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Abstract

We present an implementation of the inverse compositional algorithm for parametric motion
estimation. It computes a global motion between two images using a non-linear least square
technique. Our implementation allows computing several types of planar transformations, such
as translations, similarities, affinities or homographies. The algorithm is iterative so it typically
yields solutions with high accuracy. The use of robust error functions, different from the L2

norm, improves the stability of the method under the presence of noise and occlusions, and
allows it to detect the predominant motion, even if there are several types of displacements.
The method works with multi-channel images and makes use of a coarse–to–fine strategy for
dealing with large displacements.

Source Code

The reviewed source code and documentation for this algorithm are available from the web page
of this article1. Compilation and usage instruction are included in the README.txt file of the
archive.

Keywords: inverse compositional algorithm; motion estimation; parametric motion; homogra-
phy; rigid transformation; non-linear least square; robust error function

1 Introduction

The estimation of global parametric motion models is important in several problems, such as optical
flow estimation, object tracking, video stabilization, image stitching or 3D reconstruction. The
objective is to find the rigid transformation that puts in correspondence the pixels of two images.

In this article, we present an implementation of the inverse compositional algorithm, first proposed
in [4] and thoroughly studied in [6]. This is part of a series of articles that introduced several
improvements over the Lucas-Kanade method [13] for computing general parametric motion models.

1https://doi.org/10.5201/ipol.2016.153
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The Inverse Compositional Algorithm for Parametric Registration

In the first article [6], the authors described several algorithms for image alignment and concentrated
on the study of the inverse compositional algorithm.

Additionally, they proposed five more papers with theoretical justifications and improvements
over the basic model: In part one [5], they studied the requirements on the set of warpings that are
applicable to each strategy, the equivalence between the different algorithms and their performance
using standard numerical methods (Gauss-Newton, Newton, diagonal Hessian, Levenberg-Marquardt
and steepest descent); in part two [3] they analyzed different error functions, such as weighted L2

norms and robust functions, its relation with noise, how to select pixels for improving the efficiency
and how to deal with linear appearance variations; part three [1] deepened on the problem of linear
appearance variation in the inverse compositional algorithm, with three different strategies for the L2

norm and robust error functions; part four [2] discussed how to add priors on the parameters to the
algorithms explained in the previous parts; finally, part five [7] generalized the inverse compositional
algorithm to 3D volumetric data and surfaces. In our work, the main references are [6] and [3].

Our implementation is oriented to the estimation of planar transformations such as translations,
Euclidean transformations, similarities, affinities, and homographies. Nevertheless, it may be easily
adapted to other types of transformations with the requirement that they form a group. We have also
included the use of robust error functions, as explained in [3]. This is interesting because it enables
the algorithm to deal with occlusions, noise or multiple independent displacements: Typically, the
algorithm can calculate the dominant motion, with high accuracy, and disregard values that do not
fit in the model. We have also included a coarse–to–fine strategy for dealing with large motions and
extended the algorithm to multi-channel images.

We first introduce the method of Lucas-Kanade in Section 2. In this section, we explain how to
implement an incremental refinement, a coarse–to–fine strategy for estimating large displacements,
and how to include robust error functions [11]. We finish this part with a complete description of
the Lucas-Kanade algorithm. In Section 3, we extend this method to more general transformations.
In Section 4, we introduce the inverse compositional algorithm and its variant for robust functions,
which, nevertheless, is not so efficient in terms of computational complexity. These algorithms are
explained in sections 4 and 4.3, which are the ones implemented.

2 The Lucas-Kanade Method

Let I1(x) := (I11 , I
2
1 , · · · , Ic1) and I2(x) := (I12 , I

2
2 , · · · , Ic2) be two images of multiple channels (c), with

x = (x, y). Let p = (tx, ty) be the global displacement vector between the two images. Consider the
following registration energy, depending on p,

E(p) =
∑
x

|I2(x + p)− I1(x)|22, (1)

with |.|2 the Euclidean norm. This is a rather simple way of combining the color channels of both
images, but there are other possible ways of using the color information, see [12] for instance. The
Lucas-Kanade method assumes that the motion (p) is constant in a neighborhood around x. I2(x+p)
can be linearized using first order Taylor expansions as I2(x + p) ' I2(x) +∇I2(x)p, where ∇I :=
(∇I1,∇I2, · · · ,∇Ic)T is the gradient of the image. The energy now reads as

E(p) '
∑
x

|I2(x) +∇I2(x)p− I1(x)|22. (2)

Minimizing the right hand term of Equation (2) and solving for p,∑
x

∇IT2 (x) (I2(x) +∇I2(x)p− I1(x)) = 0, (3)
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we obtain the solution as
p = H−1

∑
x

∇IT2 (x) (I1(x)− I2(x)), (4)

with

H =
∑
x

∇IT2 (x)∇I2(x) =

 ∑
x

IT2,x(x)I2,x(x)
∑
x

IT2,x(x)I2,y(x)∑
x

IT2,x(x)I2,y(x)
∑
x

IT2,y(x)I2,y(x)

 . (5)

the (Gauss-Newton approximation to the) Hessian2 of the non-linear energy in Equation (1) or

structure tensor matrix, and IT2,x(x)I2,x(x) =
(
∂I12
∂x

)2
+
(
∂I22
∂x

)2
+ · · ·+

(
∂Ic2
∂x

)2
.

