Malvar-He-Cutler Linear Image Demosaicking
|
00001 00016 #include <string.h> 00017 #include "conv.h" 00018 00019 00021 #define CLAMP(X,A,B) (((X) < (A)) ? (A) : (((X) > (B)) ? (B) : (X))) 00022 00023 00025 const filter NullFilter = {NULL, 0, 0}; 00026 00027 00040 void SampledConv1D(float *Dest, int DestStride, const float *Src, 00041 int SrcStride, filter Filter, boundaryext Boundary, int N, 00042 int nStart, int nStep, int nEnd) 00043 { 00044 const int SrcStrideStep = SrcStride*nStep; 00045 const int LeftmostTap = 1 - Filter.Delay - Filter.Length; 00046 const int StartInterior = CLAMP(-LeftmostTap, 0, N - 1); 00047 const int EndInterior = (Filter.Delay < 0) ? 00048 (N + Filter.Delay - 1) : (N - 1); 00049 const float *SrcN, *SrcK; 00050 float Accum; 00051 int n, k; 00052 00053 00054 if(nEnd < nStart || nStep <= 0 || N <= 0) 00055 return; 00056 00057 /* Handle the left boundary */ 00058 for(n = nStart; n < StartInterior; n += nStep, Dest += DestStride) 00059 { 00060 for(k = 0, Accum = 0; k < Filter.Length; k++) 00061 Accum += Filter.Coeff[k] 00062 * Boundary(Src, SrcStride, N, n - Filter.Delay - k); 00063 00064 *Dest = Accum; 00065 } 00066 00067 /* Compute the convolution on the interior of the signal: 00068 00069 In the inner accumulation loop 00070 SrcK = &inputdata[n - FilterDelay - k], k = FilterLength-1, ..., 0. 00071 00072 The SrcN pointer is adjusted such that 00073 SrcN = &inputdata[n + LeftmostTap]. 00074 00075 If n == StartInterior, then the loop starts with 00076 n = -LeftmostTap, SrcN = &inputdata[0] if LeftmostTap <= 0 00077 n = 0, SrcN = &inputdata[LeftmostTap] if LeftmostTap >= 0. */ 00078 SrcN = (LeftmostTap <= 0) ? Src : (Src + SrcStride*LeftmostTap); 00079 00080 /* Adjust if n > StartInterior */ 00081 SrcN += SrcStride*(n - StartInterior); 00082 00083 for(; n <= EndInterior; n += nStep, SrcN += SrcStrideStep, Dest += DestStride) 00084 { 00085 Accum = 0; 00086 SrcK = SrcN; 00087 k = Filter.Length; 00088 00089 while(k) 00090 { 00091 Accum += Filter.Coeff[--k] * (*SrcK); 00092 SrcK += SrcStride; 00093 } 00094 00095 *Dest = Accum; 00096 } 00097 00098 /* Handle the right boundary */ 00099 for(; n <= nEnd; n += nStep, Dest += DestStride) 00100 { 00101 for(k = 0, Accum = 0; k < Filter.Length; k++) 00102 Accum += Filter.Coeff[k] 00103 * Boundary(Src, SrcStride, N, n - Filter.Delay - k); 00104 00105 *Dest = Accum; 00106 } 00107 } 00108 00109 00123 void SeparableConv2D(float *Dest, float *Buffer, const float *Src, 00124 filter FilterX, filter FilterY, boundaryext Boundary, 00125 int Width, int Height, int NumChannels) 00126 { 00127 const int NumPixels = Width*Height; 00128 int i, Channel; 00129 00130 for(Channel = 0; Channel < NumChannels; Channel++) 00131 { 00132 /* Filter Src horizontally and store the result in Buffer */ 00133 for(i = 0; i < Height; i++) 00134 Conv1D(Buffer + Width*i, 1, Src + Width*i, 1, 00135 FilterX, Boundary, Width); 00136 00137 /* Filter Buffer vertically and store the result in Dest */ 00138 for(i = 0; i < Width; i++) 00139 Conv1D(Dest + i, Width, Buffer + i, Width, FilterY, 00140 Boundary, Height); 00141 00142 Src += NumPixels; 00143 Dest += NumPixels; 00144 } 00145 } 00146 00147 00149 filter MakeFilter(float *Coeff, int Delay, int Length) 00150 { 00151 filter Filter; 00152 00153 Filter.Coeff = Coeff; 00154 Filter.Delay = Delay; 00155 Filter.Length = Length; 00156 return Filter; 00157 } 00158 00159 00161 filter AllocFilter(int Delay, int Length) 00162 { 00163 float *Coeff; 00164 00165 if(Length > 0 && (Coeff = (float *)Malloc(sizeof(float)*Length))) 00166 return MakeFilter(Coeff, Delay, Length); 00167 else 00168 return NullFilter; 00169 } 00170 00171 00173 int IsNullFilter(filter Filter) 00174 { 00175 return (Filter.Coeff == NULL) ? 1:0; 00176 } 00177 00178 00193 filter GaussianFilter(double Sigma, int R) 00194 { 00195 filter Filter = AllocFilter(-R, 2*R+1); 00196 00197 00198 if(!IsNullFilter(Filter)) 00199 { 00200 if(Sigma == 0) 00201 Filter.Coeff[0] = 1; 00202 else 00203 { 00204 float Sum; 00205 int r; 00206 00207 for(r = -R, Sum = 0; r <= R; r++) 00208 { 00209 Filter.Coeff[R + r] = (float)exp(-r*r/(2*Sigma*Sigma)); 00210 Sum += Filter.Coeff[R + r]; 00211 } 00212 00213 for(r = -R; r <= R; r++) 00214 Filter.Coeff[R + r] /= Sum; 00215 } 00216 } 00217 00218 return Filter; 00219 } 00220 00221 00222 static float ZeroPaddedExtension(const float *Src, int Stride, int N, int n) 00223 { 00224 return (0 <= n && n < N) ? Src[Stride*n] : 0; 00225 } 00226 00227 00228 static float ConstantExtension(const float *Src, int Stride, int N, int n) 00229 { 00230 return Src[(n < 0) ? 0 : ((n >= N) ? Stride*(N - 1) : n)]; 00231 } 00232 00233 00234 static float LinearExtension(const float *Src, int Stride, int N, int n) 00235 { 00236 if(0 <= n) 00237 { 00238 if(n < N) 00239 return Src[Stride*n]; 00240 else if(N == 1) 00241 return Src[0]; 00242 else 00243 { 00244 Src += Stride*(N - 1); 00245 return Src[0] + (N - 1 - n)*(Src[-Stride] - Src[0]); 00246 } 00247 } 00248 else if(N == 1) 00249 return Src[0]; 00250 else 00251 return Src[0] + n*(Src[Stride] - Src[0]); 00252 } 00253 00254 00255 static float PeriodicExtension(const float *Src, int Stride, int N, int n) 00256 { 00257 if(n < 0) 00258 { 00259 do 00260 { 00261 n += N; 00262 }while(n < 0); 00263 } 00264 else if(n >= N) 00265 { 00266 do 00267 { 00268 n -= N; 00269 }while(n >= N); 00270 } 00271 00272 return Src[Stride*n]; 00273 } 00274 00275 00276 static float SymhExtension(const float *Src, int Stride, int N, int n) 00277 { 00278 while(1) 00279 { 00280 if(n < 0) 00281 n = -1 - n; 00282 else if(n >= N) 00283 n = 2*N - 1 - n; 00284 else 00285 break; 00286 } 00287 00288 return Src[Stride*n]; 00289 } 00290 00291 00292 static float SymwExtension(const float *Src, int Stride, int N, int n) 00293 { 00294 while(1) 00295 { 00296 if(n < 0) 00297 n = -n; 00298 else if(n >= N) 00299 n = 2*(N - 1) - n; 00300 else 00301 break; 00302 } 00303 00304 return Src[Stride*n]; 00305 } 00306 00307 00308 static float AsymhExtension(const float *Src, int Stride, int N, int n) 00309 { 00310 float Jump, Offset; 