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Overview
W e	cal l	RGB	 cube	 the	 three	 dimensional	 representation	 of	 the
colors	of	a	digital	image	in	RGB	space.	This	cube	simply	shows	the
(R,G,B)	color	points	which	actually	appear	in	the	digital	image.	This
visualization	has,	however,	 two	main	defects:	 it	does	not	show	the
real	RGB	histogram.	The	 difference	 is	 that	 in	 the	 color	 cube	 each
point	 is	 plotted	 with	 its	 own	 color,	 while	 in	 the	 RGB	 histogram	 it	 has	 a	 grey	 level	 representing	 the
number	of	 pixels	 in	 the	 image	having	 this	 color	 value.	It	 is	of	 course	 impossible	 to	display	 these	 two
features	simultaneously.	The	perspective	views,	which	are	most	used,	hide	the	real	dense	cloud,	which
is	surrounded	by	a	fume	of	 isolated	color	points.	These	isolated	color	points,	mainly	due	to	the	 image
noise	 and	 to	 compression	 artifacts,	make	 an	 opaque	 obstacle	 to	 the	 perspective	 view	 of	 the	 cloud.
Perspective	 views	 remain	 nonetheless	 the	classic	 visualization	 tool,	 because	 the	 cube	occupation	by
the	color	points	of	a	natural	image	is	far	from	complete,	as	it	can	be	seen	in	the	following	example:

Figure	1.	Original	image	and	its	color	cube.

In	ref1	 the	authors	 give	a	 comprehensive	understanding	of	 all	 spatial	 structures	 appearing	 in	 a	 color
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In	ref1	 the	authors	 give	a	 comprehensive	understanding	of	 all	 spatial	 structures	 appearing	 in	 a	 color
histogram.	They	explore	the	building	parts	of	the	color	cube	by	a	qualitative	analysis	of	 image	details.
They	also	investigate	how	these	elementary	structures	are	combined,	and	their	physical	causes.	Their
conclusion	is	that	2D	structures	predominate	in	the	color	cube.	They	are	qualitatively	explained	by	two
main	causes:	image	blur	and	texture.

Besides	 the	 qualitative	 analysis	 of	 spatial	 structures	 in	 RGB	 space,	 the	 authors	 of	ref1	 make	 a
quantitative	evaluation	supporting	the	2D	dimensional	character	of	the	RGB	cube.	To	this	aim	a	filtering
algorithm,	 the	Local	Linear	Projection	(LLP2)	is	used	to	smooth	the	color	distribution	and	to	reveal	the
underlying	2D	structures	of	the	color	clusters.

LLP2	 replaces	 each	RGB	color	 in	 the	 cube	 by	 its	 projection	 onto	 a	 locally	 defined	 regression	 plane,
computed	 by	Principal	Components	Analysis	 (PCA).	The	 process	 is	 iterated	 some	 two	 to	 four	 times,
until	 the	average	error	between	corresponding	colors	 in	consecutive	 iterations	 is	below	a	 threshold	of
0.5.

Thus	 LLP2	 estimates	 a	 2D	 manifold	 from	 the	 unstructured	 cloud	 of	 points	 allowing	 for	 a	 better
visualization	 of	 the	 colors.	 This	2D	manifold	 is	 usually	 very	 close	 to	 the	 initial	 cloud:	 on	 average	 the
displacement	of	the	color	points	is	around	3	(see	Table	3	below),	which	is	quite	small	in	relation	to	the
cube	dimensions	(255,255,255).	On	this	manifold,	 the	color	density	 is	displayed	by	a	brightness	value
proportional	 to	 its	 logarithm.	The	 density	 has	 become	 visible	 because	 the	 cloud	 is	 flattened	 and	 the
dense	color	points	in	direct	sight,	being	no	more	hidden	by	low	density	color	points	(see	Fig.	2).

Figure	2.	Perspective	view	of	 the	color	cube	of	 image	 in	Fig.	1	after	 filtering	with	LLP2.	Each	color	 is
displayed	with	a	grey	level	proportional	to	the	logarithm	of	the	density	in	RGB	space	(lighter	for	higher
densities).	The	density	of	colors	points	is	defined	here.