2.1 Incremental Refinement

Due to the linearization of I2(x + p), the previous scheme provides an approximate solution near
p = 0. If we want to obtain a more accurate solution, we may use an iterative refinement in the
following way

E(∆p) =
∑
x

|I2(x + p + ∆p)− I1(x)|22. (6)

We assume that p is already known, so the aim is to compute an increment ∆p. The first order
Taylor expansion is I2(x + p + ∆p) ' I2(x + p) +∇I2(x + p)∆p. We can rewrite the energy as

E(∆p) '
∑
x

|I2(x + p) +∇I2(x + p)∆p− I1(x)|22, (7)

and minimizing the right hand term with respect to ∆p yields

∆p = H−1
∑
x

∇IT2 (x + p) (I1(x)− I2(x + p)), (8)

with

H =
∑
x

∇IT2 (x + p)∇I2(x + p) =

 ∑
x

IT2,x(x + p)I2,x(x + p)
∑
x

IT2,x(x + p)I2,y(x + p)∑
x

IT2,x(x + p)I2,y(x + p)
∑
x

IT2,y(x + p)I2,y(x + p)

 . (9)

Terms of the form I2(x + p) can be computed using bicubic interpolation. If the displacement
is small, the initial value of the motion can be set to zero, p0 := (0, 0). At each iteration, the
solution for ∆pi is calculated and the parameters are updated as pi+1 := pi + ∆pi. This provides a
better approximation that can be refined in subsequent iterations. The process is stopped when the
magnitude of ∆pi is very small.

2.2 Coarse–to–fine approach

The incremental refinement allows us to calculate large motions using a coarse–to–fine approach. In
order to estimate large displacements, we use a pyramidal structure. We follow the same strategy
presented in previous IPOL articles [16, 14, 17] and reproduce here the basic ideas.

Our algorithm creates a pyramid of down-sampled images. The pyramid is created by reducing
the images by a factor η ∈ (0, 1). Before downsampling, the images are smoothed with a Gaussian

2The true Hessian is the matrix of second order derivatives. This is an approximate Hessian that neglects second
(and higher) order derivatives of I2(x+p) [18]. In the rest of the text, we refer to it as simply the Hessian, to preserve
the same name as in the original articles [6, 5, 3, 1, 2, 7] and in [18].
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kernel of standard deviation depending on η. For a set of scales s = 1, 2, . . . , Nscales, the pyramid of
images is built as

Is(ηx) := Gσ ∗ Is−1(x). (10)

After the convolution, the images are sampled using bicubic interpolation. The value of σ depends
on η and is calculated as

σ(η) := σ0
√
η−2 − 1, with σ0 := 0.6. (11)

This allows preserving the same smoothing across the scales. The value of σ0 is a small constant
to reduce the noise of the original image and is found empirically, as explained in [14]. The motion
is normally initialized as p := (0, 0) and the system of equations is solved at the coarsest scale.
This solution is then refined in the following scales. To transfer the values from a coarser scale, the
transformation is updated as

ps−1(x) :=
1

η
ps(ηx). (12)

This is valid in the case of translations. For other transformations, all the parameters are not
updated in the same way, as we will see later.

2.3 Robust Error Functions

Robust functions reduce the influence of gross errors in the input data. They allow to find a model
that correctly fits with the bulk of the data and remove outliers, which are points that do not conform
with the estimated model. This is studied in the field of robust statistics [11] and it is interesting if
we want to deal with problems like occlusions, noise, brightness changes or spurious motions. These
functions are introduced in the energy as

E(∆p) =
∑
x

ρ
(
|I2(x + p + ∆p)− I1(x)|22 , λ

)
. (13)

The purpose of function ρ (·) is to give less weight to large values of the argument, where the
difference in image intensities is big. Typical functions are given in Table 1, see [9].

Applying first order Taylor expansions and minimizing the approximate functional that results
from (13), we obtain

∆p = H−1ρ
∑
x

ρ′ · ∇IT2 (x + p) (I1(x)− I2(x + p)), (14)

with

Hρ =

 ∑
x

ρ′ · IT2,x(x + p)I2,x(x + p)
∑
x

ρ′ · IT2,x(x + p)I2,y(x + p)∑
x

ρ′ · IT2,x(x + p)I2,y(x + p)
∑
x

ρ′ · IT2,y(x + p)I2,y(x + p)

 , (15)

and ρ′ := ρ′
(
|I2(x + p + ∆p)− I1(x)|22 , λ

)
. This factor weighs down the influence of pixels x for

which the error is high.

2.4 Lucas-Kanade Algorithm

The Lucas-Kanade method is outlined in Algorithm 1. The input parameters are the two images, an
initial approximation, and a threshold, ε, that is used to stop the iterative process. The convergence
criterion is ‖∆p‖ < ε, where ε is a small constant, e.g., ε := 10−3.