00311 00312 00313 /* Use simple formulas for -N <= n <= 2*N - 1 */ 00314 if(0 <= n) 00315 { 00316 if(n < N) 00317 return Src[Stride*n]; 00318 else if(n <= 2*N - 1) 00319 return 3*Src[Stride*(N - 1)] - Src[Stride*(N - 2)] 00320 - Src[Stride*(2*N - 1 - n)]; 00321 } 00322 else if(-N <= n) 00323 return 3*Src[0] - Src[Stride] - Src[Stride*(-1 - n)]; 00324 00325 /* N == 1 is a special case */ 00326 if(N == 1) 00327 return Src[0]; 00328 00329 /* General formula for extension at an arbitrary n */ 00330 Jump = 3*(Src[Stride*(N - 1)] - Src[0]) 00331 - (Src[Stride*(N - 2)] - Src[Stride]); 00332 Offset = 0; 00333 00334 if(n >= N) 00335 { 00336 do 00337 { 00338 Offset += Jump; 00339 n -= 2*N; 00340 }while(n >= N); 00341 } 00342 else 00343 { 00344 while(n < -N) 00345 { 00346 Offset -= Jump; 00347 n += 2*N; 00348 } 00349 } 00350 00351 if(n >= 0) 00352 return Src[Stride*n] + Offset; 00353 else 00354 return 3*Src[0] - Src[Stride] - Src[Stride*(-1 - n)] + Offset; 00355 } 00356 00357 00358 static float AsymwExtension(const float *Src, int Stride, int N, int n) 00359 { 00360 float Jump, Offset; 00361 00362 00363 /* Use simple formulas for -N < n < 2*N - 1 */ 00364 if(0 <= n) 00365 { 00366 if(n < N) 00367 return Src[Stride*n]; 00368 else if(n < 2*N - 1) 00369 return 2*Src[Stride*(N - 1)] - Src[Stride*(2*(N - 1) - n)]; 00370 } 00371 else if(-N < n) 00372 return 2*Src[0] - Src[Stride*(-n)]; 00373 00374 /* N == 1 is a special case */ 00375 if(N == 1) 00376 return Src[0]; 00377 00378 /* General formula for extension at an arbitrary n */ 00379 Jump = 2*(Src[Stride*(N - 1)] - Src[0]); 00380 Offset = 0; 00381 00382 if(n >= N) 00383 { 00384 do 00385 { 00386 Offset += Jump; 00387 n -= 2*(N - 1); 00388 }while(n >= N); 00389 } 00390 else 00391 { 00392 while(n <= -N) 00393 { 00394 Offset -= Jump; 00395 n += 2*(N - 1); 00396 } 00397 } 00398 00399 if(n >= 0) 00400 return Src[Stride*n] + Offset; 00401 else 00402 return 2*Src[0] - Src[Stride*(-n)] + Offset; 00403 } 00404 00405 00421 boundaryext GetBoundaryExt(const char *Boundary) 00422 { 00423 if(!strcmp(Boundary, "zpd") || !strcmp(Boundary, "zero")) 00424 return ZeroPaddedExtension; 00425 else if(!strcmp(Boundary, "sp0") || !strcmp(Boundary, "const")) 00426 return ConstantExtension; 00427 else if(!strcmp(Boundary, "sp1") || !strcmp(Boundary, "linear")) 00428 return LinearExtension; 00429 else if(!strcmp(Boundary, "per") || !strcmp(Boundary, "periodic")) 00430 return PeriodicExtension; 00431 else if(!strcmp(Boundary, "sym") 00432 || !strcmp(Boundary, "symh") || !strcmp(Boundary, "hsym")) 00433 return SymhExtension; 00434 else if(!strcmp(Boundary, "symw") || !strcmp(Boundary, "wsym")) 00435 return SymwExtension; 00436 else if(!strcmp(Boundary, "asym") 00437 || !strcmp(Boundary, "asymh") || !strcmp(Boundary, "hasym")) 00438 return AsymhExtension; 00439 else if(!strcmp(Boundary, "asymw") || !strcmp(Boundary, "wasym")) 00440 return AsymwExtension; 00441 else 00442 { 00443 ErrorMessage("Unknown boundary extension \"%s\".\n", Boundary); 00444 return NULL; 00445 } 00446 }