to the estimated orientation.

To impose spatial regularity, it is important that the graph is connected (i.e., pixels m and n are
connected if wm,n > 0 and the graph is connected if there exists a path between any two pixels). We
ensure that the graph is connected by adding a positive value ε to the weights of all edges between
adjacent pixels,

wreg
m,n :=

{
winit
m,n + ε if ‖m− n‖ = 1 or

√
2,

0 otherwise.
(9)

Finally, the graph weights are symmetrized and spatially smoothed with Gaussian filtering,

wm,n :=
∑
m′

(wreg
m′,n + wreg

n,m′) exp
(
−‖m−m′‖2

2σ2

)
. (10)

This spatial smoothing reduces the effect of incorrectly detected orientations. Pixels near the image
boundaries are handled by extrapolating the weights by whole-sample symmetric extension. The
resulting weights are nonzero only for edges between adjacent pixels (no longer edges are created).

4 Split Bregman

The minimization is solved efficiently by the split Bregman algorithm [10]. The problem is split by
introducing auxiliary variable d,

arg min
d,u

∑
m

(∑
n

(
wm,nd

L
m,n

)2
)1/2

+ α
∑
m

(∑
n

(
wm,n

√
(dC1
m,n)2 + (dC2

m,n)2
)2)1/2

subject to dm,n = C(um − un), m, n ∈ Z2,

ukm = fm, m ∈ Ωk, k ∈ {R,G,B},

(11)

25



Pascal Getreuer

where C denotes the color transformation xL
xC1

xC2

 =


1√
3

1√
3

1√
3

1√
2

0 − 1√
2

1√
6
− 2√

6
1√
6


xRxG
xB

 .

Note that since the weights are nonzero only between adjacent pixels, dm,n is only needed where m
and n are adjacent.

The constrained problem is solved by Bregman iteration. In each iteration of the Bregman
algorithm, the following unconstrained problem is solved:

arg min
d,u

∑
m

(∑
n

(
wm,nd

L
m,n

)2
)1/2

+ α
∑
m

(∑
n

(
wm,n

√
(dC1
m,n)2 + (dC2

m,n)2
)2)1/2

+
γ1

2

∑
m,n

‖dm,n − C(um − un)− b1
m,n‖2

2 +
γ2

2

∑
k∈{R,G,B}

∑
m∈Ωk

(fm − ukm − b2
m)2,

(12)

where γ1 and γ2 are positive parameters and b1 and b2 are variables associated with the Bregman
algorithm. This problem is solved by alternatingly solving for d with u fixed and u with d fixed.

d subproblem With u fixed, the d variable subproblem is

arg min
d

∑
m

(∑
n

(
wm,nd

L
m,n

)2
)1/2

+ α
∑
m

(∑
n

(
wm,n

√
(dC1
m,n)2 + (dC2

m,n)2
)2)1/2

+
γ1

2

∑
m,n

‖dm,n − C(um − un)− b1
m,n‖2

2.
(13)

The problem decouples over m and also decouples between the luminosity channel L and the chro-
matic channels C1 and C2. This leads for each m to two subproblems of the form

arg min
x∈RN

( N∑
n=1

(wnxn)2
)1/2

+
γ

2

N∑
n=1

(xn − yn)2. (14)

The minimizer of this problem satisfies

w2
mxm = γ(ym − xm)‖x‖w, ‖x‖w :=

( N∑
n=1

(wnxn)2
)1/2

. (15)

We can approximate the solution by fixed point iteration,

xnext
m = ym

γ‖x‖w
w2
m + γ‖x‖w

, (16)

where ‖x‖w is computed using the solution from the previous Bregman iteration or, if it is the first
iteration or the previous solution was 0, as ‖y‖w. Only one iteration of the fixed point iteration
needs to be performed per Bregman iteration. The combined effect over multiple Bregman iterations
solves the subproblem accurately.
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u subproblem With d fixed, the u variable subproblem is

arg min
u

γ1

2

∑
m,n

‖C(um − un)− dm,n + b1
m,n‖2

2 +
γ2

2

∑
k∈{R,G,B}

∑
m∈Ωk

(ukm − fm + b2
m)2. (17)

The minimizer of this problem satisfies

γ1

∑
n

C∗
(
2C(um − un)− (dm,n − b1

m,n) + (dn,m − b1
n,m)

)
+ γ2em(em · um − fm + b2

m) = 0, (18)

where C∗ denotes the adjoint of C and em is (1, 0, 0)T , (0, 1, 0)T , (0, 0, 1)T respectively at red, green,
and blue locations. We solve this equation by one sweep of block Gauss–Seidel per Bregman iteration,

(2 · 8γ1C
∗C + γ2eme

T
m)unext

m =

γ1

∑
n

C∗
(
2Cun + (dm,n − b1

m,n)− (dn,m − b1
n,m)

)
+ γ2em(fm − b2

m). (19)

On the right hand side, the factor 8 is a consequence of each pixel having 8 adjacent neighbors. The
matrices

(2 · 8γ1C
∗C + γ2eme

T
m) (20)

have size 3 × 3 and their inverses can be precomputed. There are three such matrices, and which
matrix is used depends on whether m is a red, green, or blue pixel location.

The overall minimization algorithm is

Initialize d = b1 = 0, b2 = 0
while ‖ucur − uprev‖2 > tol‖f‖2 do

Solve the u subproblem
Solve the d subproblem
b1
m,n = b1

m,n + C(um − un)− dm,n
b2
n = b2

n + ukn − fn, n ∈ Ωk

Algorithm 1

Bilinear demosaicking is used as the initial solution for u. The stopping condition is according to
the sum squared difference between the current and previous iteration’s solution of u. The algorithm
converges to the same solution for any positive γ1 and γ2, though the choice of these parameters
does affect the convergence speed. In the examples, we use γ1 = 4 and γ2 = 256. The computational
complexity per Bregman iteration is linear in the number of pixels.

