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Overview

Context

This	 contribution	 is	 concerned	 with	texture	 synthesis	 by	 example,	 the
process	of	generating	new	texture	images	from	a	given	sample.	This	field	has	witnessed	an	important
number	of	key	contributions	over	 the	 last	15	years,	see	e.g.	 (ref.	2,	3,	4,	5).	 In	 ( ref.	 2),	 the	 texture	 is
reconstructed	 by	 a	 Markov	 Random	 field	model	 directly	 inspired	 from	 Shannon's	 famous	 English
sentence	 reconstruction.	 Each	 incomplete	 patch	 of	 the	 image	 under	 construction	 is	 compared	 to	 all
patches	of	the	sample	image.	The	closest	patches	in	the	sample	permit	to	predict	a	new	pixel	value	in
the	 synthetic	 image.	The	 iterative	 algorithm	grows	 in	 that	way	a	 new	 image	 from	a	 random	seed,	 or
even	from	the	sample	itself	by	extending	its	boundaries.	The	method	of	(ref.	3)	is	a	significant	technical
improvement	of	 the	same	basic	 ideas,	where	 the	shape	of	 the	 incomplete	patch	 is	no	more	variable.
These	 patch-based	 algorithms	 suffer,	 however,	 from	 several	 drawbacks	 pointed	 out	 by	 the	 authors
themselves:	 the	 resulting	 image	 is	sometimes	strikingly	good,	but	sometimes	also	 its	statistics	do	not
match	those	of	the	input	and	the	algorithm	may	even	diverge	toward	poorly	structured	results.	Unwanted
periodicities	 can	also	occur,	 the	algorithm	having	a	 strong	 tendency	 to	produce	 verbatim	copy	of	 the
input.	The	algorithms	(ref.	4,	5),	inspired	from	models	of	human	texture	perception	(e.g.	 ref.	6)	and	from
wavelet	 theory,	 learn	 the	 wavelet	 coefficients	 statistics	 from	 the	 sample	 and	 enforce	 them	 in	 the
reconstructed	 image.	In	(ref.	4)	 this	reconstruction	deals	only	with	wavelet	coefficient	histograms	while
in	(ref.	5)	the	cross-correlation	and	autocorrelation	statistics	of	the	wavelet	channels	are	also	enforced.
The	final	results,	particularly	those	of	(ref.	5),	are	absolutely	striking.	The	process	is	nonetheless	quite
complex,	 its	 convergence	 not	 guaranteed,	 and	 color	 artifacts	 may	 also	 appear.	 In	 short,	 in	 spite	 of
considerable	 progress,	 no	 present	 algorithm	 delivers	 a	 full	 reproduction	 of	 all	 textures,	 and	 it	 is	 still
important	to	explore	other	ways,	well	adapted	to	this	or	that	kind	of	texture.

Contribution

The	Random	Phase	Noise	(RPN)	algorithm	presented	here,	and	 first	 introduced	 in	 the	paper	( ref.	 1),
synthesizes	 a	 texture	 from	 an	 original	 image	 by	 simply	 randomizing	 its	 Fourier	 phase.	 It	 is	 able	 to
reproduce	 textures	 which	 are	 characterized	 by	 their	 Fourier	 modulus,	 namely	 the	 random	 phase
textures	(or	micro-textures).	It	is	also	able	to	create	a	random	texture	from	any	input	image.	It	is	in	spirit
quite	close	to	the	noise	generators	from	computer	graphics,	see	e.g.	( ref.	7,	8).

The	presented	algorithm	deals	with	color	images.	It	 is	able	to	synthesize	output	textures	with	arbitrary
sizes.	 The	 algorithm	 is	 definitely	 limited	 to	 a	 certain	 class	 of	 textures,	 but	 it	 has	 the	 following	 good
properties,	 that	are	particularly	useful	 for	graphic	applications	and	are	not	 shared	by,	e.g.,	 exemplar-
based	methods.
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It	is	fast,	since	it	basically	only	needs	the	computation	of	two	FFTs.
It	is	perceptually	stable:	all	the	textures	synthesized	from	the	same	input	image	are	visually	similar.	In
particular,	it	will	never	grow	garbage.
It	will	never	yield	verbatim	copy	of	the	original.
It	has	no	convergence	issues.
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Online	Demo:	Try	It!
An	on-line	demo	of	this	algorithm	is	available.

