
Published in Image Processing On Line on 2011–09–27.
Submitted on 2011–00–00, accepted on 2011–00–00.
ISSN 2105–1232 c© 2011 IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
https://doi.org/10.5201/ipol.2011.gl_lcc

2
0
1
5
/
0
6
/
1
6

v
0
.5
.1

IP
O
L

a
rt
ic
le

c
la
ss

Local Color Correction

Juan Gabriel Gomila Salas, Jose Luis Lisani

Universitat de les Illes Balears (UIB), Spain
(juan.gabriel@me.com, joseluis.lisani@uib.es)

Communicated by Jean-Michel Morel Demo edited by Jose-Luis Lisani Roca

Abstract

In this paper we present a local algorithm for contrast enhancement developed by N. Moroney at
Hewlett-Packard Laboratories and presented at the IS&T/SID Eight Color Imaging Conference,
in 2000. The algorithm uses a non-linear masking, is fast and does not require any manual
parameter adjustments.

Source Code

The source code (ANSI C), its documentation, and the online demo are accessible at the IPOL
web page of this article1.

Keywords: contrast enhancement; local method; gamma correction

1 Introduction

In the context of this paper, by color correction techniques we refer to methods that increase the
contrast of digital images. When images are either too dark or too bright a classical gamma correction
is enough to increase their dynamic range and improve their contrast.

Figures 1 and 2 display two examples of contrast enhancement using gamma correction. In the
first case a dark image is processed with γ = 0.5, while in Figure 2 γ = 2.5 is used to process a bright
image. The histograms of the resulting images show a clear increase of the dynamic range. In these
examples is also shown that global histogram equalization doesn’t perform well, since it increases
excessively the dynamic range of the original images.

However, when images contain both dark and bright regions gamma correction techniques perform
poorly (see Figure 3). The reason is that gamma correction is a global technique. All pixels having
a particular input intensity level are assigned the same output intensity, independent of the local
context.

Results in Figure 3 show that it is not possible to simultaneously improve the contrast of dark
and bright regions using gamma correction. A compromise solution for choosing γ is to compute

1https://doi.org/10.5201/ipol.2011.gl_lcc

Juan Gabriel Gomila Salas, Jose Luis Lisani, Local Color Correction, Image Processing On Line, 1 (2011), pp. 260–280.
https://doi.org/10.5201/ipol.2011.gl lcc



Local Color Correction

Figure 1: Effect of gamma correction with γ = 0.5 on a dark image. Top row, from left to right:
original image, gamma correction result, histogram equalization result. The respective intensity
histograms are shown below.

Figure 2: Effect of gamma correction with γ = 2.5 on a bright image. Top row, from left to right:
original image, gamma correction result, histogram equalization result. The respective intensity
histograms are shown below.

the mean grey level µ of the image and then use γ > 1 (implying attenuation of values) or γ < 1
(implying amplification of values) depending on whether µ is above 127.5 or below 127.5, respectively
(we assume 8-bits images), according to the following formula (default γ), inspired by [1]

γ = 2(µ−127.5)/127.5. (1)

261



Juan Gabriel Gomila Salas, Jose Luis Lisani

Figure 3: Gamma correction of an image with dark and bright regions with different values of γ.
First row, from left to right: original image and gamma correction results with γ = 0.5 and γ = 2.5.
Third row, gamma correction results with γ = 0.75 and γ = 1.5. Below each image its intensity
histogram is displayed.

For the original image in Figure 3, the default γ is 0.74, which gives almost the same result shown
in Figure 3 for γ = 0.75.

In situations when shadows and highlights are present in the image, local techniques outperform
global techniques. Local techniques can map one input value to many different possible output values,
depending on the values of the neighboring pixels. This allows simultaneous shadow and highlight
adjustment.

In this paper we present a local algorithm for contrast enhancement developed by N. Moroney at
Hewlett-Packard Laboratories and presented at the IS&T/SID Eight Color Imaging Conference, in
2000 (US Patent 6,822,762, 2004) [1, 2]. The algorithm uses a non-linear masking, is fast and does
not require any manual parameter adjustments.

262



Local Color Correction

2 Algorithm (LCC Algorithm)

Assume 8-bits RGB color images (R, G, B values in the range [0, 255]). The algorithm is computed
in two steps:

1. A mask image is computed from the input image.

2. The input and mask images are combined to get the result.

The mask image is computed from the intensity component of the color image, defined as the
average of R, G and B values i.e. I = (R + G + B)/3. The use of intensity information avoids
distortions of the chroma. The mask image is obtained by inverting and then blurring the intensity
component of the input image

M(x, y) = (Gaussian ∗ (255− I))(x, y). (2)

Blurring is performed by using a Gaussian kernel of large radius, which guarantees that image
contrast will not be excessively reduced along the edges (see discussion below). The resulting mask
indicates which regions of the image will be lightened or darkened. For instance, a light region of
the image will have a dark mask value, so it will be darkened.