This algorithm refines an initial estimate of p at each scale. The method may converge very
slowly to the solution, so it is necessary to stop it if a maximum number of iterations is exceeded. In
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Type ρ(s2, λ) ρ′(s2, λ)s

T
ru

n
ca

te
d

Q
u
ad

ra
ti

c ρ(s2, λ) =

{
1
2
s2 if s2 < λ2

1
2
λ2 otherwise

ρ′(s2, λ)s =

{
s if s2 < λ2

0 otherwise

−10 0 10

0

5

10

−10 0 10

−5

0

5
G

em
an

&
M

cC
lu

re ρ(s2, λ) = 1
2

s2

λ2+s2
ρ′(s2, λ)s = λ2s

(λ2+s2)2

−10 0 10

0

0.2

0.4

−10 0 10

−5

0

5

·10−2

L
or

en
tz

ia
n

ρ(s2, λ) = 1
2

log
(

1 +
(
s
λ

)2)
ρ′(s2, λ)s = s

λ2+s2

−10 0 10

0

0.5

1

−10 0 10

−0.1

0

0.1

C
h
ar

b
on

n
ie

r

ρ(s2, λ) = 2
√
s2 + λ2 ρ′(s2, λ)s = s√

s2+λ2

−10 0 10
0

5

10

−10 0 10

−1

0

1

Table 1: Examples of robust error functions. The value of λ is 5, except for the Charbonnier function
(λ = 1). This is a differentiable approximation to the L1 norm that is typically used in variational
optical flow methods, like in [17].

the presence of large displacements, this algorithm should be called at each scale using the solution
obtained at previous scales.
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Algorithm 1: Lucas-Kanade for translations

input : I1, I2, p, ε
output: p
repeat

Calculate I2(x + p) and ∇I2(x + p) using bilinear or bicubic interpolation
Compute I1(x)− I2(x + p)
Compute the Hessian matrix using Equation (9) // Equation (15) for the robust

version

Compute
∑
x

∇IT2 (x + p) (I1(x)− I2(x + p)) // Equation (14) for the robust

version

Solve for ∆p using Equation (8) // Equation (14) for the robust version

p← p + ∆p
until ‖∆p‖ < ε

Algorithm 2 implements the coarse–to–fine strategy. It creates the pyramid of images, calls the
Lucas-Kanade algorithm at each scale and updates the transformation for the next finer scale. The
final solution corresponds to the transformation computed at scale s = 1, using the original images.
Note that it is not necessary a high accuracy at the coarsest scales, so we may run less iterations.
This can be easily achieved, for instance, increasing the value of ε for s > 1.

Algorithm 2: Coarse–to–fine approach

input : I1, I2, Nscales, η, ε
output: p
Create the pyramid of images Is1, I

s
2 using η and s = 1, . . . , Nscales

pNscales ← 0
for s← Nscales to 1 do

Lucas-Kanade for translations(Is1, Is2, ps, ε)
if s > 1 then

ps−1 := 1
η
ps

The higher computational costs are due to the bilinear/bicubic interpolations and the estimation
of the Hessian. The complexity of the algorithm is O(2N) at each iteration, with N the number of
pixels. If we take into account the number of iterations, i, and the number of scales, s, the complexity
is O

(
i2N

3

(
4− 1

4s

))
. The algorithm converges very fast, so the number of iterations is usually small

(we fix its maximum to 30). The number of scales must be set according to the largest expected
displacements, e.g., s = 5 allows to detect motions up to 32 pixels distance.

3 Parametric Motion Estimation

Instead of translations, we may compute more general motions between the two images. Typical
deformations include rotations, similarities, affinities and homographies. Let x′(x; p,∆p) be the cor-
respondence map from the left to the right image, parameterized by p and the incremental refinement
∆p. We consider the transformations in Table 2.

The corresponding functional is given by

E(∆p) =
∑
x

|I2(x′(x; p,∆p))− I1(x)|22. (16)
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As in Section 2, I2(x
′(x; p,∆p)) can be linearized using first order Taylor expansions

I2(x
′(x; p,∆p)) ' I2(x

′(x; p)) +∇I2(x
′(x; p))J(x; p)∆p, (17)

where J(x; p) = ∂x′(x;p)
∂p

is the Jacobian of the transformation. The expression ∇I2(x
′(x; p))J(x; p)

is called the steepest descent image, see [6] for an explanation. Table 2 lists the transformations and
their Jacobians using the parametrizations proposed in [18].

