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Image	interpolation	is	the	problem	of	increasing	the	resolution	of	an
image.	Linear	methods	have	traditionally	been	preferred,	for	example,
the	 popular	 bilinear	 and	 bicubic	 interpolations	 are	 linear	 methods.
However,	 a	 linear	 method	 must	 compromise	 between	 artifacts	 like
jagged	edges,	blurring,	and	overshoot	(halo)	artifacts.	These	artifacts
cannot	all	be	eliminated	simultaneously	while	maintaining	linearity.

More	recent	works	consider	nonlinear	methods,	especially	to	improve
interpolation	of	edges	and	textures.	An	important	aspect	of	nonlinear
interpolation	 is	 accurate	 estimation	 of	 edge	 orientations.	 For	 this
purpose	we	apply	contour	stencils,	a	new	method	 for	estimating	 the
image	contours	based	on	total	variation	along	curves.	This	estimation
is	then	used	to	construct	a	fast	edge-adaptive	interpolation.
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The	 idea	 in	 contour	 stencils	 is	 to	 estimate	 the	 image	 contours	 by
measuring	 the	 total	 variation	 of	 the	 image	 along	 curves.	Define	 the
total	variation	(TV)	along	curve	C

where	γ	is	a	smooth	parameterization	of	C.	The	quantity	||u||TV(C)	can
be	 used	 to	 estimate	 the	 image	 contours.	 If	 ||u||TV(C)	 is	 small,	 it
suggests	that	C	is	close	a	contour.	The	contour	stencils	strategy	is	to
estimate	 the	 image	 contours	 by	 testing	 the	 TV	 along	 a	 set	 of
candidate	curves,	 the	curves	with	small	 ||u||TV(C)	 are	 then	 identified
as	approximate	contours.

Contour	 stencils	 are	 a	 discretization	 of	 TV	 along	 contours.	 As
described	 in	 [4],	 [5],	 a	 ''contour	 stencil''	 is	 a	 function	
describing	 weighted	 edges	 between	 the	 pixels	 of	 v.	 Stencil	 	 is
applied	to	v	at	pixel	k	∈	 	as

Defining	 [v](m,n)	 :=	 |vm	 −	 vn|,	 this	 quantity	 is	 (with	 an	 abuse	 of
notation)	a	cross-correlation	over	 	evaluated	at	(k,k).	The	stencil
edges	are	used	to	approximate	a	curve	C	so	that	the	quantity	
approximates	||u||TV(C+k)	(where	C	+	k	:=	{x+k	:	x	∈	C}).	The	image
contours	 are	 estimated	by	 finding	 a	 stencil	with	 small	 TV.	The	best-
fitting	stencil	at	pixel	k	is

where	Σ	is	a	set	of	candidate	stencils.	It	is	possible	that	the	minimizer
is	not	unique,	 for	example	 in	a	 locally	constant	 region	of	 the	 image.
For	 simplicity,	 we	 do	 not	 treat	 this	 situation	 specially	 and	 always
choose	 a	minimizer	 even	 if	 it	 is	 not	 unique.	This	best-fitting	 stencil	

	 provides	a	model	 of	 the	 image	contours	 in	 the	neighborhood	of
pixel	k.	The	stencils	used	in	this	work	are	shown	below.



The	proposed	stencil	set	Σ.	The	edge	weights	 	are	denoted	by
superscript	α,	β,	δ,	γ.

For	the	set	of	candidate	stencils	Σ,	we	use	8	line-shaped	stencils	that
were	designed	to	distinguish	between	the	functions

The	edge	weights	α,	β,	δ,	γ	 are	 selected	so	 that	on	 the	 function	 f(x)
=	x1sinθ	−	x2cosθ,

In	this	way,	the	stencils	can	fairly	distinguish	8	different	orientations.
An	estimate	of	the	local	contour	orientation	at	point	k	is	obtained	by
noting	which	stencil	is	the	best-fitting	stencil	 .

Normalized	stencil	total	variations	 	vs.	θ.
Left:	The	first	three	stencils,	j	=	0,	1,	2.	Right:	All	eight	stencils.

For	 a	 color	 image,	 the	 image	 is	 converted	 from	 RGB	 to	 a
luma+chroma	space

and	the	stencil	TV	is	computed	as	the	sum	of	 	applied	to	each
color	channel.

Given	 image	 v	 known	 on	 ,	 we	 seek	 to	 construct	 an	 image	u	 on	
such	that



where	h	is	the	(assumed	known)	point	spread	function	and	∗	denotes
convolution.