The	 demo	 permits	 to	 upload	 a	 color	 texture	 sample	 and	 to	 replicate	 it	 with	 arbitrary	 size.	 Texture
samples	can	be	taken	from	existing	databases,	but	to	have	still	more	realistic	samples,	you	can	extract
them	as	homogeneous	regions	of	a	photograph,	as	shown	below	in	What	are	micro-textures?

Source	Code
An	implementation	is	available	for	download.	It	is	provided	with	an	illustated	html	documentation:

Source	code	 zip;
Illustrated	documentation	 zip,	online;

This	code	requires	libpng,	libfftw3	and	getopt.	It	should	compile	on	any	system	since	it's	only	ANSI
C.	Compilation	and	usage	instruction	are	included	in	the	README.txt	file	of	the	archive	 zip.

The	illustrated	HTML	documentation	can	be	reproduced	from	the	source	code	 zip	by	using	doxygen
(see	the	README.txt	file	of	the	archive	 zip	for	details).

Algorithm

Basic	RPN

By	definition,	the	RPN	of	an	image	h	is	the	random	image	obtained	by	adding	a	random	phase	θ	to	the
Fourier	 phase	of	 the	 image.	By	a	 random	phase	we	mean	a	white	 noise	 image	uniformly	 distributed
over	[-π,π]	and	that	is	constrained	to	be	symmetric.	Then	the	basic	RPN	algorithm	consists	in:

1.	 Computing	a	realization	θ	of	a	random	phase.
2.	 Computing	the	discrete	Fourier	transform	(DFT)	 	of	h.
3.	 Adding	the	random	phase:
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1.	 Returning	the	inverse	DFT	of	 .

Extension	to	Color	Images

The	RPN	 of	 an	 RGB	 color	 image	 	 is	 obtained	 by	adding	 the	 same	 random
phase	 to	the	DFT	of	each	color	channel.	More	precisely,	step	3.	of	 the	above	 basic	RPN	algorithm	 is
replaced	by

Adding	 the	 same	 random	 phase	 to	 the	 original	 phases	 of	 each	 color	 channel	 preserves	 the	 phase
displacements	between	channels.	This	is	important	as	it	permits	to	create	new	textures	without	creating
false	colors	(see	ref.	1).

Avoiding	Artifacts	Due	to	Non	Periodicity

The	RPN	algorithm	is	based	on	the	FFT	and	consequently	the	periodicity	of	the	input	image	is	a	critical
requirement.	 Indeed,	as	experiments	show,	 randomizing	 the	phase	of	an	 image	which	 is	not	periodic
creates	 strong	 artifacts	 consisting	 in	 highly	 contrasted	 horizontal	 and	 vertical	 waves.	 To	 avoid	 these
artifacts	the	input	image	h	is	replaced	by	its	periodic	component	p	as	defined	by	L.	Moisan	in	(ref.	9).

The	periodic	component	p	is	the	unique	solution	of	the	problem

where	Δ	is	the	usual	discrete	periodic	Laplacian	(each	point	has	four	neighbors)	and	 	is	the	discrete
Laplacian	in	the	interior	of	the	image	domain	(points	at	the	border	of	the	image	have	only	three	or	two
neighbors).

The	periodic	component	p	of	h	is	computed	using	the	classic	FFT-based	Poisson	solver:

1.	 Compute	the	discrete	Laplacian	 	of	h.

2.	 Compute	the	DFT	 	of	 .
3.	 Compute	the	DFT	 	of	p	by	inversing	the	discrete	periodic	Laplacian:

1.	 Compute	p	by	inverse	DFT.

Note	that	this	procedure	permits	to	compute	the	DFT	 	 of	p	using	only	one	call	to	the	FFT	algorithm.
Let	 us	 also	 precise	 that	 computing	 the	 periodic	 component	 of	 a	 color	 image	 simply	 consists	 in
computing	the	periodic	component	of	each	color	channel.