The	algorithm	is	described	 in	 the	next	sections,	 together	with	 implementation	details	and	documented
source	 code.	Moreover,	 an	 online	 demonstration	 is	 available	 to	 anybody	willing	 to	 test	 the	 results	 of
LLP2	on	his	(her)	own	images.	Several	examples	are	displayed	below.
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Online	Demo
Try	this	algorithm	on	your	own	images	with	the	online	demonstration.

Algorithm
Given	 a	k-dimensional	 manifold	 given	 by	 noisy	 samples,	 the	 problem	 of	 recovering	 the	manifold	 by
denoising	the	samples	and	meshing	them	is	a	classic	problem	whose	solution	can	be	taken	advantage
of	 for	 processing	 color	 clouds.	 The	 founding	 method	 seems	 to	 be	 the	moving	 least	 square	 (MLS)
method	introduced	in	ref2.	It	is	proved	in	ref3	that	the	MLS	method	of	order	1,	which	projects	the	point
cloud	 locally	 on	 its	 regression	 plane,	moves	 the	 underlying	 surface	 by	mean	 curvature	motion.	 This
means	that	if	the	surface	is	flat,	it	hardly	moves	by	MLS1.	However,	if	the	point	cloud	is	noisy,	a	smooth
manifold	is	fast	restored	and	can	be	meshed,	as	proved	in	ref3.	MLS1	is	a	particular	case	of	the	Local
Linear	 Projection	 (LLP)	 algorithm	ref4,	 which	 does	 not	 assume	 a	 particular	 dimension.	 LLP	 with	 k
dimensions	(LLPk)	takes	for	each	point	its	closest	points	in	Euclidean	distance	and	computes	the	PCA
of	this	neighborhood.	Then,	the	current	point	is	projected	on	the	regression	affine	manifold	generated	by
the	k	 first	 PCA	 components.	 This	 algorithm	was	 proposed	 by	Huo	 et	 al.	 ref4	 for	 the	 filtering	 of	 high
dimensional	data.	Notice	that	MLS1	and	LLP2	are	the	same	algorithm.

The	 adaptation	 of	 LLP	 to	 the	 color	 point	 clouds	 is	 described	 below.	 Each	 RGB	 color	 actually	 may
represent	more	than	one	pixel	in	the	image.	When	applying	this	filtering	strategy	each	color	is	counted
as	many	times	as	it	appears	in	the	image.

LLP	algorithm

For	each	RGB	color	yi,	i=1,	2,	...,	N

1.	 Find	the	K	neighbors	whose	distance	to	yi	is	smaller	than	a	given	threshold	T.	The	neighboring
colors	are	denoted	by	x1,	x2,	...,	xK;

2.	 Compute	the	principal	components	of	the	set	x1,	x2,	...,	xK;
3.	 Let	k	(k=0,	k=1	or	k=2)	be	the	assumed	dimension	of	the	embedded	manifold,	then	project	yi	onto

the	affine	subspace	spanned	by	the	first	k	principal	components	and	passing	through	the	center
of	mass	of	the	set	x1,	x2,	...,	xK.

The	algorithm	is	iterated	until	the	average	difference	between	corresponding	colors	in	two	consecutive
iterations	is	below	a	precision	parameter	ε.

In	practice	only	LLP2	is	used,	since	the	2D	model	has	proven	 ref1	to	be	the	best	adapted	to	the	color
distributions	found	in	natural	images.

Implementation	details
The	complexity	of	the	algorithm	is	a	function	of	the	number	of	colors	C	in	the	image.	For	each	color,	a
neighborhood	of	size	(2T+1)3	is	explored	(step	1	of	the	algorithm)	and	then	the	color	point	is	processed.
This	simple	analysis	 leads	 to	an	upper	bound	of	O(CT3)	 operations	 per	 iteration.	The	 total	number	of
iterations	depends	on	the	speed	of	convergence	of	the	algorithm.