The	goal	 is	 to	 incorporate	deconvolution	yet	maintain	computational
efficiency.	 To	 achieve	 this,	 the	 global	 operation	 of	 deconvolution	 is
approximated	 as	 a	 local	 one,	 such	 that	 pixels	 only	 interact	within	 a
small	window.

For	 every	 pixel	 k	 in	 the	 input	 image,	 we	 begin	 by	 forming	 a	 local
reconstruction

where	 ⊂	 	 is	 a	 neighborhood	of	 the	 origin	 and	 	 is	 a	Gaussian
oriented	with	the	contour	modeled	by	the	best-fitting	stencil	 .

Local	reconstruction	uk	with	oriented	functions	functions	 .

The	 cn	 are	 chosen	 such	 that	 uk	 satisfies	 the	 discretization	 model
locally,

This	condition	implies	that	the	cn	satisfy	the	linear	system

where	 	is	a	matrix	with	elements	 .	By	defining	the
functions

uk	can	be	expressed	directly	in	terms	of	the	samples	of	v,



The	 uk	 are	 combined	 with	 overlapping	 windows	 to	 produce	 the
interpolated	image,

The	window	should	satisfy	∑k	w(x	−	k)	=	1	for	all	x	∈	 	and	w(k)	=	0
for	k	∈	 	\	 .

This	 global	 reconstruction	 satisfies	 the	 discretization	 model
approximately,	↓(h	∗	u)	≈	v.	The	accuracy	may	be	improved	using	the
method	of	iterative	refinement.	Let	 	denote	the	global	reconstruction
formula,

such	that	u	=	 v	(where	we	consider	 	as	fixed	parameters	so	that	
is	a	linear	operator).	Then	the	deconvolution	accuracy	is	improved	by
the	iteration

Each	 iteration	 should	 reduce	 the	 residual	 in	 satisfying	 the
discretization	model,

The	 residual	 reduces	 quickly	 in	 practice,	 usually	 three	 or	 four
iterations	is	sufficient	for	accurate	results.

The	following	parameters	are	fixed	in	the	experiments:

h	is	a	Gaussian	with	standard	deviation	0.5,
=	{-1,0,1}×{-1,0,1},

w	is	the	cubic	B-spline,

	is	an	oriented	Gaussian,

with	στ	=	1.2	and	σν	=	0.6,	and	θ	is	the	orientation	modeled	by	 ,

and	 three	 iterations	 of	 iterative	 refinement	 are	 applied	 (one	 initial
interpolation	and	two	correction	passes).

For	 sake	 of	 demonstration,	 the	 examples	 below	 use	 a	 PSF	 with	 a



substantial	amount	of	blur,	σh	=	0.5.	The	default	value	for	σh	 is	0.35
in	 the	online	demo	associated	with	 this	 article,	which	better	models
the	blurriness	of	typical	images.

The	 interpolation	 is	 computationally	 efficient.	 We	 first	 consider	 the
complexity	without	iterative	refinement.

The	matrices	 	 can	be	precomputed	 for	 each	 stencil	 ∈Σ,	allowing
the	cn	coefficients	to	be	computed	in	6 2	+	3 	operations	per	(color)
input	 pixel.	 Furthermore,	 since	 w	 has	 compact	 support,	 u	 only
depends	on	the	small	number	of	uk	where	w(x	−	k)	is	nonzero.	Let	W
be	a	bound	on	the	number	of	nonzero	terms,

We	 suppose	 that	W	 is	O( ).	 Given	 the	 cn,	 each	 evaluation	 of	 u(x)
costs	 O( 2)	 operations.	 So	 for	 factor-d	 scaling,	 the	 total
computational	cost	is	O( 2d2)	operations	per	input	pixel.	For	scaling
by	 rational	 d,	 samples	 of	 w	 and	 	 can	 also	 be	 precomputed,	 and
scaling	costs	6 Wd2	operations	per	input	pixel.	For	the	settings	used
in	the	examples,	this	is	864d2	operations	per	input	pixel.

With	 iterative	 refinement,	 the	 previous	 cost	 is	 multiplied	 by	 the
number	 of	 steps	 and	 there	 is	 the	 additional	 cost	 of	 computing	 the
residual.	 If	h	 is	quickly	decaying,	 then	 it	 is	accurately	approximated
by	an	FIR	filter	with	O(d2)	taps	and	the	residual

can	be	computed	in	O(d2)	operations	per	input	pixel.