Transform Parameters – p Matrix – H(p) Jacobian – J(x; p)

Translation (tx, ty)

 1 0 tx
0 1 ty
0 0 1

 (
1 0
0 1

)

Euclidean (tx, ty, θ)

 cos θ − sin θ tx
sin θ cos θ ty

0 0 1

 (
1 0 −x sin θ − y cos θ
0 1 x cos θ − y sin θ

)

Similarity (tx, ty, a, b)

 1 + a −b tx
b 1 + a ty
0 0 1

 (
1 0 x −y
0 1 y x

)

Affinity (tx, ty, a11, a12, a21, a22)

 1 + a11 a12 tx
a21 1 + a22 ty
0 0 1

 (
1 0 x y 0 0
0 1 0 0 x y

)

Homography (h11, h12, h13, · · · , h32)

 1 + h11 h12 h13
h21 1 + h22 h23
h31 h32 1

 1
D

(
xT 0T −x′x −x′y
0T xT −y′x −y′y

)
D = h31x+ h32y + 1

Table 2: Planar transformations in homogeneous coordinates and their Jacobians, with x = (x, y, 1)T

and 0 = (0, 0, 0)T .

The energy is now

E(∆p) '
∑
x

|I2(x′(x; p)) +∇I2(x
′(x; p))J(x; p)∆p− I1(x)|22. (18)

Minimizing the right hand term of (18) yields

∆p = H−1J
∑
x

(∇I2(x
′(x; p))J(x; p))

T
(I1(x)− I2(x

′(x; p))), (19)

with

HJ =
∑
x

(∇I2(x
′(x; p))J(x; p))

T ∇I2(x
′(x; p))J(x; p)

=

 ∑
x

(I2,x(x
′)J(x; p))T I2,x(x

′)J(x; p)
∑
x

(I2,x(x
′)J(x; p))T I2,y(x

′)J(x; p)∑
x

(I2,x(x
′)J(x; p))T I2,y(x

′)J(x; p)
∑
x

(I2,y(x
′)J(x; p))T I2,y(x

′)J(x; p)

 . (20)
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In the case of a homography, the transformation is x′ := H(p)x. H is a 3×3 matrix in homogeneous
coordinates [10], as in Table 2, and it is represented by eight parameters, p = (h11, h12, h13, · · · , h32),
where the last component is fixed, h33 = 1. Since we are using homogeneous coordinates, we need
to divide by the last element of the vector as

x′ =
(1 + h11)x+ h12y + h13

h31x+ h32y + 1
and y′ =

h21x+ (1 + h22)y + h23
h31x+ h32y + 1

. (21)

The algorithm for this parametric model is very similar to the Lucas-Kanade algorithm. Its
complexity is O(n2N), with n the number of parameters and N the number of pixels. Taking into

account the number of iterations, i, and the number of scales, s, the complexity is O
(
in

2N
3

(
4− 1

4s

))
.

4 The Inverse Compositional Algorithm

The inverse compositional algorithm is an efficient registration technique whose iterative process is
based on the composition of two transformations, one of them inverse as x′(x; ∆p)−1.

During the incremental refinement process, the Lucas-Kanade algorithm has to compute the
Hessian at every iteration. This, together with the interpolation of the second image, is the most
computationally expensive step. Note that the size of this matrix depends on the number of param-
eters.

Various alternatives have appeared trying to improve this step, see [6] and [18]. In the inverse
compositional algorithm this is solved very efficiently, since the Hessian matrix remains constant
during the iterations. This is achieved by separating both unknowns, p and ∆p, in the two images
as

E(∆p) =
∑
x

|I2(x′(x; p))− I1(x
′(x; ∆p))|22. (22)

Now the first order Taylor expansion for I1(x
′(x; ∆p) is

I1(x
′(x; ∆p)) ' I1(x) +∇I1(x)J(x)∆p. (23)

We assume that x′(x; ∆p), evaluated at ∆p := 0, is the identity, i.e., x′(x; 0) = x. Note that the
first image and its gradient do not have to be interpolated. The assumption behind this formulation
is that the gradients of I2(x

′(x; p)) and I1(x) are similar when p is close to the solution. The update
rule for the parameters is now

x′(x; p) = x′(x; p) ◦ (x′(x; ∆p))−1. (24)

In the case of the transformations in Table 2, this is equivalent to inverting and multiplying two
3× 3 matrices. In practice, it is not necessary to multiply matrices, since the operations can be left
as a function of the parameters. The new linearized energy is

E(∆p) =
∑
x

|I2(x′(x; p))−∇I1(x)J(x)∆p− I1(x)|22. (25)

Then, minimizing the second term of (25) yields

∆p = H−1I
∑
x

(∇I1(x)J(x))T (I2(x
′(x; p))− I1(x)), (26)
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with

HI =
∑
x

(∇I1(x)J(x))T ∇I1(x)J(x)

=

 ∑
x

(I1,x(x)J(x))T I1,x(x)J(x)
∑
x

(I1,x(x)J(x))T I1,y(x)J(x)∑
x

(I1,x(x)J(x))T I1,y(x)J(x)
∑
x

(I1,y(x)J(x))T I1,y(x)J(x)

 . (27)

The clear benefit of this scheme is that ∇I1(x), J(x) and, thus, HI do not depend on ∆p and are
constant through the iterations. These, together with the inverse of the Hessian, can be precomputed.
Another benefit is that it is no longer necessary to calculate ∇I2(x

′), which would require two
bilinear/bicubic interpolations.