The combination operation consists of a power function, where the exponent is computed using
the mask value previously found. If the mask value is greater than 128, it will result in an exponent
less than 1, while if the mask value is lower than 128, it will result in an exponent greater than 1.
Moreover, if the mask value is precisely 128, the exponent will be 1, and it will have no effect on the
input image. The operation is equivalent to a pixel-wise gamma correction and can be written as
the following equation

Output(x, y) = 255

(

Input(x, y)

255

)2
128−M(x,y)

128

, (3)

where, if (x, y) is a pixel coordinate of the image domain, Input(x, y) is the input image, M(x, y) is
the computed mask and Output(x, y) is the output image.

If R, G, B are normalized in the range [0, 1], then the formulas can be simplified

I(x, y) =
R(x, y) +G(x, y) + B(x, y)

3
,

M ′(x, y) = (Gaussian ∗ I)(x, y), (4)

Output(x, y) = (Input(x, y))2
2M′(x,y)−1

. (5)

In the case of monochrome images Input(x, y) is the intensity component of the image. In [1]
only results for monochrome images are shown.

For color images we have mainly two options:

• Apply the algorithm channel by channel:

1. compute I and M’ as in the formulas above for (Input, Output) in (R, new R), (G, new
G), (B, new B),

2. apply Equation (5).

In Section 4 (figures 6 and 8) it is shown that this option may lead to changes in chrominance.

263



Juan Gabriel Gomila Salas, Jose Luis Lisani

• Take a Luma+Chroma approach:

1. convert the input RGB image to a Luma+Chroma color representation,

2. apply LCC to the Luma component:

M ′(x, y) = (Gaussian ∗ Luma)(x, y),

new Luma(x, y) = (Luma(x, y))2
(2M′(x,y)−1)

,

(we assume Luma values in [0, 1]),

3. convert back to RGB using the new Luma and the original Chroma

In the second case, we have several possibilities, depending on the model for color representation
that we choose. Since a discussion on which color model, if any, is better is beyond the goal of this
paper we just decided to display the results of using three different models:

• HSI2. That is, Luma=I=(R+G+B)/3, Chroma=HS. In this case, preservation of chroma implies
preservation of original R/G/B ratios.

• HSL3. That is, Luma=L, Chroma=HS.

• YPbPr4. That is, Luma=Y, Chroma=PbPr.

Refer to Pascal Getreuer’s colorspace web site5 for further information about color models and
conversion formulas.

Comparisons of the various implementations of the algorithm are presented in Section 4.

Parameters of the algorithm. The only free parameter of the algorithm is the radius (r) of the
blurring filter used to obtain the mask image. As commented above, a certain amount of blurring is
needed in order to avoid low contrasted edges. In particular, the author in [1] recommends to use a
large radius, in such a way that image features can no longer be recognized. However, if the radius
is too big the mask image will become uniform and the algorithm will reduce to a classical gamma
correction. In Section 4 we investigate the effect of the radius magnitude on various test images.

3 Implementation

Four versions of the local color correction (LCC) algorithm have been implemented (see previous
section for details):

• LCC-RGB: LCC algorithm applied channel by channel on the RGB input image.

• LCC-HSI: Luma+Chroma approach using the HSI color model.

• LCC-HSL: Luma+Chroma approach using the HSL color model.

• LCC-YPbPr: Luma+Chroma approach using the YPbPr color model.

2http://en.wikipedia.org/wiki/HSI_color_space
3http://en.wikipedia.org/wiki/HSL_and_HSV
4http://en.wikipedia.org/wiki/YPbPr
5http://www.getreuer.info/home/colorspace

264



Local Color Correction

In all the implementations, we have programmed the masking step by assuming that the original
image has been extended by even symmetry.

Concerning the range of values for parameter r, we have decided to allow values between 0 (no
blurring) to half the minimum dimension of the image. The use of larger radius implies almost
uniform mask images. In such cases, we have decided to compute a global gamma correction with
default γ

γ = 2(µ−127.5)/127.5, (6)

where µ is defined as follows:

• average value of I=(R+G+B)/3, in LCC-RGB and LCC-HSI

• average value of L, in LCC-HSL

• average value of Y, in LCC-YPbPr

4 Results

First, we start (Figure 4) by testing the algorithm on the image displayed in Figure 3, in order
to check whether the algorithm is able to improve simultaneously the contrast of dark and bright
regions.