This	 software	 is	 distributed	 under	 the	 terms	 of	 the	 simplified	 BSD
license.

source	code	 zip	 tar.gz
online	documentation

Please	see	the	readme.html	file	or	the	online	documentation	for	details.

Implementation	notes:

Fixed-point	arithmetic	is	used	to	accelerate	the	main	computations.
For	efficiency	in	the	correction	passes	of	iterative	refinement,	the	uk



for	which	|vk|	is	small	are	not	added	(so	that	they	do	not	need	to	be
computed),

Here	we	perform	an	interpolation	experiment	to	test	the	performance
of	the	proposed	interpolation	strategy.

First,	 a	 high-resolution	 image	 uo	 is	 smoothed	 and	 downsampled	 by
factor	 4	 to	 obtain	 a	 coarsened	 image	 v	 =	 ↓(h	 ∗	 uo)	 where	 h	 is	 a
Gaussian	with	standard	deviation	0.5	in	units	of	input	pixels,	σh	=	0.5.
This	 amount	 of	 smoothing	 is	 somewhat	 weak	 anti-aliasing,	 so	 the
input	data	is	slightly	aliased.

The	 value	 of	 σh	 should	 estimate	 the	 blurriness	 of	 the	 PSF	 used	 to
sample	the	 input	 image.	 It	 is	better	to	underestimate	σh	rather	than
overestimate:	if	σh	 is	smaller	than	the	true	standard	deviation	of	the
PSF,	the	result	is	merely	blurrier,	but	using	σh	slightly	to	large	creates
ripple	artifacts.

The	method	works	well	for	0	≤	σh	≤	0.7.	For	σh	above	0.7,	the	method
produces	visible	ringing	artifacts	(even	if	the	true	PSF	used	to	sample
the	 input	 image	 has	 standard	 deviation	 σh).	 One	 could	 expect	 this
effect,	since	there	is	no	kind	of	regularization	in	the	deconvolution.	In
the	 online	 demo,	 the	 default	 value	 for	σh	 is	 0.35,	which	 reasonably
models	the	blurriness	of	typical	images.

Interpolation	is	then	performed	on	v	to	produce	u	approximating	the
original	 image	 uo.	 The	 interpolation	 and	 the	 original	 image	 are
compared	 with	 the	 peak	 signal-to-noise	 ratio	 (PSNR)	 and	 mean
structural	similarity	(MSSIM)	metrics	(How	are	these	computed?).

Let	A	and	B	be	two	color	images	to	be	compared,	each	with	N	pixels.
We	consider	the	images	as	vectors	in	 	with	each	pixel	represented
by	 red,	 green,	 blue	 intensities	 in	 {0,	 1,	 …,	 255}.	 Several	 standard
metrics	can	then	be	defined	in	terms	of	 	norms.

Maximum	absolute	difference ,
Mean	squared	error	(MSE) ,
Root	mean	squared	error	(RMSE)



	 ,
Peak	signal-to-noise	ratio	(PSNR)

	 .

For	 the	 first	 three	 metrics,	 a	 smaller	 value	 implies	 a	 smaller
discrepancy	 between	 A	 and	 B.	 For	 PSNR,	 a	 larger	 value	 implies	 a
smaller	discrepancy,	with	PSNR	=	∞	when	A	=	B.

The	 mean	 structural	 similarity	 (MSSIM)	 index	 is	 a	 somewhat	 more
complicated	metric	 designed	 to	 agree	 better	with	 perceptual	 image
quality.

We	 first	describe	MSSIM	on	grayscale	 images.	Let	w	 be	 a	Gaussian
filter	 with	 standard	 deviation	 1.5	 pixels,	 and	 compute	 the	 following
local	statistics:

At	every	pixel,	the	structural	similarity	(SSIM)	index	is	calculated	as

where	C1	 =	 (0.01	 ⋅	 255)2	 and	C2	 =	 (0.03	 ⋅	 255)2.	 The	 mean	 SSIM
(MSSIM)	is	the	average	SSIM	value	over	the	image.

For	color	images,	we	compute	the	MSSIM	over	each	channel	and	take
the	average,

The	MSSIM	index	is	always	between	0	and	1.	A	 larger	value	 implies
smaller	discrepancy.