On the contrary, one of the drawbacks of this approach is that it is slightly more sensitive than the
Lucas-Kanade method when there is noise in both images, as explained in [6]. Another shortcoming of
this algorithm is that the transformation must be invertible. In the case of polynomials, it is difficult
to find the inverse for degrees higher than one, however, we may compute an approximate inverse,
q(y), of a polynomial p(x) on a bounded domain by minimizing an energy E(q) =

∫
|q(p(x)) − x|2,

which yields a system of linear equations.

Algorithm 3: Inverse Compositional Algorithm

input : I1, I2, p, ε
output: p
Compute ∇I1(x)
Compute the Jacobian J(x)
Compute ∇I1(x)J(x)
Compute the Hessian using Equation (27)
repeat

Calculate I2(x
′(x; p)) using bilinear or bicubic interpolation

Compute I2(x
′(x; p))− I1(x)

Compute
∑
x

(∇I1(x)J(x))T (I2(x
′(x; p))− I1(x))

Solve for ∆p using Equation (26)
x′(x; p)← x′(x; p) ◦ (x′(x; ∆p))−1

until ‖∆p‖ < ε

The inverse compositional algorithm is shown in Algorithm 3. This algorithm is called from a
coarse–to–fine scheme, similar to Algorithm 2. The main difference is that the transformations are
updated from scale to scale according to Table 3.

The complexity of this algorithm is O(n2N) before the iterative process. At each iteration,
however, it reduces to O(nN). Thus, taking into account the number of iterations, i, and scales, s,
the computational cost is O

(
n2N + inN

3

(
4− 1

4s

))
. The clear benefit of this strategy comes up when

the number of iterations is large.

4.1 Robust Error Functions

In the same way as in the Lucas-Kanade method, we can use robust functions to cope with noise
and occlusions, as explained in Section 2.3 (this part is explained in [3]). However, their use in the
inverse compositional algorithm has the main drawback that the Hessian cannot be precomputed
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Transform Update from scale s to s− 1
Translation (tx, ty)

s−1 := 1
η
(tx, ty)

s

Euclidean (tx, ty, θ)
s−1 :=

(
1
η
tx,

1
η
ty, θ

)s
Similarity (tx, ty, a, b)

s−1 :=
(

1
η
tx,

1
η
ty, a, b

)s
Affinity (tx, ty, a11, a12, a21, a22)

s−1 :=
(

1
η
tx,

1
η
ty, a11, a12, a21, a22

)s
Homography (h11, h12, h13, h21, h22, h23, h31, h32)

s−1 := (h11, h12,
1
η
h13, h21, h22,

1
η
h23, ηh31, ηh32)

s

Table 3: Update rule for the transformations in the coarse–to–fine scheme.

anymore. The energy is

E(∆p) =
∑
x

ρ
(
|I2(x′(x; p))− I1(x

′(x; ∆p))|22
)
, (28)

where ρ (·) is one of the functions in Table 1. The solution is

∆p = H−1δ
∑
x

ρ′ · (∇I1(x)J(x))T (I2(x
′(x; p))− I1(x)), (29)

with

Hδ =
∑
x

ρ′ · (∇I1(x)J(x))T ∇I1(x)J(x)

=

 ∑
x

ρ′ · (I1,x(x)J(x))T I1,x(x)J(x)
∑
x

ρ′ · (I1,x(x)J(x))T I1,y(x)J(x)∑
x

ρ′ · (I1,x(x)J(x))T I1,y(x)J(x)
∑
x

ρ′ · (I1,y(x)J(x))T I1,y(x)J(x)

 , (30)

and ρ′ := ρ′
(
|I2(x′(x; p))− I1(x)|22

)
. In this case, ρ′(·) must be re-evaluated during the iterations.

Therefore, the Hessian and its inverse must also be computed inside the iterative process. Neverthe-
less, the gradient of the image needs not be interpolated.

The cost of the inverse compositional algorithm is O(nN) per iteration, whereas the inclusion
of robust error functions increases the cost to O(n2N), see [3]. This means that the order of the
algorithm is still linear in the number of pixels but quadratic in the number of parameters.

4.2 Numerical Details and Parameters

The gradient of the image is calculated using central differences. We use bicubic interpolation
for warping the second image, I2(x

′(x; p)), and for downsampling the images in the coarse–to–fine
scheme. When x′(x; p) falls beyond the dimensions of I2(x), we assign a default value of 0.

This method depends on the parameters given in Table 4. These parameters are: The threshold
for the robust function, λ; the parameters for the pyramidal scheme, given by the number of scales,
Nscales, and the downsampling factor, η; and the parameters for the incremental refinement, ε and
MAXITER.
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Parameter Description
λ Robust function threshold (see Table 1).

Nscales Number of scales in the pyramidal structure.
η Downsampling factor to create the pyramidal structure.
ε Stopping criterion threshold for the incremental refinement.

MAXITER Maximun number of iterations in the incremental refinement.