The algorithm is run with different values of parameter r and the results are compared with a
gamma correction with default γ (as defined by Equation (6)).

Results in Figure 4 show that LCC outperforms classical gamma correction when shadows and
highlights are simultaneously present at the scene. Moreover, the effects of variations of parameter
r are appreciated when comparing different results: as r increases objects become sharper, their
contrast with respect to surrounding objects increasing. Those effects are specially visible in the
leafs of the trees (see detail in Figure 5).

In figures 6 to 8 color information is added to the images and the results of algorithms LCC-RGB,
LCC-YPbPr, LCC-HSI and LCC-HSL are compared. We can also compare the results with the ones
in Figure 4, since a color version of the same original image is used in this test. Figures 6 and 7
show the results of the different versions of the algorithm for a fixed value of parameter r (r = 40).
The corresponding R, G, B and I histograms are also displayed. A detail of the image is displayed in
Figure 8, which permits to appreciate the differences between the results of the algorithms: LCC-HSI
and LCC-HSL preserve the original chrominances (observe the yellowish colors of the flowers), while
LCC-RGB and LCC-YPbPr alter this information (flowers are nearly white).

We conclude that, as expected, LCC-RGB does not preserve the chrominances of the original
images. The same is true for LCC-YPbPr, even if it is based on a Luma+Chroma model. The
versions of the algorithm based HSL and HSI do preserve these chrominances.

It must be remarked however that the HSI and HSL models perform poorly in dark regions, since
the chrominance information in these regions is highly perturbed by noise. This can be appreciated
in figures 9 and 10 where a false greenish color appears in the processed image.

Figures 11 and 12 show another example of the poor performance of LCC-HSI and LCC-HSL in
dark regions. In this case the dark portion of the car is converted to very saturated red, which looks
unnatural.

The problem with HSI and HSL is that chrominance information is quite unreliable for almost-
black colors (small perturbations of R, G and B produce very different values of H and S).

In particular, the problem with HSI is related to the R/G/B ratios having a singularity at black.
Let I and I’ denote the original intensity and the LCC-corrected intensity, then the output colors are

265



Juan Gabriel Gomila Salas, Jose Luis Lisani

Figure 4: Local Color Correction of a monochrome image, with different values of the parameter r.
The result of global correction (gamma correction with default γ computed with Equation (6)) is
also displayed. First row, from left to right: original image, results with r = 0 and r = 40. Third
row, results with r = 100, r = 200 and result of global gamma correction. Below each image its
intensity histogram is displayed.

R′ =
I

I ′
R, G′ =

I

I ′
G, B′ =

I

I ′
B.

If (R, G, B ) and its neighbors are almost black, then relative to intensities in [0, 1], the LCC-RGB
output is approximately

R′ =
√
R, G′ =

√
G, B′ =

√
B,

while the LCC-HSI output is approximately

R′ =
R
√
I
, G′ =

G
√
I
, B′ =

B
√
I
.

266



Local Color Correction

Figure 5: Detail of images in Figure 4. First row, from left to right: original image, results with
r = 0 and r = 40. Second row, results with r = 100 and r = 200. Observe as contrast increases with
r, although differences between r = 40 and r = 100 or r = 200 are small.

So the LCC-HSI output color (R’, G’, B’) is more sensitive to small perturbations in an almost-black
input color than the LCC-RGB output.

On the other hand, for an almost-black color, the output with this LCC-YPbPr procedure is
approximately

R′ =
√
Y + 1.402Pr

G′ =
√
Y − 0.344Pb− 0.713Pr

G′ =
√
Y + 1.772Pb,

where (Y,Pr,Pb) are a linear transformation of the input colors (R,G,B). So LCC-YPbPr’s sensi-
tivity to perturbations is similar to LCC-RGB, and therefore it works better than LCC-HSI for dark
colors.

267



Juan Gabriel Gomila Salas, Jose Luis Lisani

Figure 6: Local Color Correction of a color image, with a fixed value of the parameter (r = 40). First
row, from left to right: original image, results of algorithms LCC-RGB and LCC-YPbPr. Below each
image its R, G, B and intensity histograms are displayed.

268



Local Color Correction

Figure 7: Local Color Correction of a color image, with a fixed value of the parameter (r = 40).
First row, from left to right, results of algorithms LCC-HSI and LCC-HSL. Below each image its R,
G, B and intensity histograms are displayed.