5 Implementation

In the implementation, b1 is replaced by d̃ = d− b1, and the minimization algorithm is

Initialize d = d̃ = 0, b = 0
while ‖ucur − uprev‖2 > tol‖f‖2 do

Solve the u subproblem
Solve the d subproblem

d̃m,n = d̃m,n − C(um − un) + dm,n + ∆dm,n
bn = bn + ukn − fn, n ∈ Ωk

Algorithm 2

where ∆d := dcur − dprev is the change in d since the previous iteration. This version is algebraically
equivalent to the algorithm with b1 but eliminates some computations in solving the subproblems.
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6 Examples

In the examples, the parameters used are α = 1.8, ε = 0.15, σ = 0.6 and tol = 0.001. With these
parameters, around 40 iterations are needed for convergence on most images. To protect against the
possibility of an infinite loop, the implementation additionally sets a limit of 250 Bregman iterations,
but this limit should never be reached with these parameters.

The proposed demosaicking is computationally expensive compared to existing methods. In a
serial implementation on a recent laptop (2.40GHz Intel R© T770 with 2GB RAM), the computation
time on a 512× 512 image is 0.1 s per iteration or about 4 s total. The majority of the time is spent
solving the graph-regularized optimization problem. The orientation estimation with mosaicked
contour stencils itself is very fast, with a run time of 0.025 s on a 512× 512 image.

To avoid boundary effects, each border of the input image is padded by 16 pixels using whole-
sample symmetric extension. This extension can be computed directly on the mosaicked data because
the Bayer pattern is whole-sample symmetric about any row or column. This padding is then trimmed
from the demosaicking result. Most examples below show the mean squared error (MSE) between the
demosaicking result and the original image (the padding is not included in the MSE computation).
This methodology is also applied in the online demo.

6.1 Contour Estimation

In the figure below, contour stencils are applied to a mosaicked image to estimate the contour
orientations. For each pixel, the orientation modeled by the best-fitting stencil S? is displayed
superimposed on the original image.

Observed Image Estimated Contours

Contours estimated from the mosaicked image.

6.2 Weighted Graph Construction

The contours estimated by the contour stencils are used to construct a weighted graph. The initial
weights winit and the final weights w after adding ε and Gaussian filtering are shown over a small
region of the image below.
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6.3 Demosaicking Minimization

We now show the contour stencil demosaicking, which solves the graph-regularized minimization
problem using the graph weights w. The following figure shows the initialization (bilinear demo-
saicking) and the minimization result after 5 and 27 Bregman iterations. After 27 iterations, the
minimization converges with tolerance tol = 0.001.

Initialization (MSE 126.67) After 5 iterations (MSE 72.68) After 27 iterations (MSE 69.85)

Evolution of the demosaicking minimization.

The energy is decreased with each Bregman iteration. The energy is initially 3862, reducing to
3464 after 5 iterations, and converging to 3377 after 27 iterations.
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Iterations

0 5 10 15 20 25

E

3862

3464

3377

Energy value vs. Bregman iterations.
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6.4 Effect of α

Demosaicking involves a balance of avoiding two different undesirable effects, color artifacts and
zipper artifacts. Color artifacts are the appearance of artificial colors. Zipper artifacts are unnatural
patterns of alternating bright and dark pixels. These effects usually manifest on thin structures and
near edges, where interpolation is most difficult. Demosaicking methods that completely avoid one
artifact usually suffer heavily from the other. For example, the demosaicking methods of Gunturk
et al. [3] and Li [4] explicitly remove color artifacts but suffer significant zipper artifacts, and on
the other extreme, bilinear demosaicking has no zipper artifacts but significant color artifacts. So
instead, many demosaicking methods manage a balance of these two artifacts.

In contour stencil demosaicking, the parameter α explicitly controls the balance between color
artifacts and zipper artifacts. This figure shows the contour stencil demosaicking result for three
different values of α.

α = 1.2 α = 1.8 α = 3

α = 1.2 α = 1.8 α = 3

Smaller α leads to stronger color artifacts while larger α leads to more zipper artifacts. The
optimal α depends on the image. For the images above, a smaller α is better on the flower while a
larger α is better on the fence. We fix α = 1.8 in the subsequent examples, which is a good setting
for most images.

6.5 Comparison with Existing Methods

The figure hereafter compares the method with several existing demosaicking methods.
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Exact Observed Image Zhang–Wu [5] (MSE 117.93)

Chung–Chan [6] (MSE 105.36) SSD [11] (MSE 88.89) Contour Stencils (MSE 69.85)

The next figure compares the methods on a crop of image 21 of the Kodak Image Suite. The
fence is a difficult feature in this image, where artifacts are visible with most of the methods.

Exact Observed Image Zhang–Wu [5] (MSE 14.22)

Chung–Chan [6] (MSE 14.22) SSD [11] (MSE 23.35) Contour Stencils (MSE 12.89)
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The next example tests demosaicking on a gray synthetic image containing different geometric
structures. Contour stencils demosaicking is very successful on this image.

Exact Observed Image Zhang–Wu [5] (MSE 15.03)

Chung–Chan [6] (MSE 18.58) SSD [11] (MSE 27.40) Contour Stencils (MSE 0.57)

The last example compares the demosaicking methods on a crop from the standard mandrill
image. This image is extremely challenging due to the fine structure of the whiskers and strong color
contrast.
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Exact Observed Image Zhang–Wu [5] (MSE 221.97)

Chung–Chan [6] (MSE 221.23) SSD [11] (MSE 220.94) Contour Stencils (MSE 209.95)
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