Spot	Extension	Technique

An	 important	 issue	 in	 texture	synthesis	 is	 to	synthesize	 textures	with	arbitrary	 large	size	 from	a	given
sample.

A	practical	method	solves	this	problem	for	RPN	textures.	This	is	done	by	extending	the	original	texture
sample	 into	an	equivalent	spot	having	a	 larger	size,	and	 then	by	applying	 the	basic	RPN	algorithm	 to
this	larger	equivalent	spot,	as	illustrated	in	the	example	below.

A	texture	image	(left)	and	its	corresponding	extended	spot	(right)

http://www.math-info.univ-paris5.fr/~moisan/


A	texture	image	(left)	and	its	corresponding	extended	spot	(right)

Let	us	specify	how	the	extended	spot	is	computed.	First,	the	periodic	component	of	the	original	texture
sample	 is	 computed	 and	 pasted	 in	 a	 large	 constant	 image	 equal	 to	 the	mean	 of	 the	 sample,	with	 a
previous	variance	normalization.	The	obtained	image	is	then	multiplied	by	a	smooth	transition	function
in	 order	 to	 attenuate	 the	 discontinuities	 along	 the	 inner	 frame	 of	 the	 spot.	 On	 the	 interval	 [0,1],	 the
smooth	 transition	 function	 	is	defined	as	follows:	On	[0,α]	the	function	varies	as	the	primitive	of	the
standard	 	function

it	 is	 symmetrically	 defined	 on	 the	 interval	 [1-α,1]	 and	 it	 is	 constant	 to	 1	 on	 the	 inner	 interval	 [α,1-α].
Below	are	both	a	cross	section	and	a	gray-level	representation	of	the	smooth	transition	function	used	to
attenuate	the	spot	along	the	border	of	the	image.

Smooth	transition	function	used	to	attenuate	the	extended	spot	along	the	border	of	the	image

In	addition,	in	order	to	preserve	the	variance	of	the	initial	spot,	the	smooth	function	is	normalized	so	that
its	L²-norm	equals	1.	The	value	of	the	parameter	α	is	not	a	sensitive	parameter.	For	all	experiments	as
well	 as	 for	 the	 online	 demo	 the	 parameter	 α	 has	 been	 fixed	 to	 α=0.1.	 However	 α	 is	 an	 optional
parameter	of	the	downloadable	source	code.

Implementation
Our	implementation	consists	in	two	distinct	procedures:	same	size	RPN	and	increased	size	RPN.

Same	size	RPN

The	 whole	 algorithm	 for	 synthesizing	 a	RPN	 texture	 having	 the	 same	 size	 as	 the	 original	 image	h
consists	in	the	following	steps:

1.	 Compute	the	DFT	 	of	the	periodic	component	p	of	the	input	image	h.
2.	 Compute	a	realization	θ	of	a	random	phase.
3.	 Add	the	random	phase	θ	to	each	color	channel	of	 .
4.	 Return	the	inverse	DFT	of	the	phase	randomized	 .

./spot_extension.jpg
./smooth_transition.png


4.	 Return	the	inverse	DFT	of	the	phase	randomized	 .

Note	that	this	algorithm	only	uses	two	calls	to	the	FFT	algorithm.

Increased	size	RPN

1.	 Compute	the	periodic	component	p	of	the	input	image	h.
2.	 Extend	the	periodic	component	p	into	an	equivalent	spot	of	larger	size	using	the	spot	extension
technique	described	above.

3.	 Compute	a	random	phase	θ	having	the	same	size	as	the	extended	spot.
4.	 Compute	the	RPN	in	adding	the	random	phase	θ	to	the	DFT	of	each	color	channel.

This	procedure	is	computationally	more	expensive	than	for	the	"same	size	RPN".	Indeed,	it	makes	four
calls	of	 the	FFT	algorithm:	 two	with	 the	size	of	 the	original	 spot	h	 for	 the	computation	of	 the	periodic
component	p,	and	two	with	the	larger	output	size	for	the	phase	randomization.