269



Juan Gabriel Gomila Salas, Jose Luis Lisani

Figure 8: Detail of images in figures 6 and 7. Top, from left to right, original image and results
of algorithms LCC-RGB and LCC-YPbPr. Bottom, results of algorithms LCC-HSI and LCC-HSL.
Observe that LCC-HSI and LCC-HSL preserve the original yellowish colors of the flowers.

270



Local Color Correction

Figure 9: Local Color Correction of a color image, with a fixed value of the parameter (r = 40). First
row, from left to right: original image, results of algorithms LCC-RGB and LCC-YPbPr. Below each
image its R, G, B and intensity histograms are displayed.

271



Juan Gabriel Gomila Salas, Jose Luis Lisani

Figure 10: Local Color Correction of a color image, with a fixed value of the parameter (r = 40).
First row, from left to right, results of algorithms LCC-HSI and LCC-HSL. Below each image its R,
G, B and intensity histograms are displayed. These images illustrate the shortcomings of LCC-HSI
and LCC-HSL models when applied on dark regions. In this example, a false greenish color appears
in the processed image. LCC-RGB and LCC-YPbPr (see Figure 9) perform correctly.

272



Local Color Correction

Figure 11: Local Color Correction of a color image, with a fixed value of the parameter (r = 40).
First row, from left to right: original image, results of algorithms LCC-RGB and LCC-YPbPr. Below
each image its R, G, B and intensity histograms are displayed.

273



Juan Gabriel Gomila Salas, Jose Luis Lisani

Figure 12: Local Color Correction of a color image, with a fixed value of the parameter (r = 40).
First row, from left to right, results of algorithms LCC-HSI and LCC-HSL. Below each image its R,
G, B and intensity histograms are displayed. These images illustrate the shortcomings of LCC-HSI
and LCC-HSL models when applied on dark regions. Using LCC-HSI and LCC-HSL dark red colors
in the car become excessively saturated and they look unnatural. In this example LCC-YPbPr (see
Figure 11) preserves correctly the original chrominances.

274



Local Color Correction

5 Additional Results

Figures 13 to 17 display other results of the different versions of the algorithm, obtained with different
values of the parameter.

Figure 13: Top, original image. The subsequent rows display (from left to right) the results of
LCC-RGB, LCC-YPbPr, LCC-HSI, LCC-HSL for increasing values of the parameter r. From top to
bottom, r = 0, r = 40, r = 100. The last row displays the result of global gamma correction with
default γ value as defined by (6).

275



Juan Gabriel Gomila Salas, Jose Luis Lisani

Figure 14: Top, original image. The subsequent rows display (from left to right) the results of
LCC-RGB, LCC-YPbPr, LCC-HSI, LCC-HSL for increasing values of the parameter r. From top
to bottom, r = 0, r = 20, r = 40. The last row displays the result of global gamma correction with
default γ value as defined by (6).

276



Local Color Correction

Figure 15: Top, original image. The subsequent rows display (from left to right) the results of
LCC-RGB, LCC-YPbPr, LCC-HSI, LCC-HSL for increasing values of the parameter r. From top to
bottom, r = 0 and r = 40.

277



Juan Gabriel Gomila Salas, Jose Luis Lisani

Figure 16: Top, original image. The subsequent rows display (from left to right) the results of
LCC-RGB, LCC-YPbPr, LCC-HSI, LCC-HSL for increasing values of the parameter r. Second row,
r = 100. The last row displays the result of global gamma correction with default γ value as defined
by (6).

278



Local Color Correction

Figure 17: Top, from left to right: original grayscale image, results of LCC for r = 0 and r = 40.
Bottom, result of LCC for r = 100 and result of global gamma correction with default γ value as
defined by (6).

279



Juan Gabriel Gomila Salas, Jose Luis Lisani

Image Credits

CC-BY Juan Gabriel Gomila

Courtesy Philip Greenspun6

Kobus Barnard, SFU Computational Vision Laboratory7

unknown

References

[1] N. Moroney, “Local Color Correction Using Non-Linear Masking”, IS&T/SID Eight Color Imaging
Conference, pp. 108-111, 2000.

[2] N. Moroney et al., “Local Color Correction”, US Patent 6,822,762. November 23, 2004.

6http://philip.greenspun.com/
7http://www.cs.sfu.ca/~colour/data/

280


	Introduction
	Algorithm (LCC Algorithm)
	Implementation
	Results
	Additional Results