It	is	not	possible	to	give	an	a	priori	estimate	of	the	computation	time	in	terms	of	the	size	of	the	image,
since	 there	 is	 no	 exact	 correspondence	 between	 number	 of	 pixels	 and	 number	 of	 colors.	 Statistical
analysis	performed	on	100	images	from	the	Berkeley	test	dataset	ref5	(size	481x321)	gives	an	average
ratio	of	4.24	pixels/color.	Moreover,	this	ratio	decreases	as	the	image	size	is	reduced	(see	Table	1).

scale size	(pixels) colors pixels/color

1 154401 36363.13 4.24

0.75 86400 26676.66 3.24

0.5 38400 16482.54 2.33

0.25 9600 6155.44 1.56

Table	1.	Number	of	pixels	and	average	number	of	colors	computed	from	100	images	from	the	Berkeley
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Table	1.	Number	of	pixels	and	average	number	of	colors	computed	from	100	images	from	the	Berkeley
test	 dataset	ref5	 for	 different	 scale	 factors.	 The	 last	 column	 shows	 the	 ratio	 between	 the	 number	 of
pixels	with	respect	to	the	number	of	colors.

The	 following	 specific	 implementation	 of	 the	 LLP	 algorithm	has	 been	 adopted	 in	 order	 to	 reduce	 the
computation	time	while	ensuring	the	quality	of	the	results:

in	step	1,	L1	distance	is	used	and	the	value	of	threshold	T	is	fixed	to	10.	In	the	Examples	section	it	is
shown	that	the	value	of	this	parameter	is	not	critical	for	the	algorithm	results,	provided	that	the	right
model	of	color	distribution	(2D	model)	is	used.
in	step	2,	the	minimum	number	K	of	neighbors	required	for	principal	components	analysis	is	set	to
10,	therefore	the	algorithm	is	not	applied	to	isolated	points	in	RGB	space.	These	points	keep	their
initial	RGB	value	throughout	the	filtering	process.
an	additional	step	has	been	added:	
3b.	Project	onto	the	same	affine	subspace	described	in	3	all	the	neighbors	of	yi	at	distance	smaller
than	δ.	These	points	are	no	longer	processed	in	the	current	iteration.	δ	must	be	smaller	than	T	so	the
affine	subspace	found	in	3	is	a	good	approximation	of	the	subspace	associated	to	these	points.	The
addition	of	step	3b	implies	a	maximum	reduction	of	the	computation	time	of	the	order	of	(2δ+1)3.
After	experimental	testing	on	several	images	(see	section	below)	we	have	fixed	δ=T/2.
the	number	of	iterations	is	controlled	by	ε.	We	fix	it	to	0.5,	which	implies	an	average	of	3	iterations	for
LLP2.	The	value	was	chosen	after	experimental	testing	on	several	images	(see	section	below).

Statistical	 analysis	 of	 the	 computation	 time	 of	 the	 algorithm	with	 parameters	 fixed	 to	 T=10,	 δ=5	 and
ε=0.5)	 has	 been	 performed	 using	 100	 images	 of	 the	 Berkeley	 test	 dataset	ref5.	 The	 average
computation	 time	 for	 these	 images	 has	 been	 computed	 for	 decreasing	 scale	 factors.	 The	 results,
summarized	in	Table	2,	show	that	the	computation	time	has	a	non-linear	dependency	on	the	image	size
(at	least	for	small	scale	factors).

scale size(pixels) size/size(scale	1) time/time(scale	1)

1 154401 1 1

0.75 86400 0.56 0.59

0.5 38400 0.25 0.33

0.25 9600 0.0625 0.18

Table	2.	100	images	from	the	Berkeley	test	dataset	ref5	have	been	zoomed	down	with	decreasing	scale
factors.	 The	 size	 of	 the	 images	 is	 shown	 in	 the	 second	 column.	 The	 ratio	 between	 the	 size	 of	 the
zoomed	images	and	their	original	size	is	displayed	in	the	third	column.	The	last	column	shows	the	ratio
between	the	average	computation	times	of	LLP2	for	the	zoomed	images	with	respect	to	the	computation
time	for	the	original	images.

Source	Code
An	 ANSI	 C++	 implementation	 is	 provided	 and	 distributed	 under	 the	GPL	 licence:	 source	 code,

documentation,	online	documentation

Note	from	the	editor:	the	source	code	was	updated	on	July	5,	2011	to	fix	a	bug	that	occurs	on	images
whose	colors	are	sparsely	distributed	in	RGB	space.

Check	for	source	code	updates	here

Basic	 compilation	 and	 usage	 instructions	 are	 included	 in	 the	README.txt	 file.	 This	 code	 requires	 the
libpng	library.

	Linux.	You	can	install	libpng	with	your	package	manager.
	Mac	OSX.	You	can	get	libpng	from	the	Fink	project.
	Windows.	Precompiled	DLLs	are	available	online	for	libpng.