Table 4: Parameters of the method

Most of these parameters may be fixed. In the experiments, we choose the Lorentzian function.
Its threshold is initialized to a big value, λ := 80, and is reduced during the iterations as λi := 0.9λi−1,
until λ := 5. This strategy is followed by several works, such as [15] and [9]. This is a continuation
method that successively reduces the influence of outliers: Initially, a large value of the parameter
allows to consider all the points as inliers and, as the model is being approximated, outliers are
gradually eliminated.

It is possible to estimate the value of λ according to the noise of the sequence. In the case of the
Lorentzian, λ := τ√

2
, with τ the maximum expected intensity difference to be considered as inlier, is

the zero of the second derivative of the robust function, see [9]. From this value, the influence of the
outliers starts to decrease. The value of τ can be approximated from the standard deviation of the
noise, like in [15].

The number of scales, Nscales, is chosen so that the size of the coarsest images is bigger than
32×32 pixels. The downsampling factor is set to η := 0.5 (the images are reduced to half their size),
the threshold ε := 10−3 and MAXITER:= 30.

4.3 Robust Inverse Compositional Algorithm

The implementation of the method is detailed in Algorithm 4.

Algorithm 4: Robust Inverse Compositional Algorithm

input : I1, I2, p, ε
output: p
Compute ∇I1(x)
Compute the Jacobian J(x)
Compute ∇I1(x)J(x)
repeat

Calculate I2(x
′(x; p)) using bilinear or bicubic interpolation

Compute I2(x
′(x; p))− I1(x)

Compute the Hessian using Equation (30)

Compute
∑
x

ρ′ · (∇I1(x)J(x))T (I2(x
′(x; p))− I1(x))

Solve for ∆p using Equation (29)
x′(x; p)← x′(x; p) ◦ (x′(x; ∆p))−1

until ‖∆p‖ < ε

This algorithm is called from the coarse–to–fine scheme of Algorithm 2 with the main difference that
the transformations are updated from scale to scale according to Table 3.

The complexity of this algorithm is O(nN) before the iterative process. At each iteration, it
increases to O(n2N) and, including the number of iterations and scales, the computational cost is
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O
(
nN + in

2N
3

(
4− 1

4s

))
. The cost is slightly better than the Lucas-Kanade algorithm. The main

benefit is that it allows to precompute some information and avoid the interpolation of the image
gradient during the iterative process.

The use of robust functions makes the inverse compositional algorithm less efficient because the
Hessian must be computed at every iteration. One way to speed-up the algorithm is to exploit the
spatial coherence of outliers [3]: I1 can be divided in K blocks B1, B2, . . . , BK and the Hessian can
be computed as

Hδ =
K∑
i=1

∑
x∈Bi

ρ′ · (∇I1(x)J(x))T ∇I1(x)J(x). (31)

If we suppose that ρ′ is constant in each block, e.g., taken as the minimum or the mean value,
then

Hδ =
K∑
i=1

ρ′i ·
∑
x∈Bi

(∇I1(x)J(x))T ∇I1(x)J(x). (32)

The internal part can be precomputed as a set of Hi =
∑
x∈Bi

(∇I1(x)J(x))T ∇I1(x)J(x), i =

1, . . . , K. Now the Hessian is

Hδ =
K∑
i=1

ρ′i ·Hi. (33)

5 Online Demo

The accompanying online demo allows executing the algorithms explained in the previous sections
(Algorithms 2, 3 and 4). It includes several synthetic sequences for which the parameters are known.
The name of each sequence represents its transformation, for instance, ‘zoom+rotat.+trans’ stands
for a zoom, rotation and translation, which can be recovered, at least, by a similarity.

Alternatively, users may upload their own sequences. The images must have the same dimen-
sions. Optionally, the user may also upload a text file with the true parameters, which will be
used for comparing with the solution obtained by the algorithm. This file is specified as [type

of transformation] [parameters of the transformation]. The [type of transformation]

is specified as the number of parameters of the model: translation (2), Euclidean transform (3),
similarity (4), affinity (6), and homography (8). The parameters are specified in the following line of
the file in the same order as in Table 2. For example, an affinity is described by the following file:

6

0.5 -0.5 -0.09 -0.1 -0.1 0.05

with (tx, ty, a11, a12, a21, a22) := (0.5,−0.5,−0.09,−0.1,−0.1, 0.05).
Once the users have selected or uploaded the images, they may choose other parameters, such as

the type of transformation, the robust error function and its parameter λ, the number of scales, the
zoom factor, and the stopping criterion threshold ε. Additionally, they may also introduce Gaussian
noise in the images by specifying the standard deviation (σ) between 0 and 100. A value of λ = 0
means that this parameter is computed automatically, as explained in Section 4.2.

After the execution, the demo shows I1(x), I2(x) and I2(x
′(x; p)). It also shows the error image

|I2(x′(x; p))− I1(x)| and ρ(|I2(x′(x; p))− I1(x)|2 ;λ) for λ := 80, or the value chosen by the user,
and λ := 5. Then, it shows the information of the computed and ground truth transformations, as
well as RMSE, d̃(Hgtxi,Hexi) (see next section), and the run time of the algorithm.
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6 Experiments

In order to evaluate the algorithms, we used several synthetic sequences. These were generated
applying a predefined parametric model to the second image, I2(x), to obtain I1(x) := I2(x

′(x; p)),
using bicubic interpolation.