Micro-Textures

What	are	Micro-textures

When	 photographed,	 remote	 homogeneous	 areas	 made	 of	 thin,	 small,	 or	 semitransparent	 objects
create	homogeneous	 regions	 in	 images.	The	geometric	 features	and	colors	of	 the	constituents	of	 the
observed	area	are	mixed,	due	to	the	blur	 inherent	to	 image	formation.	The	resulting	 image	region	is	 a
micro-texture.	Most	 homogeneous	 regions	 in	 any	 image	 should	 be	 micro-textures.	The	 figure	 below
shows	an	example.	Five	 rectangles	belonging	to	various	homogeneous	regions	were	picked	 in	a	high
resolution	landscape.	These	textures	are	displayed	in	pairs	where	the	left	is	the	original	sub-image,	and
the	right	a	simulation	obtained	by	the	RPN	algorithm.	With	the	exception	of	the	clouds	rectangle	(which
is	 obviously	 non-stationary),	 these	 samples	 and	 their	 simulated	 copies	 are	 usually	 considered
perceptually	equivalent	by	observers.	Here	pebbles,	wet	sand,	and	various	types	of	waves	are	correctly
simulated.

Some	emulated	textures	taken	from	an	high	resolution	landscape

Yet,	not	all	homogeneous	regions	of	an	image	are	micro-textures.	See	below	many	examples,	and	the
failure	catalog	as	well.

./plage_microtextures.jpg


Micro-textures	and	Macro-textures

Many	images	or	image	parts	usually	termed	textures	do	not	fit	to	the	micro-texture	requisites.	Typically,
periodic	patterns	with	big	visible	elements,	such	as	brick	walls,	are	not	micro-textures.	More	generally,
textures	whose	building	elements	are	spatially	organized,	such	as	the	branches	of	a	tree,	are	not	micro-
textures.	 Yet,	 each	 textured	 object	 has	 a	 critical	 distance	 at	 which	 it	 becomes	 a	 micro-texture.	 For
instance,	tiles	at	a	close	distance	are	a	macro-texture,	and	are	not	amenable	to	phase	randomization.
The	smaller	tiles	on	roofs	photographed	at	some	distance	can	instead	be	emulated.

Microtextures:	tiled	roofs

Samples RPN

Tiles	from	roof	1

Tiles	from	roof	1	emulated	by	RPN

Tiles	from	roof	2

Tiles	from	roof	2	emulated	by	RPN

./Tile0006.png
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A	macro-texture:	tiles	at	short	range RPN	failure	to	simulate	a	macro-
texture

Examples
Below	are	some	examples	of	satisfyingly	well	reproduced	textures	of	wood,	wall,	fabric,	and	paint.	Note
that	one	has	to	click	on	the	examples	to	see	their	real	size.	See	also	the	failure	catalog	for	examples
which	are	not	well	reproduced.

Wood

Wood	 samples	must	 be	 homogeneous	 in	 direction	 to	 be	 correctly	 emulated	 by	RPN.	Wood	 samples
with	knots	or	other	conspicuous	patterns	fall	logically	in	the	failure	catalog.

Wood	sample RPN	simulation
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More	Wood	Examples

Fabric

Fabric	sample RPN	simulation

More	Fabric	Examples

Walls

Wall	sample RPN	simulation
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More	Wall	Examples

Paint

Paint	sample RPN	simulation
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More	Paint	Examples

Failure	Catalog

Most	failures	are	macro-textures.	For	instance:

textures	containing	periodic	geometric	patterns	with	large	period,
textures	containing	strong	edges,	such	as	cracks	in	bark,
textures	containing	definite	shapes,	such	as	knots	in	wood	or	fruit	or	visible	leaves	in	foliage,
strictly	periodic	patterns,	even	with	small	period,	where	phase	shifts	cause	aliasing	effects,
failure	also	occurs	when	the	sample	texture	contains	different	dominant	directions	in	different	areas.
Then	these	directions	are	mixed	by	the	random	sampler.

Macro-texture	sample RPN	simulation
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More	Failure	Examples
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