Parameter	setting
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Tests	with	T

The	distance	T	 is	used	 to	select	 the	neighboring	points	which	 take	part	 in	 the	PCA	computation.	The
value	of	this	parameter	is	not	crucial,	as	illustrated	in	the	following	figure	and	table.	It	must	be	remarked
that	T	is	a	distance	in	RGB	space	(not	a	distance	between	image	pixels)	and	that	in	all	our	experiments
3	 bytes	 per	 pixel	 are	 used	 to	 store	 color	 information,	 therefore	 the	 maximum	 Euclidean	 distance
between	two	points	in	the	color	cube	is	255x31/2=441.67.

Figure	3.	The	original	 image	(top-left)	 is	 filtered	with	LLP2,	the	radius	T	of	 the	filter	being	respectively
10,	 15,	 20.	 The	 corresponding	 clouds	 are	 in	 the	 bottom	 row.	 No	 color	 alteration	 is	 visible,	 which	 is
consistent	with	 the	 small	 variation	 of	 the	cloud	 itself.	This	 visual	 experiment	 is	 complemented	by	 the
quantitative	analysis	of	Table	3.

In	order	to	numerically	verify	the	2D	filtering	stability,	the	root	mean	square	errors	(RMSE)	between	the
color	clouds	filtered	with	consecutive	radii	are	shown	in	Table	3.	 The	errors	displayed	in	this	table	are
the	 average	 errors	 over	 100	 images	 from	 the	 Berkeley	 test	 database	ref5.	 The	 outcome	 of	 the
experiment	 is	decisive.	The	average	distance	between	the	cloud	and	its	LLP2	filtered	version	remains
small	 (less	 that	 5),	 regardless	of	 the	 value	of	 the	 filtering	 radius	T.	 In	 addition,	 the	 distance	 between
filtered	points	for	different	values	of	the	radius	are	also	small	(of	the	order	of	2),	proving	that	the	filtered
cloud	is	essentially	the	same	regardless	of	the	filtering	parameter.	This	table	therefore	demonstrates	the
validity	of	the	2D	manifold	assumption.	In	all	our	experiments	we	have	fixed	parameter	T=10.

RMSE dT=5

T=3 1.51 2.82

T=5 2.43 2.54

T=10 3.32 2.17

T=15 3.80 2.03

T=20 4.18 1.94

T=25 4.48 1.76

T=30 4.72 1.64

Table	3.	Statistical	results	applying	LLP2	(ε=0.5,	δ= T/2)	on	100	images	from	the	Berkeley	test	database
ref5.	 First	 column:	 the	 radius	T	 for	 LLP.	 Second	 column:	 average	RMSE	 between	 filtered	 point	 and
original	after	applying	LLP2.	Third	column:	average	RMSE	between	the	final	position	of	a	point	filtered
by	LLP2	with	radius	T,	and	the	same	point	filtered	by	LLP2	with	radius	T+dT,	where	dT=5.

About	the	computation	of	RMSE
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About	the	computation	of	RMSE

Tests	with	δ

The	 parameter	 δ	 is	 used	 in	 the	 algorithm	 to	 speed	 up	 computations.	 Table	 4	 shows	 the	 average
reductions	 in	 computation	 time	 for	 different	 values	 of	 δ	 (with	 fixed	 radius	T=10),	 computed	 from	100
images	of	the	Berkeley	database	ref5.	The	average	RMSE	between	original	and	filtered	images	is	also
shown.

The	results	show	that	the	computation	time	is	reduced	as	δ	increases,	while	the	average	RMSE	remains
small	 even	 for	 large	 values	 of	 the	 parameter.	 This	 result	 is	 explained	 by	 the	 smooth	 variations	 in
orientation	 of	 the	 local	 regression	 planes	 computed	 for	 each	 RGB	 point,	 which	makes	 it	 possible	 to
approximate	the	local	plane	at	a	given	point	by	planes	computed	at	relatively	far	apart	points.	It	must	be
remarked	 however	 that	RMSE	 is	 an	 average	measure	 over	 the	 set	 of	 points	 in	 a	 color	 cloud.	Close
observation	of	the	clouds	shows	that	when	large	values	of	δ	are	used	the	filtered	color	clouds	tend	to	be
composed	 of	 unconnected	 2D	manifolds,	 instead	 of	 forming	 a	 smooth	 surface	 (see	 Fig.	 4).	 For	 this
reason	we	have	chosen	a	compromise	value	δ=T/2=5	(since	T=10)	in	all	our	experiments.