Comparisons were made using two error metrics: The root mean square error (RMSE) and a
geometrical error, d̃(Hgtxi,Hexi). The latter results from projecting the four corners of the image
with the ground truth, Hgt, and the estimated transformation, He, and calculating the average
Euclidean distance between corresponding points. This measure is more interesting than directly
comparing the transformations because it is independent of the parameter units and no normalization
is necessary. These errors are given by the following expressions

RMSE :=

√∑ |I2(x′(x; p))− I1(x)|2
N

, (34)

and

d̃(Hgtxi,Hexi) :=

∑4
i=1 d(Hgtxi,Hexi)

4
. (35)

Note that the vectors are in homogeneous coordinates, so it is necessary to divide by the third
component. In the experiments, we fix the parameters according to Section 4.2: ε := 10−3; the
number of scales for the coarse–to–fine scheme is chosen so that the smallest images are close to but
bigger than 32 × 32 pixels and the zoom factor is 0.5; we choose the Lorentzian error function and
λ is adapted in the iterations as explained in Section 4.2.

In the first experiment, in Figure 1, we used two images of the RubberWhale sequence related
by an affinity.

Figure 1: Two images of the RubberWhale sequence related by an affinity.

The ground truth and estimated affinities are

Hgt =

 0.910 −0.100 0.500
−0.100 1.050 −0.500
0.000 0.000 1.000

 , He =

 0.910 −0.100 0.4995
−0.100 1.050 −0.5005
0.000 0.000 1.000

 . (36)

We see that the method provides very good accuracies, withRMSE = 0.2819 and d̃(Hgtxi,Hexi) =
0.0012. In the second experiment, Figure 2, we applied a homography to the Wooden sequence.

The ground truth and estimated homographies are

Hgt =

 1.100 0.010 8.000
−0.100 1.100 −0.100
0.00010 0.00010 1.000

 , He =

 1.100 0.010 7.997
−0.100 1.100 −0.101
0.00010 0.00010 1.000

 , (37)
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Figure 2: Two images of the Wooden sequence related by a homography.

with RMSE = 0.279 and d̃(Hgtxi,Hexi) = 0.0064. Looking at these matrices, the most important
errors seem to be related to the translation (last column of the first two rows). However, note that
the influence of each parameter is different and a small variation, e.g., in the rotation, may produce
larger errors. Also note that the transformation is centered at the origin of the first image.

In the third experiment in Figure 3, we used another sequence related by a homography.

Figure 3: Two images related by a homography.

The ground truth and estimated homographies are

Hgt =

 0.800 0.100 −0.190
−0.130 1.100 −0.100
0.00010 0.0010 1.000

 , He =

 0.800 0.100 −0.1908
−0.130 1.100 −0.1001
0.00010 0.0010 1.000

 . (38)

We also obtained a very good accuracy, with RMSE = 0.305 and d̃(Hgtxi,Hexi) = 0.0025.

6.1 Parameter Noise

Next, we analyzed the behavior of the method with respect to noise in the parameters. In the first
experiment, we took the four corners of the image and added Gaussian noise of σ from 0 to 30 to
each point independently. Then, we calculated the homography that relates the four points to their
original positions. The second image of the Baboon sequence (Figure 4) was transformed according
to this homography to get I1. We computed affine transformations using the error functions in
Table 1 and the L2 norm.
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Figure 4: Baboon sequence.

We plot the average of twenty tests for each value of σ. The result is shown in Figure 5. The
graphic on the left shows the results without the coarse–to–fine scheme. We observe that the error
increases very fast from a small value of σ. Using four scales (graphic on the right), the solutions
are much more accurate and stable. The multiscale approach also reduces the differences between
the robust and L2 functions. The error seems to increase linearly with respect to the amount of
noise. As expected with Gaussian noise, the L2 norm is the best performing strategy. The truncated
quadratic and Geman & McClure robust functions present higher variations for large values of σ.
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Figure 5: Parameter noise: Error evolution, d̃(Hgtxi,Hexi), with respect to Gaussian noise in the
parameters. Left graphic without the coarse–to–fine approach and, right, with four scales.

In the second experiment, we added Gaussian noise to the four corners, with σ := 50. Then, we
generated a set of homographies from the linear interpolation of the original, x, and noisy points,
x̃, as x′ = (100− τ)/100 x + τ/100 x̃. The homographies were computed from x to x′. In this way,
we simulated the effect of increasing noise in the parameters. The graphic on the left in Figure 6
shows the evolution of the error without the coarse–to–fine strategy. The best performing method is
again the L2 norm; the second, the Charbonnier function; and the third, the Lorentzian. The worse
is the truncated quadratic. The graphic on the right shows the result using four scales, for which we
observe the same benefits as in the previous experiment: higher accuracy, more stable solutions and
minor differences between the error functions.