The	computation	time	shown	in	the	demo	is	computed	using	the	UNIX
gettimeofday	 function	 to	 obtain	 the	 system	 time	 in	 units	 of
nanoseconds.	 Note	 that	 the	 computation	 is	 affected	 by	 other	 tasks
running	 simultaneously	 on	 the	 server,	 so	 the	 reported	 computation
time	is	only	a	rough	estimate.



Original	Image	(332×300) Input	Image	(83×75)

Estimated	Contour
Orientations

Contour	Stencil	Interpolation
PSNR	25.77,	MSSIM	0.7165,	CPU	time

0.109s

The	 following	 table	 shows	 the	 convergence	 of	 the	 residual	 ri	=	 v	−
↓(h	∗	u)	where	the	image	intensity	range	is	[0,1].

		Iteration	i		 ||ri||∞
1 0.05409007
2 0.01677390
3 0.00661765

For	 comparison,	 the	 same	 experiment	 is	 performed	 with	 standard
bicubic	 interpolation,	 Muresan's	 AQua-2	 edge-directed
interpolation	 [2],	Genuine	Fractals	 fractal	zooming	 [6],	Fourier	zero-
padding	 with	 deconvolution,	 Malgouyres'	 TV	 minimization	 [1],	 and
Roussos	 and	Maragos'	 tensor-driven	 diffusion	 [3].	 The	 first	 three	 of
these	methods	 do	 not	 take	 advantage	 of	 knowledge	 about	 the	 point
spread	 function,	 while	 the	 later	 three	 do	 (notice	 their	 sharper
appearance).

Bicubic
PSNR	24.36,	MSSIM	0.6311,	CPU

time	0.012s

AQua-2	[2]
PSNR	23.97,	MSSIM	0.6062,	CPU

time	0.016s



Fractal	Zooming	[6]
PSNR	24.50,	MSSIM	0.6317

Fourier	Zero-Padding	with
Deconvolution

PSNR	25.70,	MSSIM	0.7104,	CPU
time	0.049s

TV	Minimization	[1]
PSNR	25.87,	MSSIM	0.7181,	CPU

Time	2.72s

Tensor-Driven	Diffusion	[3]
PSNR	26.00,	MSSIM	0.7297,	CPU

Time	5.11s

The	 contour	 stencil	 interpolation	 has	 good	 quality	 similar	 to	 tensor-
driven	diffusion	but	with	an	order	magnitude	lower	computation	time.

The	 following	 experiment	 on	 a	 synthetic	 image	 tests	 the	 method's



ability	to	handle	different	geometric	features.

Original	Image	(320×240) Input	Image	(80×60)

Estimated	Contour
Orientations

Contour	Stencil	Interpolation
PSNR	21.23,	MSSIM	0.8548,	CPU	time

0.078s

Because	 the	 method	 is	 sensitive	 to	 the	 image	 contours,	 oriented
textures	 like	hair	can	be	reconstructed	to	some	extent.	 Interpolation
of	rough	textures	with	turbulent	contours	is	less	successful.

Original	Image	(392×304) Original	Image	(332×304)

Input	Image	(98×76) Input	Image	(83×76)



Contour	Stencil	Interpolation
PSNR	33.24,	MSSIM	0.7762,	CPU

time	0.129s

Contour	Stencil	Interpolation
PSNR	22.47,	MSSIM	0.6051,	CPU

time	0.115s

A	limitation	of	the	method	is	the	design	assumption	that	noise	in	the
input	 image	 is	 negligible.	 If	 noise	 is	 present,	 it	 is	 amplified	 by	 the
deconvolution.	 The	 sensitivity	 to	 noise	 increases	 with	 the	 PSF
standard	 deviation	 σh,	 which	 controls	 the	 deconvolution	 strength.
Similarly,	 if	σh	 is	 larger	 than	 the	standard	deviation	of	 the	 true	PSF
that	 sampled	 the	 image,	 then	 the	 method	 produces	 significant
oscillation	 artifacts	 because	 the	 deconvolution	 exaggerates	 the	 high
frequencies.

Original	Image	(256×256)



The	top	row	shows	the	input	images	and	the	bottom	row	shows	their
interpolations.

Clean	Input JPEG	Compressed Quantized	Colors

Contour	Stencil
Interpolation

PSNR	26.48,	MSSIM
0.8196

Contour	Stencil
Interpolation

PSNR	20.38,	MSSIM
0.5244

Contour	Stencil
Interpolation

PSNR	18.30,	MSSIM
0.3393
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