Time/Time(δ=0) RMSE

δ=0 1 3.30

δ=1 0.25 3.30

δ=2 0.11 3.30

δ=3 0.065 3.31

δ=5 0.036 3.32

δ=7 0.03 3.37

δ=10 0.028 3.56

Table	4.	The	first	column	shows	the	ratio	between	the	average	computation	time	of	the	LLP2	algorithm
(T=10,	 ε=0.5)	 for	 different	 values	 of	 the	 speed-up	 parameter	 δ	with	 respect	 to	 the	 computation	 time
without	 acceleration	 (δ=0).	The	average	RMSE	with	 respect	 to	 the	 original	 images	 is	 also	 displayed.
Averages	were	taken	over	100	images	in	the	Berkeley	test	dataset	ref5.
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Figure	 4.	 Top,	 original	 image	 and	 its	 color	 cube.	 The	 image	 is	 filtered	 with	 the	 LLP2	 algorithm	with
T=10,	 ε=0.5	 and	 increasing	 values	 of	 the	 speed-up	 parameter	 δ.	 Bottom,	 from	 left	 to	 right,	 resulting
cubes	with	δ=0	(no	acceleration),	δ=5	and	δ=10;	For	 large	values	of	δ	(bottom-right)	 the	 filtered	color
clouds	 tend	 to	 be	 composed	 of	 unconnected	 2D	 manifolds,	 instead	 of	 forming	 a	 smooth	 surface
(bottom,	left	and	center).

Tests	with	ε

ε	 is	used	to	control	 the	number	of	 iterations	of	 the	algorithm.	Table	5	displays	the	average	number	of
iterations	for	100	images	in	the	Berkeley	test	database	ref5	for	different	values	of	ε.	The	average	RMSE
between	 original	 and	 filtered	 images	 is	 also	 shown.	As	 the	 number	 of	 iterations	 (and	 therefore	 the
computation	time)	increases	the	dominant	2D	structures	become	more	visible,	at	the	expense	of	losing
details	of	the	color	distribution	(see	Fig.	5).	As	a	consequence	the	difference	(RMSE)	with	the	original
values	increases.	A	compromise	solution	has	been	to	set	ε=0.5.

Number	of	iterations RMSE

ε=0.05 29.3 4.71

ε=0.1 11.92 4.09

ε=0.25 4.51 3.55

ε=0.5 2.91 3.32

ε=0.75 2.48 3.24

ε=1 2.23 3.17

Table	5.	The	second	column	shows	the	average	number	of	iterations	of	the	LLP2	algorithm	( T=10,	δ=5)
computed	from	100	images	in	the	Berkeley	test	dataset	ref5.	Average	RMSE	with	respect	to	the	original
images	 is	also	displayed.	As	the	number	of	 iterations	 increases	the	difference	with	 the	original	values
increases.

./cactussurfT10delta0.png
./cactussurfT10delta5.png
./cactussurfT10delta10.png
./totems.png
./totemssurf.png


Figure	5.	Top,	original	 image	and	 its	color	cube.	The	 image	 is	 filtered	with	LLP2	with	 T=10,	 δ=5	 and
increasing	 values	 of	 ε.	 Bottom,	 from	 left	 to	 right,	 resulting	 cubes	with	 ε=1,	 ε=0.5	 and	 ε=0.05;	As	 the
number	 of	 iterations	 increases	 the	 dominant	 2D	 structures	 become	 more	 visible,	 at	 the	 expense	 of
losing	details	of	the	color	distribution.

Preprocessing	and	visualization	of	results
In	the	Overview	section	it	was	remarked	that	isolated	colors	in	the	RGB	cube	make	an	opaque	obstacle
to	the	perspective	view	of	the	cloud	of	RGB	points.	LLP2	recreates	a	2D	manifold	from	the	unstructured
cloud	 of	 points	 allowing	 for	 a	 better	 visualization	 of	 the	 colors.	 However,	 isolated	 colors	 are	 not
eliminated	by	LLP2	(their	number	of	neighboring	colors	is	below	threshold	K	and	therefore	their	original
value	is	preserved)	and	they	still	hinder	visualization	of	the	processed	cube.