The error functions seem to present a linear evolution. Since we are using affinities for estimating
the transformation between two images related by homographies, this probably means that the
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Figure 6: Linear parameter noise: Error evolution, d̃(Hgtxi,Hexi), with respect to Gaussian noise in
the parameters. The transformations are calculated by linear interpolation between an initial set of
points and points with Gaussian noise of σ := 50. Left graphic without the coarse–to–fine approach
and, right, with four scales.

method allows to reasonably approximate a given model with another model with less parameters:
Increasing the noise linearly is equivalent to go from a ‘soft’ homography (identity matrix) to a
‘strong’ homography, with a greater influence of the perspective parameters, which is farther from
an affinity. The fact that we see a linear evolution of the errors means that it is proportional to
the level of noise or, equivalently, to the perspective parameters. Otherwise, we should expect an
exponential evolution of the error if the model fails to approximate these parameters.

In the online demo, it is easy to observe that if we choose a parametric model with less degrees of
freedom, we usually obtain the transformation that allows to better align the images for that model.
On the other hand, if the model has more degrees of freedom, the solutions are usually less accurate
than using the correct model.

6.2 Image Noise

In the next experiment, shown in Figure 7, we studied the behavior of the algorithm with respect
to noise in the images. We added Gaussian noise to the Dimetrodon sequence, with σ := 20. These
images are related by a similarity.

Figure 7: Two images of the Dimetrodon sequence related by a similarity, with Gaussian noise of
σ := 20. On the right, the error image given by |I2(x′(x; p))− I1(x)| at each pixel.
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The ground truth and estimated transformations are

Hgt =

 0.8955 −0.08985 47.944
0.08985 0.8955 −5.9639
0.000 0.000 1.000

 , He =

 0.8956 −0.08993 47.929
0.08993 0.8956 −6.0128
0.000 0.000 1.000

 . (39)

We obtained an RMSE = 25.179 and d̃(Hgtxi,Hexi) = 0.0489. In the graphic depicted in
Figure 8, we see the evolution of d̃(Hgtxi,Hexi) with respect to σ. In order to get a reliable evaluation,
we computed the mean value of twenty estimations for each σ. This graphic shows that the method
is very robust to noise in general, since the average distance to the correct points is less than one
pixel for σ := 100.
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Figure 8: Error evolution, d̃(Hgtxi,Hexi), with respect to Gaussian noise of standard deviation σ.
We used the Dimetrodon sequence and a similarity transform.

In this case, the quadratic function is no longer a lower bound. On the contrary, we observe
that it is rather an upper bound for higher degrees of noise. The Charbonnier and Lorentzian func-
tions consistently improve the L2 norm. However, the truncated quadratic and Geman & McClure
functions provide the best results, although they present a higher variability.

The last experiment in this section studied the behavior of the error functions with respect to
λ. We added Gaussian noise of σ := 50 to the Baboon sequence (Figure 9), which is related by a
homography.

The graphic in Figure 10 shows that the Charbonnier and Lorentzian functions are better than
the quadratic, even for small values of λ, and are very stable. On the other hand, only for large values
of λ, the truncated quadratic function outperforms the L2 norm. For small values, the truncated
quadratic probably removes too much information, producing the largest errors. The Geman &
McClure function provides bad results for small λ values, similarly to the truncated quadratic, but
becomes stable for larger values.
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Figure 9: Two images related by a homography and Gaussian noise of σ := 50.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70  80  90  100

E
rr

or

λ

Quadratic
Truncated quadratic

Geman & McClure
Lorentzian

Charbonnier

Figure 10: Robust error parameter: Error evolution, d̃(Hgtxi,Hexi), with respect to λ.

6.3 Occlusions

Finally, we analyzed the behavior of the algorithm with respect to occlusions. In this case, we
occluded half of the second image (see Figure 11) and introduced Gaussian noise of σ := 5.

The ground truth and estimated homographies are

Hgt =

 0.989 0.149 −5.300
−0.149 0.989 5.300
0.000 0.000 1.000

 , He =

 0.989 0.149 −5.296
−0.149 0.989 5.292
0.000 0.000 1.000

 . (40)

We obtained RMSE = 44.739 and d̃(Hgtxi,Hexi) = 0.0151. In the graphic depicted in Figure 12,
we see the evolution of d̃(Hgtxi,Hexi) with respect to the amount of occlusion. In this case, we
occluded the right part of the image with rectangles (from 1% to 100% of the image region). Again,
we computed the mean value of twenty estimations for each amount of occlusion. We see that the
accuracy is high even for large amounts of occlusions (up to 70%).

All the robust error functions outperform the quadratic approach, which increases linearly up
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Figure 11: Two images of a sequence related by an Euclidean transform with occlusions and noise.
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Figure 12: Occlusions: Error evolution, d̃(Hgtxi,Hexi), with respect to occlusions.

to 60% of occlusions. The best performing strategy is the truncated quadratic when the level of
occlusions is less than 36%. The Charbonnier function is similar to the Lorentzian up to 50% of
occlusions and then the Lorentzian is the best approach, with a good behavior even beyond 90%.
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