In	order	 to	 improve	 the	visualization	of	 the	original	and	 filtered	RGB	cubes	 the	 following	procedure	 is
applied:

1.	 Eliminate	"isolated"	colors	from	the	original	image.	One	color	is	labeled	as	"isolated"	if	its	number
of	neighbors	(number	of	color	points	at	L1-distance	≤	r)	is	below	some	threshold	nmin.	Values
r=5	and	nmin=10	are	used	in	all	our	experiments.

2.	 Apply	LLP2	on	the	remaining	colors.

This	procedure	is	used	in	the	online	demo	and	in	the	examples	below.	Results	are	displayed	as	follows:

Original	image.
RGB	cube	of	the	original	image	after	removal	of	isolated	colors.
RGB	cube	after	processing	with	LLP2	the	cube	from	the	previous	step.
Filtered	image,	where	pixels	with	"isolated"	colors	in	the	original	image	keep	their	original	color.

Isolated	color	points	are	mainly	located	on	boundaries,	and	they	represent	a	small	fraction	of	the	total
number	of	image	colors.	Tests	with	the	100	images	of	the	Berkeley	test	dataset	 ref5	show	an	average
value	of	2%	isolated	colors	per	image.	An	average	of	1%	image	pixels	correspond	to	isolated	colors.

Fig.	 6	 displays	 an	 original	 image,	 the	 resulting	 image	 after	 removal	 of	 isolated	 colors	 (pixels	 set	 to
black),	the	filtered	image	and	their	corresponding	color	cubes.
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Figure	6.	Top	 row.	From	 left	 to	 right,	original	 image,	 the	same	 image	after	 removal	of	 isolated	colors
(associated	pixels	set	 to	black)	and	filtered	image.	6.02%	of	the	colors	have	been	removed	(3.84%	of
pixels).	(This	percentage	is	exceptionally	high,	the	average	removal	rate	being	1%.)	Bottom,	from	left	to
right,	original	color	cube,	cube	after	removal	of	isolated	colors	and	result	of	LLP2	on	this	last	cube.

More	examples
This	section	displays	some	results	of	 the	application	of	LLP2	(including	removal	of	 isolated	points)	on
different	images	from	Berkeley	test	dataset	ref5.
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Figure	 7.	 Five	 images,	 their	 original	 cloud,	 their	 filtered	 cloud	 by	 LLP2	 (T=10,	 δ=5;	 ε=0.5)	 ,	 and	 the
image	with	 the	 filtered	colors.	The	 filtered	cloud	 is	a	2D	numerical	manifold,	being	a	steady	state	 for
LLP2.	There	 is	no	conspicuous	alteration	 in	 the	color	cloud	when	passing	 to	2D,	and	 the	 image	with
filtered	colors	looks	identical	to	the	original.

Color	density	visualization
The	2D	structure	of	color	histograms	permits	a	simple	and	reliable	visualization	tool	(LLP2)	recreating	a
2D	color	manifold	from	the	unstructured	color	cloud	point.	On	this	manifold	the	color	density	itself	can	be
displayed	by	a	brightness	value	proportional	to	the	density	of	the	color	point.

Fig.	8	shows	another	perspective	of	the	filtered	point	clouds	of	the	images	in	Fig.	7,	and	also	displays
their	 histogram	 density	 (lighter	 grey	 levels	 indicate	 higher	 densities).	 The	 density	 is	 displayed	 in
logarithmic	scale,	because	a	few	color	points	can	have	a	huge	occupancy	(the	typical	``blue	sky	effect
´´)	 and	 therefore	 a	 linear	 scale	 would	 squeeze	 the	 density	values.	 The	 density	 is	 only	 now	 visible
because	the	filtered	clouds	are	flat	and	the	dense	color	points	in	direct	sight.

How	the	color	density	is	computed
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Figure	8.	Densities	of	the	filtered	RGB	cubes	in	Fig.	7.	Left:	original	image.	Center:	a	view	of	the	filtered
RGB	cube.	Right:	Same	view	for	the	density.	The	real	density	is	now	visible	because	the	cloud	has	been
flattened	into	a	2D	manifold.	Otherwise	the	dense	color	points	would	be	hidden,	being	occluded	by	less
dense	ones.
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